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ABSTRACT:

Recent trends in 3D scanning are aimed at the fusion of range data and color information from images. The combination of these
two outputs allows to extract novel semantic information. The workflow presented in this paper allows to detect objects, such as light
switches, that are hard to identify from range data only. In order to detect these elements, we developed a method that utilizes range
data and color information from high-resolution panoramic images of indoor scenes, taken at the scanners position. A proxy geometry
is derived from the point clouds; orthographic views of the scene are automatically identified from the geometry and an image per
view is created via projection. We combine methods of computer vision to train a classifier to detect the objects of interest from these
orthographic views. Furthermore, these views can be used for automatic texturing of the proxy geometry.

(a) (b)

Figure 1: The data acquisition equipment: For range data acqui-
sition, a Faro Focus 3D Scanner was used (a); additional color
information was obtained using a customized adapter connecting
the base tripod of the 3D scanner with a HDRI camera (b).

1. INTRODUCTION

Many 3D scanners provide more information than range data,
as for instance color information. The scanners are equipped
with a camera that takes photographs during the scanning ses-
sion. These photographs are subsequently stitched in order to
create a panoramic photo sphere at the scanners position. Such
panoramic views can then be used to apply color information to
pure range data.

Sole point clouds are unstructured and have no semantic infor-
mation. This challenges their integration into existing work flows
of stakeholders, such as engineers and architects (Tamke et al.,
2014). The interplay of geometric and color information carries
meaningful aspects that provide so far unused semantic informa-
tion to 3d scan data. Objects that are hard to detect on a geomet-
rical level, might be revealed in a visual inspection of the dataset
and provide the information needed for semantic processing.

In case of scanned building data this information can be stored
alongside the data e.g. to make future renovations and recon-
structions more efficient. Within the DURAARK project 1, the
presented tool is already used to enrich the initially unstructured
point cloud data with this semantic information on electrical in-
stallations.

The problem with wall mounted power sockets is that they usu-
ally stick only 3-4 mm out of the surrounding surface. This makes
them hard to detect in pure range data, as they disappear in the
geometric noise of a 3D scan. A recognition using a purely im-
age based (2D) approach, with the photographs obtained during
the scanning, will not succeed in all cases, as the perceived ob-
jects might be severely distorted. Therefore, it is necessary to
combine the geometric information of the point cloud scans with
the images of the session in order to create orthographic views of
planar elements in the scene (e.g. walls) that contain the desired
perceived objects (e.g. sockets). Computer vision methods can be
applied using these views to train and perform object detection.

In this paper, we present such a work flow that identifies and cre-
ates orthographic views. These views are created from registered
panoramic images and a proxy geometry that was derived from
the point clouds.

2. RELATED WORK

Spherical panoramic imaging is a widely used technique to ac-
quire photographs of a scene using a complete field of view, i.e.
capture all surroundings of a specific viewpoint. These spherical
panoramic images are typically created by the fusion of a num-
ber of photographs, taken from different directions at the same
position. Alternatively, special hardware exists that acquires a
panoramic view directly.

1http://duraark.eu
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The work of D’Annibale et al. (D’Annibale and Fangi, 2009) has
been concerned with spherical photogrammetry, i.e. using spher-
ical panoramic images for surveying and reconstruction. Photo-
texturing of 3D models from surveyed data has been in the fo-
cus of the work of Grammatikopoulos et al. (Grammatikopoulos
et al., 2007) by combining 3D models from laser scanning and
multi-image texture projection.

The automatic creation of texture maps from geometry has also
been a relevant research topic, as this will aid in in many appli-
cations that involve the creation of textures for 3D models, for
example in the entertainment industry. The work of Levy et al.
(Lévy et al., 2002) for example creates an automatic texture atlas
(or an atlas of charts) for an given object. A similar approach
that obtains an atlas based on surface features was presented by
Zhang et al. (Zhang et al., 2005).

