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ABSTRACT 

 

Digital terrain models are key tools in land analysis and management as they are directly employable in GIS systems and other 

specific applications like hydraulic modelling, geotechnical analyses, road planning, telecommunication, and many others. TIN 

generation, from different kind of measurement techniques, is ruled by specific regulations.  Interpolation techniques to compute a 

regular grid from a TIN, are, instead, still lacking in specific regulations: a unitary and shared methodology has not already been 

made compulsory in order to be used in cartographic production while generating digital models. Such ambiguity obviously involves 

non univocal results and can affect precision, which can lead to divergent analyses on the same territory. 

In the present study different algorithms will be analysed in order to spot an optimal interpolation methodology. The availability of 

the recent digital model produced by the Regione Piemonte with airborne LIDAR and the presence of sections of testing realized 

with higher resolutions and the presence of independent digital models on the same territory allow to set a series of analysis with 

consequent determination of the best methodologies of interpolation. 

The analysis of the residuals on the test sites allows to calculate the descriptive statistics of the computed values: all the algorithms 

have furnished interesting results; all the more interesting, notably for dense models, the IDW (Inverse Distance Weighing) 

algorithm results to give best results in this study case. Moreover, a comparative analysis was carried out by interpolating data at 

different input point density, with the purpose of highlighting thresholds in input density that may influence  the quality reduction of 

the final output in the interpolation phase. 

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

1.1  DTM 

Digital Terrain Models (DTM) are a resource in environment 

and land-related applications. They can be employed in several 

ways in order to have a thorough understanding of a given 

investigated area by extracting morphometric parameters 

(Pirotti and Tarolli, 2010) or to perform complex analyses on 

the standalone DTM (Guarnieri et al., 2009) or by combining it 

with other data sources with modelling purposes (Barbarella 

and Fiani, 2012, Barbarella and Fiani, 2013, Godone et al., 

2011). 

Airborne LIDAR (Wehr and Lohr, 1999) is a powerful tool to 

survey high-resolution and high-accuracy DTM in large areas 

(Guo et al., 2010; Pirotti et al., 2013). The output of a LIDAR 

survey is a point cloud that needs to be interpolated in order to 

provide a continuous surface to the final user (Kraus and 

Pfeifer, 2001). The choice of the interpolator and the cell size 

plays an important role in the quality of the output DTM (Bater 

and Coops, 2009). 

 

1.1 IntesaGIS DB’s features 

The official working group called "IntesaGIS", has tried to 

establish a legal framework in the sphere of Italian cartography 

since 1996, and a series of documents has been developed to 

define some specific references on digital models. In summary: 

 the change in trend is represented by the fact that the main 

product is now represented by the DTM, while contour 

lines assume only a function of cartographic 

representation, derived from the same digital model and 

aimed to improve map readability, while, processing 

favours the use of the DTM; 

 the specification defines a set of quality requirements, 

which the DTM must meet, from the accuracy point of 

view, in particular by establishing a series of different 

Levels, each one characterized by the accuracy and 

resolution of the output grid; 

 specifications for the production of digital models are also 

defined, including: 

o the production of a TIN is ordinarily expected as a 

source of the regular grid for the DTM interpolation; 

o for the production of DTMs it is necessary to employ 

all available information related to the ground (roads, 

built, hydrography, etc, restricted to those elements 

whose coordinate is referred to the ground); 

o for the generation of the digital model it is necessary 

to integrate with mass points and breaklines uniquely 

surveyed with the aim of DTM production, without 

cartographic valence. The measurement of these 

points should be carried out by the use of digital 

photogrammetry, involving autocorrelation 

techniques, or LIDAR, in accordance of the accuracy 

Level desired. 

In any case, while the TIN production is ruled (Table 1), 

nothing is specified concerning cloud point interpolation for 

DTM computation purposes. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W3, 2013
The Role of Geomatics in Hydrogeological Risk, 27 – 28 February 2013, Padua, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-W3-139-2013

139



 

 Level - DEM or DSM 

1 2 3 4 

Accuracy: bare ground 

PH(a) 

5 2 1 0.3 

Height accuracy: with 

tree cover> 70% PH(b) 

(DEM) 

10 ¼(mth) ¼(mth) 0.6 

Height accuracy: 

buildings (DSM) PH(c) 

5 2.50 1.50 0.4 

Height tolerance: bare 

ground TH(a) 

10 4 2 0.6 

Height tolerance: with 

tree cover > 70% 

TH(b) (DEM) 

20 ½(mth) ½(mth) 1.2 

Height tolerance: 

buildings (DSM) TH(c) 

10 5 3 0.8 

Planimetric accuracy 

(East and Nord): PEN 

5 2 1 0.3 

Planimetric tolerance 

(East and Nord): TEN 

10 4 2 0.6 

Cell size (m) 20 20 10 5 

Table 1. Last version of the CISIS (2011) document – ―Large 

scale orthoimagery and elevation models – Guidelines" shows 

Level values: mth = mean tree height 

  

The table is not complete: higher level DEMs are missing. 

