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ABSTRACT: 

 

This paper proposes a change detection analysis method based on multitemporal LANDSAT satellite data, presenting a study 

performed on the Lama San Giorgio (Bari, Italy) river basin area. Based on its geological and hydrological characteristics, as well as 

on the number of recent and remote flooding events already occurred, this area seems to be naturally prone to flooding.  

The historical archive of LANDSAT imagery dating back to the launch of ERTS in 1972 provides a comprehensive and permanent 

data source for tracking change on the planet‟s land surface. In this study case the imagery acquisition dates of 1987, 2002 and 2011 

were selected to cover a time trend of 24 years. Land cover categories were based on classes outlined by the Curve Number method 

with the aim of characterizing land use according to the level of surface imperviousness. 

After comparing two land use classification methods, i.e. Maximum Likelihood Classifier (MLC) and Multi-Layer Perceptron (MLP) 

neural network, the Artificial Neural Networks (ANN) approach was found the best reliable and efficient method in the absence of 

ground reference data. The ANN approach has a distinct advantage over statistical classification methods in that it is non-parametric 

and requires little or no a priori knowledge on the distribution model of input data. The results quantify land cover change patterns in 

the river basin area under study and demonstrate the potential of multitemporal LANDSAT data to provide an accurate and cost-

effective means to map and analyse land cover changes over time that can be used as input in land management and policy decision-

making. 

 

1. INTRODUCTION 

River channels in semi-arid regions are usually ephemeral in 

flow, remaining dry for a high proportion of time and only 

flowing occasionally, usually as flash floods lasting a few hours. 

However, flows can cause major channel changes, carrying 

large amounts of sediment and being highly destructive on 

human assets, thus impacting on overall risk (Pirotti et al. 

2010). Data on channel changes in relation to flow events are 

still sparse and few channels have been monitored long enough 

to detect the effects of sequences of flow events as well as of 

individual floods (Hooke, 2007). Understanding the current 

hydrologic condition of a river basin can be rather difficult 

when rainfall and runoff gauge stations are lacking. In such 

cases, to measure the runoff depth or volume of a basin area, the 

Soil Conservation Model is used (Mishra and Singh, 2006). 

This model accounts for many of the factors affecting runoff 

generation, including soil type, land use and treatment, surface 

condition, and antecedent moisture condition, incorporating 

them in a single Curve Number (CN) parameter. However, 

parameterization is often difficult due to lack of spatially 

distributed information. Often indirect methods are used to 

estimate the percentage of imperviousness of a certain land-use 

type (Prisloe et al., 2000). The drawback of this approach is that 

there is no standardized method for the derivation of an average 

percentage of imperviousness per land-use type. Furthermore, 

variability in the amount of imperviousness within the same 

land-use class is not incorporated (Dams et al., 2008).  

Several methodologies can be used to generate impervious 

surface maps but some of them are expensive and generally not 

practical for mapping large areas (Bauer et al., 2002). The use 

of automated or semi-automated image interpretation methods, 

utilizing the multi-spectral information content of satellite 

imagery, substantially reduces the effort to derive the 

impervious surface cover (Figorito et al., 2012).  

The Artificial Neural Networks (ANN)  approach has been 

increasingly applied in recent years (Weng 2009). The neural 

network has several advantages, including its nonparametric 

nature, arbitrary decision-boundary capability, adaptation to 

different types of data and input structures, fuzzy output values, 

and generalization for use with multiple images (Paola and 

Schowengerdt 1995). Although many neural-network models 

have been developed, the multilayer perceptron (MLP) feed-

forward neural network is the most frequently used. The MLP 

has been applied in land-use/land-cover classifications 

(Kavzoglu and Mather 2003; Zhang and Foody 2001; Joshi et 

al., 2006), impervious surface estimation (Weng et al., 2008), 

and change detection (Li and Yeh 2002; Nemmour and Chibani, 

2006).  

The LANDSAT data archive has played an important role 

across many disciplines, being used as a tool to achieve 

improved understanding of the Earth's land surfaces and human 

impacts on the environment. The instrument characteristics (30 

m spatial resolution for VIR/NIR and 120 m for TIR, 185 km 

swath width and 16 day repeat cycle) are intentionally specified 

to detect the local and regional patterns of change characterizing 

the Earth‟s land processes (Sofia et al., 2013). 