Furthermore, the same set of problems has to be addressed when
doing purely image-based reconstruction, as was the case in the
work of Furukawa et al. (Furukawa et al., 2009) for indoor scenes,
or the work of Pitzer et al. (Pitzer et al., 2010) which used a
robot for a fully automated approach for indoor scene reconstruc-
tion. The work of Waechter et al. (Waechter et al., 2014) was
concerned with the problem of large scale texturing for achiev-
ing photoconsistency over multiple images in image-based recon-
struction.

3. METHOD OVERVIEW

Our method is designed for the acquisition of indoor scenes, there-
fore, we assume that most of the surfaces will be planar (floor,
walls etc). The method identifies planar, rectangular regions in
the scene and produces an orthographic view (image) of desired
resolution. An overview of the work flow is shown in Figure 2.

In the data acquisition phase, the scene is scanned using a laser
scanning device, which yields a point cloud and a low resolution
panoramic image. Furthermore, a high resolution panoramic im-
age is acquired using a camera.

The preprocessing phase consists of creating a 3D surface model
of the scene using a semiautomatic approach, and the alignment
of the high resolution panoramic image to the point cloud scan.

In the last step, the rectangular planar regions (patches) are iden-
tified from the surface model, and an orthographic view is created
per patch, by projecting the color information from the high res-
olution panoramic image onto the patch at a desired resolution.

4. DATA ACQUISITION AND PREPROCESSING

After the physical data acquisition, the data needs to be prepro-
cessed for the ortho view generation. The developed workflow
consists of publicly available software components, which are
partially interfaced with custom scripts. Used tools are: Faro
Scene 2 point cloud software, CloudCompare 3 point cloud soft-
ware, ptGUI Pro 4 panoramic image software and Rhinoceros 55

/ Grasshopper 6 3D modeling software. The point cloud is con-
verted into E57 Format (Huber, 2011).

4.1 Measuring Equipment

The data acquisition has been done using a terrestrial laser scan-
ner (Faro Focus 3D), as shown in Figure 1a. The acquired data

2http://www.faro.com/
3http://cloudcompare.org/
4http://www.ptgui.com/
5http://www.rhino3d.com/
6http://www.grasshopper3d.com/

Figure 3: The stitching of Canon DSLR Images to panoramic
HDRI was carried out in ptGUI Pro (a).

(1)

(2)

(3)

(4)

Figure 4: Image-based registration: the normalized panoramic
image taken with the DSLR (2) has to be aligned to the normal-
ized panoramic image which was exported from the laser scan-
ning unit (1). The automatic alignment described in Section 4.2
produces an aligned high-resolution panoramic image (4) which
is aligned to the panoramic image from the laser scanning unit
(3).

is a 3D point cloud (Figure 5a) and a set of images, which can
be stitched into a single spherical panoramic image. First exper-
iments showed that the images acquired from the inbuilt camera
in the Faro Focus 3D often exhibit overexposed or underexposed
areas. Hence, a series of 6 sets of 9 bracketing photos was ad-
ditionally acquired. These constitute a spherical high dynamic
range (HDR) panoramic image. In order to obtain the panoramic
image at the same position as the 3D scanner, an adapter for the
base tripod of the 3D scanner has been developed, see Figure 1b.
This allows a professional Canon 500D digital single-lens reflex
(DSLR) camera to be mounted and take panoramic images with
the help of a Nodal Ninja 3.

4.2 Panoramic Image Registration

A special focus in the development of the work flow was to de-
liver panoramic images that are precisely registered to the point
cloud. At first, the images from the Canon DSLR are stitched
together to a spherical HDRI panoramic image within the ptGUI
Pro panoramic image software, see Figure 3.

Although the panoramic image was taken at the scanner location,
the image returned from the stitching software will not be aligned
azimuth-wise (a rotation about the up direction) in general. We
resolve this degree of freedom by image based method; the high-
resolution panoramic image is aligned to the panoramic image of
the Faro Focus 3D, which registered to the point cloud, as shown
in Figure 4.

