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ABSTRACT:

Point cloud processing is basically a signal processing issue. The huge amount of data which are collected with Terrestrial Laser
Scanners  or  photogrammetry  techniques  faces  the  classical  questions  linked  with  signal  or  image  processing.  Among  others,
denoising and compression are questions which have to be addressed in this context. That is why, one has to turn attention to signal
theory because it is susceptible to guide one's good practices or to inspire new ideas from the latest developments of this field. The
literature have been showing for decades how strong and dynamic, the theoretical field is and how efficient the derived algorithms
have become. For about ten years, a new technique has appeared: known as compressive sensing or compressive sampling, it is based
first  on  sparsity  which  is  an interesting  characteristic  of  many  natural  signals.  Based  on  this  concept,  many  denoising  and
compression techniques have shown their efficiencies. Sparsity can also be seen as redundancy removal of natural signals.  Taken
along with incoherent measurements, compressive sensing has appeared and uses the idea that redundancy could be removed at the
very early stage of sampling. Hence, instead of sampling the signal at high sampling rate and removing redundancy as a second stage,
the acquisition stage itself may be run with redundancy removal. This paper gives some theoretical aspects of these ideas with first
simple mathematics.  Then, the idea of compressive sensing for a Terrestrial  Laser Scanner is examined as a potential  research
question  and  finally,  a  denoising  scheme based  on  a  dictionary  learning  of  sparse  coding  is  experienced.  Both  the theoretical
discussion and the obtained results show that it is worth staying close to signal processing theory and its community to take benefit of
its latest developments.

1. INTRODUCTION

Terrestrial  Laser  Scanners  have  been  used  for  about  fifteen
years  and  have  now  become  a  popular  and  affordable
technology.  Many  impressive  improvements  have  been
achieved on the speed,  precision and accuracy.  On the other
hand, they produce a huge amount of data which have to be
stored  and  processed.  As  an  imaging  device,  one  should  be
aware of the latest achievements in signal and image processing
to be sure to use the most efficient schemes to deal with the
difficulty of handling big volumes of data.
This paper deals with recent developments in signal and image
processing  and  the  way  it  may  shed  some  light  on  how
Terrestrial Laser Scanners' data could be handled.
To illustrate how these recent developments interact with the
practical usage of TLS, it will be shown that it is  possible to
improve  denoising  of  the  point  cloud  by  using  dictionary
learning of sparse coding.
The paper is organized as follows: paragraph 2 gives a brief
mathematical description of how a general signal (or an image)
is considered in modern signal theory: based on this description,
compression  and  denoising  are  presented  as  practical
applications  of sparsity which is an important characteristic of
most  natural signal. Then,  a quite  recent approach known as
compressive sensing is explained. It is then showed that a TLS
could be  described  as  a  single-pixel  camera  with  the
particularity that it is a range camera.  The question of finding
out how range could be the object of compressive sensing is
addressed  and   presented  as  a  potential  research  program.
Paragraph 3 recalls how denoising of the point cloud can be
obtained by denoising of the individual range images produced

by  the  scanner  before  registration.  Then some  initial
experimental results of Range Image denoising are presented.
Last, paragraph  4 suggests further developments since so far,
the experimental results prove the interest of the principle of the
method but  have not  allowed to obtain a  complete  3D point
cloud with substantial denoising.

2. VECTOR SPACE REPRESENTATION OF SIGNALS

For a long time, signals have been obtained by analog sensors
and processed by analog electronic devices.  In this case, signal
description used to be done in the Hilbert space which arises
naturally  and  frequently  in  mathematics,  physics  and
engineering, typically as infinite-dimensional  function spaces,
when the sensed signal is analog and represented by a square-
integrable  function.  The  corresponding  mathematics  are
difficult  and  subtle,  not  easily  reached  by the  non-specialist.
More  and  more,  however,  signals  are  digitized,  sometimes,
digital native, and the corresponding mathematics are easier to
handle  as  a  simple  generalization  of  the  classical  and  well-
known euclidean space. As it is quite easy to understand with
simple  maths,  it  is  worth  giving  some explanation  to  allow
anyone to get into the issue of signal and image processing.
In the discrete case, both sampled and digitized, a signal is a
vector (which may be expressed a priori as a column or row
vector) of an N-dimensional vector space and is written:
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where:
δ