This paper proposes a change detection analysis method based 

on multitemporal LANDSAT satellite data, presenting a study 

performed on the Lama San Giorgio (Bari, Italy) river basin 

area with the aim of supporting further studies in the field of 

hydrological processes modelling. After executing an MLC 

classification on 2011 data for comparison aims, the MLP feed-

forward neural network was chosen as classification method, 

aimed at the characterization of land use according to the level 

of surface imperviousness. The fact that artificial neural 

networks (ANNs) behave as general pattern recognition systems 

and assume no prior statistical model for the input data makes 

them an excellent technique for change detection analysis when 

no ground reference data are available for historic satellite 

imagery.  
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2. METHODOLOGY 

 

2.1 Study area and data 

 

The study area (Figure 1) is the Lama San Giorgio, an 

ephemeral river located in the central area of Puglia, a region in 

Southern Italy. The Lama spreads over 42 km, crossing the 

karstic hilly area of Murge with an average width of 150 m. It 

starts at the feet of Monte Sannace (383 m o.s.l.), within the 

municipality of Gioia del Colle, and ends into the Adriatic Sea, 

10 km South-East of Bari.  

In this area several severe floods have occurred with 

considerable impact and consequent damages to a vast area of 

the lower watershed. The Murge karstic area shows a well-

developed drainage-network, formed by a dense dendritic 

pattern in the headwater zone (Murge Alte) which evolves into 

regularly spaced, incised valleys moving towards the coastal 

area (Murge Basse). These valleys are locally named "lame", 

and show subvertical rocky flanks and a flat bottom. Valleys 

cutting the Murge area act as water channels only during and 

immediately after heavy rainfall, and can be classified as 

episodic (ephemeral) rivers (Andriani and Walsh, 2009, Gioia, 

et al., 2011). In recent years, the important hydraulic function of 

lame as drainage lines has been heavily altered. Many of them 

have become pasture or agricultural lands and some even areas 

of intensive quarrying and urbanization. These changes have 

significantly transformed, disturbed, and partially destroyed the 

karst landscape causing the alteration of surface and subsurface 

runoff, besides a deterioration of the groundwater quality.  
 

 

Figure 1. Location of the study area of Lama S. Giorgio in the 

province of Bari (Italy) 

Three cloud-free LANDSAT-5 TM sensor imagery were 

collected on June 13th 1987, June 22nd 2002 and June 15th 2011 

to cover a time trend of 24 years. For each date, two contiguous 

path-row scenes were necessary to cover the whole study area. 

LANDSAT data can be freely selected through the USGS 

EROS web site (http://glovis.usgs.gov/) and nominally 

processed as Level 1 terrain corrected (L1T). The L1T data are 

available in GeoTIFF format in the Universal Transverse 

Mercator (UTM) map projection with World Geodetic System 

84 (WGS84) datum. The Level 1T processing includes 

radiometric correction, systematic geometric correction, 

precision correction using ground control chips, and the use of a 

digital elevation model to correct parallax error due to local 

topographic relief (Roy, et al., 2010; Pirotti et al. 2013). 

 

2.2 Pre-processing 

 

Standard techniques were used to pre-process the LANDSAT 

TM data acquired for the test site. Pre-processing was required 

to turn the data into a suitable format for quantitative analysis 

and, in particular, to enhance direct spatial and temporal 

comparability (Foody, et al., 2003). 

Four main pre-processing methods commonly used in remote 

sensing were employed, involving radiometric, atmospheric and 

geometric correction applied to the data acquired at each 

acquisition date.  

 

 

Figure 2. Workflow of the implemented procedures 

As an initial step, the images were radiometrically corrected. 

The related data on surface reflectivity, showing in the image as 

digital numbers (DN), were converted into absolute forms as 

reflectance, using the post-launch calibration coefficients on the 

assumption that this would aid the transferability of relations 

(CHAVEZ, 1989). 

