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ABSTRACT: 

 

Digital Elevation Models (DEMs) play a key role in hydrological risk prevention and mitigation: hydraulic numeric simulations, 

slope and aspect maps all heavily rely on DEMs. Hydraulic numeric simulations require the used DEM to have a defined accuracy, in 

order to obtain reliable results. Are the DEM accuracy figures clearly and uniquely defined? The paper focuses on some issues 

concerning DEM accuracy definition and assessment. Two DEM accuracy definitions can be found in literature: accuracy at the 

interpolated point and accuracy at the nodes. The former can be estimated by means of randomly distributed check points, while the 

latter by means of check points coincident with the nodes. The two considered accuracy figures are often treated as equivalent, but 

they aren't. Given the same DEM, assessing it through one or the other approach gives different results. Our paper performs an in-

depth characterization of the two figures and proposes standardization coefficients.  

1. INTRODUCTION 

The paper focuses on some basic issues concerning DEM 

accuracy definition and assessment. The following terminology 

will be used: DEM is the mathematical reconstruction of a 

surface, regardless of what it represents: the bare terrain (DTM) 

or the terrain plus vegetation and buildings (DSM). Mass points 

are the ( , , )x y z  input data for DEM creation; they are usually 

measured by aerial lidar or photogrammetry, but can also be 

extracted from existing maps. A DEM is constituted by ( , , )x y z

points called nodes plus a structure. A DEM having a TIN 

structure is constituted by irregular nodes and a Delaunay 

triangulation; nodes usually coincide with the original mass-

points, unless breaklines and constraints were imposed on the 

triangulation calculation. A DEM has a GRID structure when 

the nodes occupy the vertices of a regular grid, squared or 

rectangular. There are two levels of interpolation related to the 

calculation and use of a DEM. The first interpolation is used to 

estimate the nodes' height from that of mass points: this is a 

core process in GRIDs, while it is trivial for TINs. The second 

interpolation is used to estimate the height of any unknown 

point from the nodes. 

 

Two DEM accuracy definitions can be found in literature: 

accuracy at the interpolated point and accuracy at the nodes, as 

detailed in Section 3. The former can be estimated by means of 

randomly distributed check points, while the latter by means of 

check points coincident with the nodes.  

The two considered accuracy figures are often treated as 

equivalent, but they aren't. Our paper performs an in-depth 

characterization of the two figures and proposes standardi-

zation coefficients.  

The paper is organized as follows: Section 2 focuses on related 

work; Sec. 3 properly defines the two accuracy figures; Sec. 4 

carries out a detailed study of their stochastic properties; Sec. 5 

discusses results and proposes standardization coefficients.  

2. RELATED WORK 

The Guidelines for Digital Elevation Data (NDEP, 2004), by 

the USA National Digital Elevation Program (NDEP) are a term 

of reference: they have inspired several other guidelines 

prepared by national agencies worldwide and are referenced by 

some scientific papers, as well. While the considered document 

defines and describes a number of interesting terms and topics, 

it doesn't really define what the DEM accuracy is. This 

definition is implicitly given when the accuracy assessment 

procedure is described, when the reader understands that the 

NDEP guidelines focus on the interpolated height accuracy. 

They recommend that, during the assessment procedure, TIN 

interpolation is performed for irregularly-distributed mass 

points and bilinear interpolation is applied for gridded DEMs: 

the guidelines disregard the different error-propagation 

properties of the two methodologies. Finally, they primarily  

focus on the fundamental vertical accuracy which is considered 

the most important DEM accuracy figure and can be estimated 

by choosing check points belonging to open areas, in flat terrain 

or uniform slope. 

The ASPRS document (Flood, 2004) on Vertical Accuracy 

Reporting for Lidar Data is very similar to (NDEP, 2004): the 

same concepts of check points and fundamental accuracy are 

used; furthermore, the possibility of measuring check heights 

directly at the nodes is mentioned, but standardization 

coefficients are not mentioned.   

(Kraus et al., 2004), (Kraus et al., 2006) and (Aguilar et al. 

2010) are referenced only as authoritative examples of papers 

adopting the accuracy at the nodes definition.  

 (Frey & Paul, 2010) compare the ASTER and SRTM GDEMs 

with the Swiss National one named DHM25. Among the other 

analyses, they calculate vertical accuracy figures, using the 

accuracy at the nodes definition. 

(Giribabu et al. 2013) generate a DEM by means of Cartosat-1 

stereoscopic images, over the Himalayan area. They validate it 

by means of a number of CKPs, measured with dGPS, 

following the accuracy at the interpolated point concept. 