0
=[10 ...0] ,δ

1
=[01 0 ...0], δ

N
−1=[00 ...0 1] (3)

Hence,  in  the  discrete  signal  context,  a  signal,  as  a  simple
vector, may be understood as a generalization of the classical
and  well-known  vectors  of  the  3-dimension  euclidean  space
with the difference that  the N-dimension may be quite  high.
Hence, if one works with a six million pixel image, provided
that  the rows are  merged together  in  a  single  final  row, one
works  in  a  six  million-dimension  vector  space.  However,
despite the hugeness of the dimension, all the classical concepts
of  the  simple  3-dimension  euclidean  space  are  easily
generalized  to  any  N-dimension  including  very  high
dimensions.
For  instance  and  among others,  we  recall  some of  the  basic
formulas extended to the N-dimension.
The inner product of two signals is defined either by:
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or by
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where the overline stands for the conjugate if the signals are
complex. This inner product is an essential operation on discrete
signals as we will see since it is the basis for signal projection
and hence, the so-called transforms.
The norm of a signal is then defined as:
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in case of a complex signal (the corresponding definition for a
real signal is evident).
One can also define the quadratic or euclidean distance (other
definitions exist) between two signals by:
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Once these definitions are well understood, it is easy to interpret
signal processing as fundamental geometric processes in this N-
dimensional  vector  space.  In  particular,  it  becomes  easy  to
interpret the so-called transforms and particularly, the discrete
Fourier  Transform  in  a  geometric  way.  If  we  turn  back  to
equation  (1),  one  can  read  the  signal  as  written  as  a  linear
combination  of  the  canonical  basis  of  the δ

i vector  set.
However, it remains possible to rewrite the very same vector or
signal in another basis vector set which is nothing else but a
change of basis or change of frame. And this is basically the
great idea of Transforms: it consists in rewriting the very same
signal or vector in a basis set where the same vector has nice
properties.  As  probably  the  most  famous  one,  the  Discrete
Fourier Transform is defined as follows: one needs a set of N
vectors (since the space is N-dimensional). The set is obtained
by sampling of the N complex exponential functions:

y
n
(k )=e

j2 π nk

N (8)

for n=0, 2, …, N-1 and each exponential function is sampled on
N samples (k=0, 1, 2, …, N-1).
Thus, each component of the Discrete Fourier Transform (TFD)
is  obtained  by  projection  of  the  initial  vector  written  as  the
linear  combination  of  the  canonical  basis  on  the  new  basis
vectors and this projection is as in the classical 3D euclidean
space is obtained through a mere inner product:

X (n)= ∑
k=0

k=N−1

x (k )e
− j2π nk

N (9)

which should be interpreted as the inner product between the
initial vector and the nth exponential sampled function. When
one makes  n vary from 0 to  N-1,  one obtains  N projections
which are the N coefficients of the linear combination of the
exponential  vector  basis  which  is  another  expression,  in  a
different basis, of the very same initial vector. Thus, one may
retrieve the initial  vector  as  expressed in  the canonical  basis
through  its  coefficients  which  define  the  Inverse  Discrete
Fourier Transform by:

x(k )= 1

N
∑
n=0

n=N −1

X (n)e
j2π nk

N (10)

To get  the point  of  these  transforms and  how they  allow to
obtain  pertinent  representations,  let  us  see  how  a  particular
signal, which is not intelligible in the canonical basis because it
is highly disturbed by a big amount of noise, a so-called 'white
noise'  whose  signification  will  become  evident  below.  This
signal  consists  of  a  linear  combination of  sine signals  at  the
frequencies, 100 Hz, 200 Hz, 300 hz and 400 Hz with variable
magnitudes. But the signal is noisy in the sense that a so-called
'white noise' has been added with a quite large amplitude to the
extent that the direct representation of the vector (one thousand
samples)  does  not  allow  to  recognize  the  sine  nature  of  its
components.  Figure  1  shows  the  initial  signal/vector  in  the
canonical basis also called direct space. Figure 2 shows the very
same signal or vector after change of basis. In the signal theory,
one says that figure 2 shows the Discrete Fourier Transform of
the  signal  but,  actually,  it  is  the  very  same  signal  however
expressed  in  another  basis.  In  this  figure,  the  information
content  becomes  clearly  readable.  The  fine  and  high  peaks
correspond  to  the  presence  of  energy  at  the  corresponding
frequencies  (see  above)  and  the  sharpness  of  these  peaks
indicate that the signal is composed with pure sines. 