Typically, such an image registration task is based on feature de-
tection and matching (Szeliski, 2004). However, due to the fact
that there is only one degree of freedom, we can use a much sim-
pler method: both images are converted to grayscale and normal-
ized (subtract grayscale mean and divide by standard deviation).
Then, both images are rescaled to the same size. The alignment
is resolved by an exhaustive test using a sliding window along
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Figure 2: Overview of the whole work flow: boxes depict methods and ellipses reflect (intermediate) results. First, the acquired input
data is registered and preprocessed (geometry generation and panoramic image registration). Afterwards, the patch detection and ortho
view projection step identifies rectangular patches in the input geometry and generates an orthographic image for each patch, as well
as texture coordinates for the 3D surface model.

the azimuth axis for each pixel position, and finding the minimal
SAD (sum of absolute differences). In the rare cases where the
lighting conditions between the laser scan and the DSLR photo
acquisition were substantially different, it was necessary to ex-
amine several local minimums of this error function, as the global
minimum might not correlate to the optimal position.

4.3 Geometry generation

Several approaches to model the base 3D model for the creation
of the orthographic images exist and have been discussed and
used within the project:

The base 3d model can bemanually modeled with an underlying
3d point cloud as reference. The need for consistency in the test
data prohibited this approach.

A desirable automated process of geometry generation can be
achieved through a point cloud reconstruction software similar
to the Poisson Surface Reconstruction algorithm by (Kazhdan et
al., 2006). This, for example, is integrated in the open source
CloudCompare. These approaches results often in high amounts
of faces and topological complexity, as preliminary tests showed.
This is generally not wanted and conflicted with the projects ini-
tial limitation for quad-based geometries.

An alternative automatic generation of a simplified 3D base
model can be achieved by extracting the architectural spaces within
a point cloud like described in (Tamke et al., 2014). While this
method would work very well, it is based on the extraction of
several spaces in point clouds with multiple scans. The approach
described in this paper uses at the moment only single scans.

A semi-automated approach ensures the consistency and over-
come both human in-accuracies and topological complexity. The
employed approach uses a random sample consensus (RANSAC)
algorithm (Schnabel et al., 2007), which detects planes within the
point cloud Figure 5b. The resulting clusters are imported into
Rhinoceros 5 through a custom IronPython7 script in the visual
programming plug-in Grasshopper. This reads the clusters and
separates them into walls, ceiling and floor by orientation and
area thresholds, and organizes them in a polar coordinate space.
From this, a simple quad based mesh model of the room is cre-
ated (Figure 5c). This is delivered as OBJ geometry to the next
step in the work flow.

5. ORTHO VIEW GENERATION

From the acquired and processed data (geometry and registered
panoramic images) we obtain orthographic images using the fol-
lowing approach: First, the method processes the input geometry

7http://ironpython.net/

(a) point cloud

(b) point cloud with detected planes

(c) point cloud with final geometry

Figure 5: A coarse 3D model is created from the point cloud (a)
using algorithmic clustering of the point cloud into walls, ceiling
and floor (b), from which a simplified model with quadrilateral
faces is created (c).
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to identify elements (triangles, quads) lying in the same plane.
For a group of such elements an oriented bounding box with min-
imal area is fitted, which we call a patch. For each patch, an ortho
view is created via projection of the panoramic image.

5.1 Patch detection

In order to generate a meaningful number of patches, the input
geometry has to be analyzed and grouped. We begin by first clus-
tering the surface elements by their normal vector, this is done
using a mean shift (Comaniciu and Meer, 2002) clustering in the
space of normalized normal directions. We use a flat kernel with
size 0.3.

This yields a group of k clusters that correspond to similar di-
rections. We denote these clusters d0 · · · dk and their normal di-
rections ~n0 · · ·~nk. However, this clustering step will not group
elements that lie in a similar plane, but have opposite normal di-
rections.