Interestingly, there are papers mixing the two approaches. San 

& Suzen (2005) assess a number of DEMs extracted by them 
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from an Aster stereo-couple over a Turkish region. They 

initially prepare a reference DEM, co-registered with the 

evaluated DEMs, by means of the contour lines of an existing 

1:25000 map. They preliminary validate the reference DEM by 

comparison with 40 CKPs, extracted from a 1:25000 

topographic map, using the accuracy at the interpolated point 

definition. The subsequent assessment of the Aster DEMs is 

performed instead by accuracy at the nodes, pixel by pixel.  

(Shi et al. 2005) focus on variance propagation of bilinear and 

higher order interpolation methods. They only obtain a formula 

comparable with our (4). They don't highlight the relationship 

between the obtained results and assessment issues. (Zhu et al. 

2005) deal with variance propagation of TIN interpolation, 

obtaining a result comparable to our formula (8). They don't 

obtain our functions (5) and (7) nor do they establish any 

connection between the variance propagation results and DTM 

assessment. 

3. DEM VERTICAL ACCURACY AND ITS 

ASSESSMENT 

DEM accuracy is a vast topic, involving several issues and error 

sources. Our discussion only concerns some items, disregarding 

others, such as planimetric and altimetric bias: we assume they 

have already been detected and fixed. Thus, the paper concerns 

vertical accuracy only.  

But, what is DEM vertical accuracy? This concept has never 

been explicitly defined in papers and guidelines we have 

consulted, and is instead assumed. However, literature proposes 

two definitions of DEM vertical accuracy:  

 accuracy at the nodes: the average vertical distance 

between the nodes and the terrain; when planimetric and 

altimetric biases are fixed, it only consists of the RAndom 

Vertical Error at the Nodes (RAVEN, 
n

 ), which is more 

precisely described below;   

 accuracy at the interpolated point: the average distance 

between the generic interpolated point and the terrain.   

The two definitions are clearly  not equivalent, even if they are 

sometimes treated as such. Once biases are fixed, accuracy of 

the interpolated point is determined by three items:  

a. the interpolation method; 

b. RAndom Vertical Error at the Point (RAVEP, 
P

 ), which 

is the propagation of RAVEN; 

c. the approximation error.  

Approximation error describes the differences between the 

DEM discretized surface and the real one, independently of the 

existence of random errors: it depends on surface roughness and 

DEM spacing (nodes' average distance). 

Let's now consider the parts of the terrain which are similar to a 

plane, in which the terrain is flat or has a uniform slope. The 

approximation error vanishes on those parts, provided that TIN 

or bilinear interpolation is used, which are the methods 

considered in the paper and most adopted in literature and 

guidelines. Under the above-listed conditions, accuracy at the 

interpolated point coincides with 
P

  and is given by variance 

propagation of 
n

 . The two figures are significantly different, 

as will be shown in the next Section, but this is apparently 

neglected by many documents in literature.  

For the sake of clarity, a precise statistical definition of the 

considered problem is synthetically illustrated. The height of 

each node i  is a random variable (RV) [ , ]
i i n

Z    having a 

certain true value 
i

 , unknown, and a certain dispersion 
n

 , 

the same for all nodes, corresponding to RAVEN; the actual 

node height 
i

z  is an extraction from the RV 
i

Z ; all the 
i

Z  are 

assumed to be uncorrelated. Finally, there are no specific 

assumptions on the statistical distribution of the 
i

Z  RVs.  

A generic point  ,
P P

x y  is now considered: its height can be 

obtained from the nodes' heights by interpolation. The 

interpolated height is another random variable [ , ]
P P P

Z    and 

is a function of the [ , ]
i i n

Z   . The standard deviation 
P

  

(RAVEP) comes from variance propagation and can be 

formally evaluated, as the initial variance-covariance matrix is 

known  

2

2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

n

n

n

n









 
 
 
 
 
  

Σ  

     

as well as the interpolation function. The shown matrix is 

related to the GRID case, while in the TIN case it is 3 3 , with 

the same structure.    

The empirical accuracy assessment of a given DEM is now 

considered. This task is usually carried out by comparison with 

a number of check points. Most guidelines focus on 

fundamental vertical accuracy (NDEP, 2004) which is 

considered the most important DEM accuracy figure and can be 

estimated by choosing check points belonging to open areas, in 

flat terrain or uniform slope. From now the paper concerns 

fundamental vertical accuracy estimation.         

Given n  check points, whose true heights are ckp

i
z , the 

corresponding DEM heights are DEM

i
z . The differences can be 

formed 

z
DEM ckp

i i i
z       . 