Fig. 1: a signal composed with four pure sines and white noise.

The  so-called  'white  noise'  appears  on  figure  2  as  the  low
amplitude signal spread over the whole range of the horizontal
axis. This kind of noise is called white in the sense that the
energy in this noise signal is equally distributed on the whole
range of  frequencies.  Now, the practical applications become
evident. Since the information content for this particular signal
has been exhibited in a very pertinent way by calculating the
Discrete Fourier Transform, one may instantly think about two
major  applications  quite  easy  to  understand.  Denoising  and
compression. They are both directly linked with a simple but
rich  concept:  sparsity.  The  initial  signal  has  a  very  valuable
characteristic, it is sparse in the sense that there exists a basis in
which only a few coefficients of the linear combination of the
basis vector set are non zero, if we reject the white noise which
is  a perturbation in  the initial  signal.  Then,  in  the denoising
scheme, one puts to zero all the coefficients which are too low
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to be likely to belong to the real signal and which are likely to
belong to the white noise. One retains only the few coefficients
with appreciable amplitude. Hence, the noise is removed and
only  the  actual  signal  remains.  This  removal  of  the  great
majority  of  coefficients  is  carried out  in  the frequency space
after having applied the Discrete Fourier Transform. Then, one
goes  back  to  the  canonical  basis  by  applying  the  Inverse
Discrete  Fourier  Transform  according  to  equation  (10).  Of
course, the removal is not perfect since there is a risk to get rid
of small coefficients which are some actual signal. Hence, the
quality  of  the  method  is  based  on  a  good  trade-off  and  on
finding the good threshold which separates correctly the actual
signal components and the white noise. 

Fig.  2:  the  same  signal  as  in  figure  1  but  expressed  as  a
combination  of  complex  exponential  vectors.  The  so-called
Discrete Fourier Transform of the signal in figure 1.

One may have noticed that by denoising by removal of small
coefficients,  one  has  in  the  same  time  obtained  signal
compression since the denoised signal is expressed by a linear
combination with few coefficients. The compression is lossy as
denoising was imperfect  since the removal  has  also removed
some components of the actual signal. On the other hand, by
increasing  the  threshold,  one  puts  to  zero  more  coefficients
which allows one to set the compression rate with the obvious
rule that the bigger the rate, the lossier the compression.
The  Discrete  Fourier  Transform  based  on  the  projection  on
complex  exponential  vectors  is  by  far  the  most  famous  one.
However, other transforms exist. The idea of sparse coding is to
find  out  the  appropriate  basis,  if  it  exists,  in  which  few
coefficients are non zero. If such a basis exists, the signal is said
to be sparse or compressible. The difficulty is to determine the
good basis. Int he 80s, an important family of vectors has been
introduced:  the  so-called  wavelets  and  the  corresponding
Wavelet Transforms and their expansions known as curvelets or
bandlets which have obtained impressive compression rates in
the field of image compression. The famous JPEG algorithm
uses a Discrete Cosine Transform which is a close variant of the
Discrete Fourier Transform whereas JPEG 2000 uses Discrete
Wavelet Transforms.

Figure 3 shows a one million pixel image (a) and its wavelet
coefficients  (b)  obtained  by  projection  of  the  image  on  a
wavelet basis. Relatively few coefficients contain most of the
signal energy and the image is said to be highly compressible.
The reconstruction (c) is built  after having zeroed out all  the
small coefficients but the 25 000 largest. At the human eye, the
difference between the original image and its reconstruction is
hardly noticeable.

Fig. 3: the original image (a), its wavelet coefficients (b) and
reconstructed image (c) after zeroing of the small coefficients.

Hence,  sparsity  which  is  a  common  characteristic  of  many
natural signals is a powerful idea as regard to compression and
denoising and we have seen that both processes are based on the
same method: zeroing a large amount of coefficients which do
not  contain much information of  the actual  signal  but  rather
contain  noise  energy.  However,  this  sample-then-compress
framework suffers  from different inherent inefficiencies:  first,
the signal has to be sampled at a relatively high sampling rate
(N samples) even if the ultimate remaining coefficients is quite
low (K coefficients) with K<<N. Second, N coefficients have to
be  computed  by  projection  of  the  initial  signal  on  the
sparsifying basis  even  though all  but  K are  to  be  discarded.
Last, the compression encoder faces the overhead of encoding
properly  the  large  remaining  coefficients.  In  other  words,
compression  is  based  on  redundancy  of  the  N-samples
representation of the initial signal but before getting rid of this
redundancy, one has to acquire it.