In order to group the elements with opposite normal directions,
we perform a second clustering step on the rows of the k × k-
matrixAn, whose row and column indices i correspond to a clus-
ter di. The elements aij of An correspond to a 1 if

|〈~ni, ~nj〉| ≥ 0.95

and 0 otherwise. The equivalent rows of An correspond to clus-
ters of principal normal directions.

After grouping the elements into the main directions, we need to
perform another clustering step to group elements that lie in the
same plane. We use normal projection to project the midpoint of
each element on the line corresponding to the principal direction,
and perform a third clustering step on the length of the projected
vector. Again, we use meanshift, this time with a flat kernel of
size 0.1m. The resulting clusters correspond to the elements with
similar main direction, lying in the same plane.

When these final clusters have been found, an arbitrary orthonor-
mal basis is identified using the approach of Frisvad (Frisvad,
2012), where the Z direction corresponds to the cluster plane nor-
mal. Finally, a bounding rectangle of the elements in the plane
with minimal area is obtained, by evaluating an exhaustive search
over 90 orientations in 1-degree steps, which yields a final local
coordinate system for each patch.

5.2 Image data projection

As the pose of the panoramic sphere corresponds to the pose of
the scanner, we obtain this information directly from the exported
point cloud in E57 format. The pose consists of an Euclidean
transformation, which is expressed by a position vector and a ro-
tation quaternion.

The system now proceeds to create an orthographic view of each
patch, given a desired resolution in mm/pixel, using a simple pro-
jection approach which is shown in Figure 6: For each pixel p of
the patch, the system creates a ray from the corresponding 3D po-
sition to the center of the panoramic sphere. The intersection p′

of the ray and the sphere is then transformed into the local spher-
ical coordinate system of the panoramic sphere, which yields the
azimuth angle φ and the elevation angle θ. These angles are used
to acquire the color value of this pixel from the panoramic photo-
graph.

Finally, the system also creates texture coordinates for the input
geometry. The texture coordinates are obtained by projecting the
vertices of each surface element into the local patch coordinate
system, and normalizing the result to texture coordinate range.
The textured model is written as .OBJ file to disk.

X
Y

Z

X'

Y'Z'

p'

p

φ
θ

Figure 6: A rectangular patch in 3D space is sampled at a specific
resolution, e.g. 1 pixel/mm. Each pixel p is transformed into the
local coordinate frame (X ′, Y ′, Z′) of the panoramic sphere in
spherical coordinate angles azimuth φ and elevation θ to deter-
mine the color value in the panoramic image.

6. APPLICATION AND RESULTS

We evaluated the method on scans of several indoor scenes. The
resulting orthographic views were used in an computer vision
pipeline to detect electrical appliances, i.e. sockets and switches.

6.1 Reconstructions

We applied the described pipeline to 6 scans of indoor scenes.
Two examples can be seen in Figure 7. A third example, also
showing the generated ortho views, is shown in Figure 8. A room
with slightly more complex geometry can be seen in Figure 9.

The clustering was able to group suitable elements in all datasets.
For example, the input geometry of the scene depicted in Figure 7
(left column) consists of 218 triangles and 76 quadrilateral faces,
which have been grouped into 3 main directions and 15 ortho
patches.

6.2 Electrical Appliance Detection

The extracted ortho views are well suited for image processing
methods in order to detect different wall-mounted objects. Ex-
ploiting the known relation from pixel to the actual wall geome-
try, the scale of the searched objects in the image is fixed to 1mm
per pixel. Thus, object detection can be performed by a simple
sliding window approach: For each pixel P(i) of an ortho view,
the detection probability of a object class is determined by ana-
lyzing a small image patch centered around P(i).

Detecting power sockets and light switches in arbitrary indoor
scenes form a reasonable application example. However, these
objects can be very challenging to classify: they are usually un-
textured and designed to be unobtrusive, but on the other hand
they exist in many variations regarding shape and colors. In gen-
eral, sockets and switches are mostly defined by their silhouettes
and mostly homogenous coloration of varying colors (e.g. differ-
ent brands).