The empirical average can be evaluated, first of all 

1

1
ˆ

n

i

in
 



   

and the empirical standard deviation can be further estimated  

 
2

1

1
ˆ ˆ

1

n

i

in
  



 

     . (1) 

Two assessment schemas are now conceivable: 

 check points are randomly chosen, according to the 

fundamental vertical accuracy prescription: in this case 

formula (1) is an estimation for the RAVEP, 
P

 ; 

 check points coincide with nodes, therefore formula (1) is 

an estimation for RAVEN, 
n

 . 

Depending on the choice of check points, two different quality 

figures are estimated. The second considered possibility is only 

apparently difficult: using NRTK GPS, for instance, one can 

navigate to the planimetric position of one node and then 

measure the corresponding terrain height. Furthermore, when a 

second terrain model (DEM B) is available, more detailed and 

precise than the first one (DEM A), DEM B can be interpolated 

in order to obtain the true height of the DEM A nodes.    

4. ERROR PROPAGATION IN DEM SECOND 

INTERPOLATION 

Main results are summarized here, for error propagation in 

DEM second interpolation. Bilinear and TIN interpolation 
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methods are considered, which are most used for DEM 

processing and analysis. The former is applicable to regular 

nodes only, and therefore solely to GRID-structured DEMs, 

while the second one can be applied to both TIN and GRID 

structures. Results shown are rigorously obtained in the most 

general situation, due to the adoption of a Computer Algebra 

System (CAS) such as the Matlab Symbolic Toolbox.  

 

 

Figure 1. Bilinear interpolation. 

 

4.1 Error propagation in bilinear interpolation  

A square cell is considered in this section, having size d , 

whose lower left vertex is in the origin.  

Figure 1 shows the four nodes considered, their heights and the 

generic  ,
P P

x y  point. The interpolated height 
P

z  has the form 

P P P P P
z a x b y c x y e   

 
 

Imposing the function to pass through the four nodes, the 

following analytical expression can be obtained 

      

  

1 4 1 1 2 1 4

1 2 3 42

1
, ; , , ,

1

P P P P P

P P

z x y z z d z x z z y z z
d

x y z z z z
d

     

   

 (2) 

All results shown in this section were obtained by symbolic 

calculations and carried out with the Matlab Symbolic toolbox: 

they don't contain any kind of approximations, as they are 

exact.  

The behaviour of the obtained function is very well known from 

literature, so we are not discussing it; we only highlight that, at 

the centre of the cell, ()
P

z  is equal to the arithmetic mean of 

the four heights 
1 2 3 4
, , ,z z z z . The analytical expression for 

P
  

can be obtained, as well 

 

   2 2 2 2

2

, , ,

2 2 2 2

P P P n

n

P P P P

x y d

d d x x d d y y
d

 





    
 (3) 

The function ()
P

  is not constant, meaning that the precision 

of the interpolated height depends on the position of the 

interpolated point within the cell. However, very interestingly, 

P
  is independent from the nodes' height, that is, error 

propagation is independent from terrain's morphology. Figure 2 

shows the plot of the function ()
P n

  : the minimun value is 

1 2 , at the centre of the cell (as the interpolated height is the 

simple mean of 4 independent measurements); the maximum 

value is 1, at the nodes.          

 

Figure 2 . Plot of the ratio 
P n

   as a function of  ,
P P

x y ; 

cell size was set to 10 in order to produce the plot, but the 

function's shape is independent from d .  

As it is useful to have a single figure quantifying the accuracy 

of the interpolated heights, function (3) can be averaged over 

the cell, in order to evaluate the average standard deviation. 

Actually we averaged the ratio 

 
2

2

2

()
P

n

r



   

as calculations involving the variance are simpler, because of 

the absence of the square root. The average 2
r  coefficient can 

be calculated   

 
2 2

2 2

0 0

1
d d , , ,

4

9

d d

P P P P P n

n

r x y x y d
d

 


 



 
 

which, being a constant,  is noticeably independent from d  and 

n
 . The average standard deviation of the interpolated height is 

therefore 

2
0.67

3
P n n

        . (4) 

4.2 Error propagation in TIN interpolation  

TIN interpolation is now studied. The considered triangle is 

shown in Figure 3 and has one vertex in the origin and another 

one on the X axis.    

 

0
2

4
6

8
10

0

5

10
0.5

0.6

0.7

0.8

0.9

1

x
p


p
 / 

n

y
p

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W3, 2013
The Role of Geomatics in Hydrogeological Risk, 27 – 28 February 2013, Padua, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-W3-73-2013

75



 

 

 

Figure 3. TIN interpolation. 