Recent  developments  in  advanced  mathematics  and  signal
theory  have  allowed  to  imagine  an  alternative  known  as
compressive sensing or compressive sampling. It is far beyond
the scope of this paper to describe the underlying mathematics
which are not as simple as above. We will just give without any
proof nor any theorem the general ideas leading to compressive
sensing and the main astonishing results which may be obtained
to show the great value of this new concept. Then, in the next
paragraph, we will show how a terrestrial laser scanner could
take benefit  of  implementing these new ideas.  The  complete
description,  theormes  and  proofs  may  be  found  in  a  very
abundant literature which can be accessed through a number of
introducing  papers  (Cadès  et  al.,  2005,  2006,  2007,  2008;
Donoho, 2006; Lustig, 2006).

We start  the  explanation  by  getting  back  to  the  first  step  in
transform coding which represents the signal by the coefficients
of an orthonormal sparsifying basis (named Ψ) expansion.

Now the basic idea of compressive sensing is to bypass the N-
sampling  process  and  directly  acquire  a  condensed
representation  using  M<N  linear  measurements  between  the
initial signal x and a collection of test vectors named Φ. So, in
other  words,  the  idea  of  compressive  sensing  consists  in
projecting  the  initial  signal  in  a  M-dimensional  subspace
described by the Φ basis which is independent from the initial
signal and reconstruct the signal with an other basis named  Ψ
in which the signal is sparse.  All the difficulty is to find the
right  pair  of  basis  and  evidences  have  been  found  that  the
problem  may be solved by probabilistic approach. To make a
long story short,  in practice,  we employ a pseudo-random  Φ
driven by a pseudo-random number generator. Then, the signal
is  reconstructed  by  a  range  of  alternative  reconstruction
techniques  based  on  greedy,  stochastic,  and  variational
algorithms. If we turn back to figure 3, experiments have shown
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that the initial image can be nicely be recoverd by a little less
than 100 000 measurements instead of the one million original
image. Thus instead of acquiring the image redundancy before
getting rid of it,  the acquisition step itself inherently removes
redundancy.

Intensity imaging sensors have improved dramatically in recent
times  thanks  to  the  introduction  of  CCD and  CMOS digital
technology. Consumer digital cameras in the megapixel range
are now ubiquitous thanks to  the happy coincidence that  the
semiconductor  material  of  choice  for  large-scale  electronics
integration (silicon) also happens to readily convert photons at
visual wavelengths into electrons. On the contrary, imaging at
wavelengths  where  silicon  is  blind  is  considerably  more
complicated, bulky, and expensive if ones intend to build a 2D
array of detectors at high resolution. Recently, a new approach
named single-pixel camera based on compressive sensing has
been  introduced.  These  single-pixel  compressive  sensing
cameras  are  based  on  the  computation  of  random  linear
measurements  of  the  scene  under  view.  The  image  is  then
recovered  or  processed  from  the  measurements  by  a  digital
computer.  The  camera  design  reduces  the  required  size,
complexity,  and cost  of the photon detector  array down to a
single unit, which enables the use of exotic detectors that would
be  impossible  in  a  conventional  digital  camera.  The  random
compressive  sensing measurements  also  enable  a  tradeoff
between space and time during image acquisition. Finally, since
the  camera  compresses  as  it  images,  it  has  the  capability  to
efficiently  and  scalably  handle  high-dimensional  data  sets.
Theory and experimental results are found in the literature and
prove the efficiency of this approach (Chan et al., 2008; Duarte
et al., 2009; Ma, 2009).

Somehow, a Terrestrial Laser Scanner may be understood as  a
single-pixel Range Image camera. However, based mainly on a
time-of-flight technique (directly or through phase shift),  it is
not possible to imagine a 2D array of range sensors. A potential
research  program would  then  be  to  adapt  these  initial  ideas
successfully  tried  on  intensity  cameras  alson  on  Terrestrial
Laser Scanners which can be seen as a raster Range Camera.