 

 

2. MATERIALS AND METHODS 

2.1 Interpolation techniques 

Interpolation tools available in geographical information 

systems are useful and allow the operator to easily perform 

different kind of elaborations and to display them graphically in 

order to show the results in a way intelligible also to non-skilled 

subjects. 

Interpolators are divided in two typologies (Hartkamp et al., 

1999): 

1. deterministic; 

2. stochastic. 

These interpolators use a linear combination of known functions 

with different weighting and neighbouring search schemes: data 

that are closer to interpolation point have more influence 

(weight), during the computations, in comparison with faraway 

ones, according to the First Law of Geography (Tobler, 1970).  

Interpolators could be defined as weighted average methods, 

with similar processing concept; the operator, in fact, needs to 

compute an unknown value, at an unsampled location, given a 

set of neighbouring sampled values, collected at locations 

neighbouring the unknown one; the quantity of neighbouring 

points included in the search radius directly affects the final 

surface smoothing and the computing time.  

The interpolation procedure consists in the definition of the 

search area or neighbourhood around the unknown point, the 

detection of the observed data points within the previously 

defined neighbourhood and, finally, the assignment of 

appropriate weights to each of the observed data points. The 

interpolation methods differ in the weighing of computing 

samples (Wong et al., 2004).  

Interpolation and values sampling have been carried out in 

ESRI ArcGis rel. 10.1 (Booth, 2000; McCoy and Johnston, 

2002) by the employment of Python scripting (van Rossum and 

Drake, 2001). Residuals and statistical analyses have been 

executed in R environment (R Development Core Team, 2010). 

In the following paragraph, the interpolators employed in the 

work are briefly described. 

 

2.1.1 IDW 

The Inverse Distance Weighing (IDW) interpolator is an 

automatic and relatively easy technique, as it requires very few 

parameters from the operator, such as search neighbourhood 

parameters, exponent and eventually smoothing factor, from the 

operator (Hessl et al., 2007). It is particularly suitable for 

narrow datasets, where other fitting techniques may be affected 

by errors (Tomeczak, 2003). The process is highly flexible and 

allows estimating dataset with trend or anisotropy, in search 

neighbourhood shaping. Anyhow interpolator’s output may be 

affected by ―bull’s eyes‖ or terraces (Burrough and McDonnel, 

1988; Liu, 1999). 

IDW directly implements the assumption that a value of an 

attribute at an unsampled location is a weighted average of 

known data points within a local neighbourhood surrounding 

the unsampled one (Mitas and Mitasova, 1999), as the 

following formula: 
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Where Zj is the value at an unsampled location, Zi are the 

known values,  is the weight and  is a smoothing parameter. 

The separation distancehij between a known and unknown point 

is measured with is euclidean distance: 

   22
yxhij 

  (2) 

where x and y are the distances between the unknown point j 

and the sampled one i according to reference axes. 

 

2.1.2  Spline 

 

Splines (Johnston et al., 2001) are interpolators that fit a 

function to sampled points. The algorithm uses a linear 

combination of n functions, one for each known point. 
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Where  r  represent the interpolation function, 0ssi   the 

Euclidean distance r between an unknown point 0s
 and a 

observed one is
, while i , with i = 1,2,…n+1, are weights. 

Weights are assigned according to the distance of known points, 

under the constraint that, in their locations, the function must 

give the measured value. This conditions lead to the 

computation of a system of N equations with N unknowns with 

a unique solution.  

Splines include different kinds of functions: 

Thin-plate Spline function: 

)ln()()( 2 rrr  
   (4) 

Multi-quadric function: 

  2/122)(   rr
    (5) 

Inverse Multi-quadric function: 

  2/122)(


  rr
    (6) 

Completely regularized Spline function: 
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Spline with tension function: 
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Where: 

r = distance between the point and the sample 

σ = tension parameter 

E1 = exponential integral function 

Ce = constant of Eulero (0,577215) 

K0= modified Bessel function. 

 

Splines functions are slightly different, each one has a different 

smoothing parameter depending on the σ parameter. In every 

method, the higher the value of σ, the higher the gradualness of 

the variation, except for the ―Inverse multi-quadric‖ where the 

opposite condition is true. 

In the following analyses only two Splines were available, 

according to the selected GIS package ArcGIS by ESRI): the 

Regularized and the Tension one. The Regularized Spline 

creates a smooth, gradually changing surface.  