It is therefore practical to make use of both gradient and color
information in the search window. Thus, we form the following
feature descriptor pool:

• The ’”Histograms of oriented gradients” (HoG) descriptor
by Dalal and Triggs (Dalal and Triggs, 2005). In recent
years, it has been a very successful approach for identify-
ing objects by their global gradient appearance.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-131-2015

 
134



Figure 7: Two indoor scenes in different stages of reconstruction.
The acquired high-resolution input panoramas (top row) were
aligned to the geometry that was created from the laser range
scan. The middle row shows the input geometry, and the aligned
panoramic spheres. In the bottom row we see the same geome-
try using the generated orthographic views as textures, the ceiling
has been omitted for a better visualization.

• A self developed descriptor that models the distribution of
image gradients differently than the HoG descriptor. For
each window pixel where the local gradient magnitude is
larger than a threshold, we calculate the unit vector ~v(P(i))
pointing in the gradient direction ϕi: ~v(P(i)) = (1,∠ϕi).
Projecting ~v(P(i)) onto a set of 4 fixed unit vectors, each
45o apart of its neighbors. yield a 4 dimensional value that
uniquely and continuously describe the vectors direction.
By considering only the absolute values of the projections,
the descriptor becomes invariant to contrary object- and wall-
intensity values. The final descriptor entries are build by
comparing the mean orientation values of randomly sized
and located sub-regions, similar to Haar-like features from
(Viola and Jones, 2001).

• In order to model the color distribution, the color channels
(RGB) of the image patch are separated. Again, differences
in mean intensity values of randomly sized and located sub-
region pairs over all 3 channels form the descriptor entries.

All these descriptors are combined by concatenating their entries
to one feature vector.
According to its values, a pre-trained random forest classifier
(Breiman, 2001) retrieves the probability of each class. In or-
der to train the classifier, we created a large training set of la-
beled image patches representing 3 object classes: power socket,
light switch and background. After classification, a subsequently
applied non- maxima suppression on the class probability maps
yield the final detection results.

(a) panoramic input image

(b) generated orthographic views (patches)

(c) textured geometry

Figure 8: The spherical panoramic input image (a) is transformed
into orthographic views (b) for each quadrilateral patch that was
automatically identified from the input geometry. (c) shows a
rendering of the textured geometry.
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(a) (b)

Figure 9: Our workflow is able to handle rooms with non-
orthogonal geometry, as long as all important aspects can be
scanned from one position.

(a)

(b)

(c)

Figure 10: We use computer vision methods to train a classifica-
tion system and detect electrical appliances, in this case switches.
The two trained classes correspond to switches (violet rectangles)
and sockets (orange rectangles).

7. CONCLUSION AND FUTURE WORK

In this paper, we presented a work flow for the semiautomatic ex-
traction of orthographic views for indoor scenes from laser range
scans and high resolution panoramic images. The resulting im-
ages have been used within a computer vision pipeline to detect
electrical appliances in a room.

While the images are sufficient for our application purpose of
object detection, the ortho views might contain projection errors
where the supplied geometry, which is often an approximation,
differs from the real scene which is shown in the panoramic im-
age. As an example, the room shown in Figure 7 on the left has a
column inside which is not reflected in the input geometry, there-
fore the column is projected on the wall. One future research di-
rection is therefore to find ways to either create less approximated
input geometry, or make use of the point cloud information e.g.
to filter out pixels in an ortho view whose projected depth lies
outside the ortho view plane.

However, it might not be possible to scan all important contents
of a room using only a single scan, as not all parts of the room
might be visible from one location. Furthermore, using only a
single scan might yield a poor resolution of the parts that are far
from the scanning position, as can be seen on the left of Fig-
ure 9. Another important aspect of future work is therefore to
research methods to integrate the information of multiple scans
and panoramic images into a single model.
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