3. RANGE IMAGE DENOISING BY DICTIONARY
LEARNING OF SPARSE CODING

We have been carrying out works on Range Image denoising
since  2008.  We have  first  given  the  general  approach  which
consists  in  denoising  a  3D point  cloud  obtained  by  TLS by
denoising its  corresponding Range Images which have led to
the  point  could  by  registration  of  its  different  individual
stations. We have first investigated the wavelet approach. We
have then showed that the NL-means approach is much simpler
to implement and more efficient as well (Smigiel et al, 2011). In
this paragraph, we show very initial results of denoising based
on dcitionary learning of sparse coding. We first give a quick
explanation of the method and show the initial results that we
have  obtained  and  compare  them  with  the  results  we  had
obtained with the NL-means approach.

.
3.1 Theory of dictionary learning of sparse coding

If  we  turn  back  to  paragraph  2,  we  can  say  that  dictionary
learning consists mainly in finding out the sparsifying basis. In
the literature, the approach is based on sparse and redundant
representations  over  a  trained  dictionary.  As  the  dictionary
training algorithm is limited in handling small image patches,
one extends its deployment to arbitrary image sizes by defining
a global image prior that forces sparsity over patches in every
location in the image.  It has been shown how such Bayesian

treatment leads to a simple and effective denoising algorithm,
with  state-of-the-art  performance,  equivalent  and  sometimes
surpassing  recently  published  leading  alternative  denoising
methods.  For  a complete  survey of  this  approach,  the reader
may  look  at  the  rich  literature  on  the  subject  (Duarte-
Carvajalino et al.,  2009; Elad et al.,  2006; Kreutz-Delgado et
al.,2003; Peyré, 2011).

3.2 Results

In order to obtain first results of Range Image denoising, we
have used a set of experimental data which have been denoised
before  with  other  approaches.  In  the  case  presented  in  the
following  lines,  the  data  set  consists  in  registration  spheres
shown  on  figure  4.  Registration  calibrated  spheres  were
regularly distributed in the environment of an object of interest
but  the  interesting  objects  in  this  context  are  the  speres
themselves. They may be subject to a quantitative control which
consists  of  modeling  a  mathematical  sphere  on  the
corresponding  part  of  the  point  cloud  then  determining  the
standard deviation of  the cloud from the spherical  geometry.
The best results had been obtained by NL-means denoising. 
Table 1 shows the obtained results. The standard deviation of
the point  cloud around the theoretical  sphere is  substantially
decreased  for  both  methods,  a  little  more  for  the  dictionary
learning of sparse coding approach. However, a big difference
exists in terms of computation time. If the NL-means approach
is quick, the dictionary learning takes long, almost ten times the
computation time for the NL-means approach. 

Fig. 4: the four registration spheres which have been the object
of denoising through the NL-means approach and the dictionary
learning of sparse coding approach.

4. CONCLUSION AND FURTHER WORKS

In this paper, we have shown  how modern ideas in the signal
and image processing community could help developments in
the photogrammetry and lasergrammetry community.

Existing  methods  are  already  capable  of  being  applied:  in
particular,  sparse  coding  may help  to  denoise  Range  Images
obtained through Terrestrial  Laser Scanners.  Hence,  one may
build denoised point clouds that enhance the built-in accuracy
and precision of these machines. The further works to be carried
out in that direction would be to process a complete object to
compare the final accuracy and precision to former approaches.
The question of  time computation is  crucial  since the herein
described method has taken about ten times longer than a NL-
means algorithm. Hence, the question could be asked as: is the
algorithm complexity worth the computational time as regard to
the signal-to-noise improvement? 

The other direction is still  more theoretical:  it  deals with the
possibility of applying compressive sensing to Terrestrial Laser
Scanners. A priori, a TLS is a raster single-pixel camera. Could
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it be turned as a compressive sensing single-pixel camera? In
other terms, the question would be to find out how to perform
the M linear measurements. Because of the nature of the value
to measure (either a time-of-flight or a phase shift), the answer
is not obvious. However, if there should be a solution, it could
be a major evolution of that kind of equipment.

Sphere Standard  deviation
(mm)

Raw data

C1 1.91

C2 2.04

C3 1.86

C4 1.86

NL-means denoised

C1 0.83

C2 0.67

C3 1.07

C4 0.72

Dictionary  learning
denoised

C1 0.78

C2 0.63

C3 1.10

C4 0.69

Table  1:  results  of  denoising:  raw  data,  NL-means  denoised
spheres and Dictionary-learning denoised spheres.
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