The regularizing parameter is in fact employed to achieve a 

smoother solution: e.g. a small value results in a close 

approximation of the data, while a large one results in a 

smoother solution (Gousie and Franklin, 2005).  

The Tension Spline creates a less smooth surface with values 

more constrained by the sample data range: changing the value 

of the tension parameter tunes the surface from a stiff plate into 

an elastic sheet (Mitas et al., 1997). 

 

2.1.3  Natural neighbours 

 

Natural neighbour (NN) interpolation finds the closest subset of 

input points to an unknown point, and applies weights to them 

based on proportionate areas in order to interpolate a value 

(Sibson, 1981). The natural neighbours of any point are those 

associated with the neighbouring Voronoi polygons. Initially, a 

Voronoi diagram is constructed from all given points and a new 

Voronoi polygon is then created around the interpolation point. 

The proportion of overlap between this new polygon and the 

initial polygons are then used as weights. 

Natural Neighbours is local, using only one subset of points that 

surround the unknown point. It infers no trends and will 

produce no peaks, pits, ridges or valleys  not already 

represented by the input data.  

The surface passes through the input samples and it is smoothed 

everywhere except at the locations of the input samples. It 

adapts locally to the structure of the input data, requiring no 

input from the user pertaining to search radius, sample count, or 

shape. It works equally well with regularly and irregularly 

distributed data (Watson, 1992). 

 

2.2 LIDAR survey 

Data for the present work have been provided by Regione 

Piemonte survey aimed to the production of a digital 

orthoimage at 1:5000 scale and a digital terrain model at Level4 

in accordance with Intesa specifications (CISIS, 2011). 

LIDAR survey has been carried out by the employment of ALS 

50 II sensor (Leica Geosystems) with MPIA (Multiple Pulse In 

Air) technology with the following features (Dold and Flint, 

2007): 

 

- Maximum Pulse Rate: 150000 Hz (150.000 

points/second); 

- Maximum scanning frequency: 90 Hz (90 lines/second); 

4 echoes (1º, 2º, 3ºand last); 

- Flying height: 200 - 6000 mabove ground; 

- Field Of View (FOV): 10º – 75 º; 

- Side overlap: 200 - 600 m; 

- Intensity measured each echo. 

 

In addition to the ordinary survey, in a portion of Regione 

Piemonte, a more detailed one has been required. It has been 

characterized by the following parameters: 

- FOV (Field Of View): 58º; 

- LPR (Laser Pulse Rate): 66.400 Hz; 

- Scan Rate: 21.4 Hz; 

 -Average Point Density:0.22 pts/m²; 

 -Average Point Spacing: 2.12 m; 

 

2.3 Datasets 

The described algorithms have been applied to two datasets 

(Figure 1), characterized by different morphological features. 

The first one, Bardonecchia (45° 4′ N; 6° 42′ E), is located in a 

mountainous area (1230 – 2200 m a.s.l.) in the Western Alps 

while the second, Grugliasco (45° 4′ N; 07° 34′ E), lies in a flat 

(260 – 470 m a.s.l.), urbanized area. 

 

" "

Grugliasco

Bardonecchia

¯

 
Figure 1. Study sites 

 

2.3.1 Bardonecchia 

The dataset has been surveyed during the measurement 

campaign mentioned above and filtered in order to extract only 

ground points, the amount of input data is 12017944 with a 

density of 1 point every 3.26 m². The survey encompasses 

approximately 39.20 Km². 

From this huge amount of data, a test subset, consisting of the 

1% of the total, has been extracted in order to perform 

validation (Bater and Coops, 2009).  

The rest of the points have been iteratively subsampled, using 

SubsetFeatures ArcMap command, with the aim of computing 
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different input subsets to be employed in the interpolation 

procedures (Table 2). 

 

Name Density (pts/m2) N. points % 

Base0 1/3.54 11897765 100.00 

Base5 1/5 7841600 65.90 

Base10 1/10 3920800 32.95 

Base20 1/20 1960400 16.47 

Base50 1/50 784160 6.59 

Base100 1/100 392080 3.29 

Base200 1/200 196040 1.65 

Base400 1/400 98020 0.83 

 

Table 2. Bardonecchia test site, input subsets 

 

 

2.3.2 Grugliasco 

An analogous procedure has been carried out in the Grugliasco 

site. The initial survey covers an area of 38.44 Km² and 

10965358 ground points were extracted with a density of 1 poin 

every 3.54 m². The following table ( 

Table 3) reports the features of the input subsets. 