After the mosaicing and resizing (spatial/spectral) procedures, 

an atmospheric correction was undertaken on each data set to 

compensate for the effects of the atmosphere on the measured 

remotely sensed responses. While physically based radiation 

transfer modelling may be the most accurate means of 

correcting for atmospheric effects such methods require 

information on atmospheric properties that, as in this study case, 

are typically unavailable. Consequently, a simple image-based 

atmospheric correction procedure was performed, applying the 

modified dark object subtraction technique proposed by Chavez 

(1996).  
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Figure 3. Agricultural land cover categories  

 

Figure 4. Urban land cover categories 

Finally, to prepare the following change detection analysis on 

multi-date LANDSAT images, the homogenization in a unique 

digital information content was required. Jensen (1996) 

suggested the Multiple-date Empirical Radiometric 

Normalization. This method involves the selection of ground 

targets whose reflectance values are considered as constant over 

time, i.e. the Pseudo-Invariant Features (PIFs) as named by 

Schott et al. (1988), to allow intercomparisons between a target 

image and a base image (in this case the LANDSAT 2011 data) 

by calculating an image based linear regression. Histogram 

statistics of the two mask images are then generated to create 

band-by-band transforms for the radiometric correction. For the 

purposes of this study, some pseudo-invariant regions (Roads, 

Buildings, Water, Bare soil, Rock) with similar radiometric 

characteristics were selected by referring ground truth regions 

on technical and thematic cartography and orthophoto dating 

back to the same period of the acquisition dates of the imagery 

to be corrected.  

In order to characterize thematic classes according to their 

hydrological response to rainfall as required by the CN model, 

Minimum Mapping Units (MMU) of 900 m2 (pixel area) were 

processed for classification, aiming at an Overall Accuracy 

greater than 85%. 

Technical and Land Use cartography of 2006 (at scale 1: 5000) 

and Google Earth data updated to 2011 were used as ground 

truth information for determining the regions of interest (ROI). 

Data for each test site were split into independent training and 

testing sets. Figures 3-4 show the main land cover categories for 

a reliable understanding of hydrological processes according to 

the CN model. 

 

2.3 Classification  

 

In the first phase of the study, LANDSAT 2011 imagery was 

classified through the MLC classification method using ENVI 

image processing software (ITT, 2009). To follow, the MLP 

feed-forward neural network with 4 layers was implemented on 

the same data through the JavaNNS simulator (2001). 

Neural Networks (NNs) are connectionist systems (i.e., 

knowledge is distributed among various nodes). NNs learn by 

example (training), by doing or by analogy, providing a 

framework where knowledge is unstructured. They can provide 

good generalization and they easily adapt to new input data 

(Mather, 2005). 

The two main functions of the artificial neuron are to sum the 

weighted inputs and to apply a thresholding function to this 

sum. The summation procedure can be expressed by: 

  

         ( )   ∑                             (1) 

 

where   ( ) represents the sum of the n weighted inputs, wji is 

the weight associated with the i th input and xi is the value of the 

i th input (which is an output from some other neuron). 

The thresholding procedure, at its simplest, is a comparison 

between   ( ) and some pre-set value, say T. If   ( ) is 

greater than T then the neuron responds by sending an output to 

other neurons to which it is connected further „down the line‟.  

In this case the Multi-Layer Perceptron (MLP) model uses a 

more complex thresholding function based on the following 

sigmoid function: 

  

     (  ( ))  
 

         
                  ( ) 

 

The term feed-forward is used to describe this kind of neural 

network model because information progresses from the initial 

inputs to the final outputs. Learning is accomplished by 

providing training samples and comparing the actual output of 

the ANN with the expected output. If there is a difference 

between the two then the weights associated with the 

connections between the neurons forming the ANN are adjusted 

so as to improve the chances of a correct decision and diminish 

the chances of the wrong choice being made, and the training 

step is repeated. The weights are initially set to random values. 

This „supervised learning‟ procedure is followed until the ANN 

gets the correct answer. 

The Multi-Layer Perceptron is trained using the back-

propagation learning rule, which is described by Paola and 

Schowengerdt (1995). 