The interpolated height is obtained by calculating the equations 

of the plane passing through the nodes 
1 1 1

( , , )x y z , 
2 2 2

( , , )x y z , 

3 3 3
( , , )x y z  and finding its height at the position ( , )

P P
x y :      

 

   

3 1 1 3

1 2 2 3 3 3

3

3 3 1 2

2 3

, ; , , , , , P P
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y z y z y z
z x y z x z x y z

y

x y x y z z

x y

 
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 


 (5) 

When it is evaluated at the centre of the triangle, that is the 

point having coordinates 

 1 2 3 1 2 3

1
,

3
x x x y y y         (6) 

the currently considered ()
P

z  function is equal to the arithmetic 

mean of the three heights 
1 2 3
, ,z z z . The analytical expression 

for 
P

  is   

 
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  (7) 

It depends on the position of P  on the triangle, but is 

independent from the nodes' height, as it is in the bilinear case, 

and this means that error propagation is independent from 

terrain's morphology. It does depend, of course, on the triangle's 

shape. Figure 2 shows the plot of the function ()
P n

  : the 

minimun value is 3 3 0.58 , at the centre of the triangle and 

the maximum value is 1, at the nodes.          

 

 

Figure 4. Plot of the ratio 
P n

   as a function of  ,
P P

x y , for 

TIN interpolation. In order to produce the plot, the triangle 

having vertices (0, 0) , (10, 0)  and (3, 5)  was set, but the 

function's shape is independent from that.    

The average 2
r  coefficient can be calculated   
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where the integration domain D  is the triangle. Noticeably, it is 

a constant, so it is independent on the shape of the triangle and 

on 
n

 . The average standard deviation of the interpolated 

height is therefore 

2
0.71

2
P n n

        . (8) 

All results shown here refer to the triangle of Figure 3 but have 

a general value: thanks to the symbolic capabilities of Matlab, 

we also tested the only other significant configuration, in which 

the node number 3 is positioned on the right of number 2: 

results are the same. They can be summarized as follows: (i) the 

interpolated height is the simple mean of the three nodes' 

heights, when it is evaluated at the centre of the triangle; (ii) the 

standard deviation of the interpolated height is independent 

from the terrain's shape; (iii) the average standard deviation of 

the interpolated height is a constant, thus independent from the 

triangle shape.    

5. DISCUSSION 

A given DEM is considered, having a 
n

  RAVEN. The model 

is interpolated at points which are in agreement with the 

fundamental vertical accuracy definition: open areas, flat terrain 

or uniform slope. When bilinear interpolation is used (requiring 

the GRID structure), the standard deviation of the interpolated 

points is, on average 

2
0.67

3
P n n

        
 . 

When TIN interpolation is adopted, the average standard 

deviation of the interpolated points is 
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2
0.71

2
P n n

     

There are three accuracies for DEM, and they are significantly 

different. We believe that RAVEN, accuracy at the nodes, must 

be considered the fundamental one. 

When the empirical assessment is performed, three scenarios 

can be conceived: 

1. check points are randomly distributed and bilinear 

interpolation is used; 
n

  can be estimated by 

3
ˆ ˆ ˆ1 .50

2
n

        (see (1) for ̂ ) 

2. check points are randomly distributed and TIN 

interpolation is used; 
n

  can be estimated by 

ˆ ˆ ˆ2 1.41
n

         

3. check points coincide with nodes (or a second DEM is 

used as check data); 
n

  can be estimated directly 

ˆ ˆ
n

       

6. CONCLUSIONS 

The DEM vertical accuracy topic was tackled, assuming that 

planimetric and altimetric biases are removed and only parts of 

the terrain are considered, which are compatible with the 

fundamental vertical accuracy definition: open areas, flat terrain 

or uniform slope. GRID and TIN structures were considered, as 

well as bilinear and TIN interpolation.  

Two main vertical accuracy definitions exist: accuracy at the 

nodes and accuracy at the interpolated point. The second one is 

a function of the position of the point within the cell or the 

triangle, and is in general significantly lower than the first one, 

because of the favourable error propagation and the average 

effect. Furthermore, accuracy at the interpolated point is slightly 

influenced by the interpolation methodology used.   

When empirical accuracy assessment is performed by means of 

check points, depending on their position and the interpolation 

adopted, different accuracy figures can be obtained: they must 

be standardized with the shown coefficients, in order to have 

comparable results.    

Further activities will concern numerical examples on simulated 

and real datasets.   
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