 

Name 

Density 

(pts/m2) N. points % 

Base0 1/3.54 10855704 100,00 

Base5 1/5 7687680 64,62 

Base10 1/10 3843840 32,31 

Base20 1/20 1921920 16,15 

Base50 1/50 768768 6,46 

Base100 1/100 384384 3,23 

Base200 1/200 192192 1,62 

Base400 1/400 96096 0,81 

 

Table 3. Grugliasco test site, input subsets 

 

 

2.4 DTM analysis 

Every input subset has been interpolated in ESRI ArcMap by 

different algorithms with default input parameters (Mitas and 

Mitasova, 1999) i.e. IDW (Power = 2, Search radius = variable, 

Maximum number of points = 12), Natural Neighbours (No 

parameters), Splines (Weight = 0.1, Maximum number of points 

= 12). Moreover splines have been employed in three different 

ways by selecting Regularised, Tension and Tension with 

Barriers. Barriers have been obtained by breaklines, in three 

dimensional shape file format, provided with the input 

datasets.Kriging has been excluded as its use without the 

exploitation of its data exploratory capabilities makes it 

mathematically similar to splines (Cressie, 1991). 

Each subset has been interpolated at 5x5, 10x10 and 20x20 

metres cell size, by every listed method. Resulting grids have 

been sampled using the designated methods and extracted 

elevation values have been subtracted from test points’ 

elevation in order to obtain residuals and compute descriptive 

statistics with the aim of pointing out the best algorithm’s 

performance. 

 

3. RESULTS AND DISCUSSION 

3.1 Quality assessment 

Only the IDW and Natural neighbours methods have been able 

to generate the entire set of grids; splines have encountered 

difficulties in the interpolation of denser dataset thus grids from 

Base0 to Base10 have not been computed, perhaps due to the 

overrun of the memory allocated to the processing. 

The residual computed on the test subsets have allowed to 

compute descriptive statistics for each interpolator at every 

resolution. Figure 2 and figure 3show the comparison of RMS 

for the two sites. The reported analysis are assumed to be 

independent from the LIDAR survey accuracy, and therefore 

only the computed residuals are related to the different point 

density and of algorithm choice. 
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Figure 2. Bardonecchia site, quality assessment (NN = Natural 

Neighbors, IDW = Inverse Distance Weighing, SpB = Tension 

Spline with Barriers, SpR = Regularized Spline, SpT = Tension 

Spline) 
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Figure 3. Grugliasco site, quality assessment (NN = Natural 

Neighbors, IDW = Inverse Distance Weighing, SpB = Tension 

Spline with Barriers, SpR = Regularized Spline, SpT = Tension 

Spline) 

 

Some interpolation methods (in particular splines) with certain 

input resolutions have produced unexpected results with peaks 

in residual values. 

RMS values, resulting from the different available subsets, 

grow, as it was logical to assume, with decreasing density of 

input points available in accordance with the findings of 

Anderson et al (2006).  

RMS also undergoes a growth trend as a function of grid 

spacing product, with a trend relatively more significant in areas 

characterized by simpler morphology (Godone and Garnero, 

2013). 

When input points density decreases, the algorithm IDW looks 

less performing than others, which do have a more 

homogeneous behaviour. 

 

 

4. CONCLUSIONS 

In DTM production the testing procedures ordinarily include 

the acquisition of GPS transects or the survey of grids 

characterized by precision and densityhigher than the one to be 

validated.According to these methods the procedure 

implemented in the present work seems meaningful to represent 

the testing procedures. 

Findings obtained from the analysesmay be helpful to define, in 

the case histories and with interpolation algorithms 

considered,the minimum density of points required to obtain the 

precision expected by the various Levels. 

Specifically, concerning land with complex morphology 

(Bardonecchia) the remarks are as follows: 

 in the case of the restrictive Level 4, which is associated 

with a grid spacing of 5 m, only the most extreme density, 

with one point every 3/5 square meters, can guarantee the 

satisfaction of the required accuracies; 

 concerning Level 3, which is associated with a grid 

spacing of 10 m, it is not possible to descend to lower 

densities at one point every 20 square meters as, in 

addition to the contributions in terms of RMS data by 

methods of interpolation, it is still necessary to evaluate 

the contributions of the measurement methods, not 

considered the effects of this work; 

 Levels 2 and 1, which are associated with a grid spacing 

of 20 m.According to the accuracies of the LIDAR 

measures currently reached, it is not advisable to decrease 

the resolution under one point every 100 square meters in 

the case of Level 2, while for Level 1 also the lowest 

resolution considered is sufficient. 

In the case of the situation of the City of Grugliasco, in absolute 

terms the values are much lower, as it is natural to expect. 

From the analysis of the graph shown in Figure 3, a quite 

similar behaviour in relative terms is remarked : 

 in the case of the Level 4, only the density of more than 

one point every 20 square meters can guarantee the 

satisfaction of the required accuracies; 

 for the others Levels, all densities taken into consideration 

can be usefully used. 
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