Assume that a certain training data pixel vector, called a 

training pattern, is fed into the network and it is known that this 

training pattern is a member of class i. The output from the 

network consists of one value for each neuron in the output 

layer. If there are k possible classes then the expected output 
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vector dk should have elements equal to zero except for the ith 

element, which should be equal to one. 

The actual output vector, ok, differs from dk by an amount called 

the error E. Thus: 

 

  
 

 
∑∑(     )

 

 

 

   

                       ( ) 

 

The error is used to adjust the weights by a procedure which (in 

fact) maps the isolines or contours of the distribution of the 

error against the values of the weights, and then uses these 

isolines to determine the direction to move in order to find the 

minimum point in this map. This is known as the method of 

steepest descent. The gradient is measured by the first derivative 

of the error in terms of the weight; this gives both the magnitude 

and direction of the gradient. The step length is fixed and, in 

ANNs terminology, it is called the learning rate. A step is taken 

from the current position in the direction of maximum gradient 

and new values for the weights are determined. The error is 

propagated back-wards through the net from the output layer to 

the input data, hence the term back-propagation. 

 

 
 

Figure 5. Multilayered Neural Network. Units on the left side 

are input units (spectral bands); units in the centre are hidden 

units; on the right side, output units (land cover classes) 

 

Figure 5 shows the four-layered network modelled to identify 

the six initial classes. The input layer consists of as many units 

as the spectral measures. The output layer instead consists of a 

number of units equal to the number of classes to be 

represented. As to the two hidden layers, their number and the 

number of units they consist of are empirically established 

according to a general empiric rule: the higher the number of 

units and hidden layers, the better the network can learn from 

training samples. Unfortunately though, this affects and reduces 

the generalization capacity while also increasing training time.  

 

3. RESULTS 

The thematic map obtained through the approach presented in 

this paper was compared to the map generated using the 

Maximum Likelihood Classifier for accuracy assessment. A 

cross-examination of the error matrixes observed for 2011 data 

showed a clear advantage in terms of accuracy in the results 

obtained from the Neural Network Classification (Tables 1 and 

2).  

Based on the results obtained with the MLP network, a further 

classification enhancement process was subsequently 

implemented, by adding further six classes as listed in the 

following figures and tables.  

The neural networks already trained and used to classify 2011 

data were then used, in the same way, to classify the data sets 

acquired on 13th June 1987 and 22nd June 2002. The graphical 

results of such classifications are shown in Figure 6. 

 

 

Figure 6. Land Cover classes after MLP feed-forward NN 

classification on the LANDSAT data subsets of 1987, 2002 and 

2011.  
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The three classifications obtained were subsequently compared 

and analysed based on the percentages observed for each class 

at each acquisition date, distinguishing three land evolution 

stages. 
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Small grain, s. r (g.h.c) 1,29 85,7 8,01 3,57 1,07 0,36 

Pasture, grasslan (g.h.c.) 1,74 8,68 77,43 9,03 0,69 2,43 

Woods(g.h.c.) 1,16 3,86 7,72 86,74 0,26 0,26 

Urban areas 2,05 2,16 0,22 0,76 88,03 6,8 

 Open space  

(grass cover < 50%) 
2,82 8,06 4,03 0,4 22,18 62,5 

% Total 7,55 33,31 10,67 19,55 22,92 6 

Prod. Acc. 85,3 85,7 77,43 86,74 88,03 62,5 

User. Acc. 80,41 91,88 53,35 87,99 90,87 65,96 

Commission 19,59 8,12 46,65 12,01 9,13 34,04 

Omission 14,7 14,3 22,57 13,26 11,97 37,5 

Overall Accuracy = 84,35%; Kappa Coefficient = 0,80 

 

Table 1. Accuracy assessment of the MLC classification 
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Woods(g.h.c.) 0 0 6,84 93,16 0 0 

Urban areas 0 0 0 0 98,27 1,73 

 Open space  

(grass cover < 50%) 
0 0 0 0 0 100 

% Total 7,2 22,73 3,58 29,99 31,32 5,18 

Prod. Acc. 99,37 100 52,63 93,16 98,27 100 

User. Acc. 100 95,34 38,46 100 100 86,73 

Commission 0 5,06 61,54 0 0 13,27 

Omission 14,7 14,3 22,57 13,26 11,97 37,5 

Overall Accuracy = 95,97%; Kappa Coefficient = 0,95 

 

Table 2. Accuracy assessment of the MLP feed-forward NN 

classification 

In Tables 3 and 4 the values on the main diagonal represent the 

percentages of areas not subject to change over time for each 

class. The values in the columns indicate which classes (and by 

which percentage) featured in which areas at each evolution 

stage. 

The different colours highlight values which may be variously 

interpreted in terms of land evolution: 

- Orange cells: percentage of urban areas used as farming 

land at a previous stage. 

- Sky-blue cells: percentage of areas used for intensive crops 

under greenhouses or plastic covers, previously featuring 

simpler crops. 

- Magenta cells: percentage of areas featuring completed 

buildings which showed as building sites at a previous 

stage.  

- Turquoise cells: percentage of areas featuring cereal crops 

that, at the initial stage, were temporarily used for rotation 

meadow (fallow land).  

- Yellow cells: percentage of areas used as pasture or unused 

but previously farmed.  

- Green cells. Percentage of areas used for cereal crops but 

previously used for other crops. 

- Purple cells: percentage of wood lands previously featuring 

sparse vegetation.  

The multi-temporal comparison performed also highlighted 

some imperfections in the classification methodology presented, 

as for the issue of mixed pixels due to LANDSAT data 

geometric resolution. This showed particularly with the main 

arterial roads which were classified either as areas having a 95% 

average imperviousness or as residential areas (with an average 

imperviousness of 25%).  
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Table 3. Matrices of land cover (LC) and changes (Percentages) 

from 1987 to 2002 
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Table 4. Matrices of land cover (LC) and changes (Percentages) 

from 2002 to 2011 
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The main land use changes observed between 1987 and 2011 

include:  

- The conversion of many farming and natural pasture areas 

into wheat-growing fields; according to various 

bibliographic sources, such conversion has been 

incentivised since the 1980s through regional, national and 

European funding aimed at increasing farming productivity 

in under-developed areas. In Puglia, and particularly in the 

Alta Murgia area, deep tilling and mechanical rock crashing 

(the so-called “de-stoning” practice) were required to 

transform rocky areas into cropped fields.  

- With such practice being sanctioned by the Regional Law 

54/81 for land improvement, its use quickly spread all over 

the region causing the transformation of thousands of 

hectares of land. Some authors estimate a consequent 35-

40% increase in the total amount of de-stoned land.  

- A generalised increase of impervious areas which may be 

ascribed to specific land planning strategies causing the 

abandon of historical building heritage in favour of urban 

building expansion (not always by the law).  

- The diffusion of intensive crops under greenhouses or 

plastic covers: plastic-covered vineyards feature as the main 

farming practice in the lower part of the Lama.  

-  

 

4. CONCLUSIONS 

This study was performed with the objective of developing a 

time-effective procedure for recent and past land use change 

analysis based on the utilization of data freely available at 

frequent time intervals, which could be easily inputted, 

processed and applied to other geographical areas. 

The main advantages observed in the utilization of NN, in 

comparison with other conventional statistical techniques such 

as MLC, include:  

-  absence of constraints in the statistic distribution of input 

data; 

- generalization capacity, i.e. capacity to recognize input   

similar but non-identical to that used for training; 

-  tolerance to noise present in the training set (although 

outliers, i.e. wrong information, are not tolerated); 

- non-linear capture capacity, i.e. the capacity to capture non-

linear relations among input and output variables; 

-  higher accuracy of results on medium resolution data. 

A few disadvantages were also observed:  

- incertitude on architecture features, e.g. number of layers 

and of units within intermediate and hidden layers, unit 

connections, and optimal value of training coefficient: there 

is no certain rule but only empirical criteria; 

- training times are much longer than with a statistic 

classifier; 

- overtraining risk, i.e. an over-precise correspondence of 

characters to the learning set may impair the generalization 

capacity of the network.  

To improve the method presented, further studies shall be 

performed with more complex input, such as ancillary data of 

other nature and provenance to be associated with radiometric 

information. This may lead to further accuracy in the 

recognition of problematic classes, such as those extracting 

urban areas.  
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