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ABSTRACT: 
 
This paper investigates the use of different greyscale conversion algorithms to decolourize colour images as input for two Structure-
from-Motion (SfM) software packages. Although SfM software commonly works with a wide variety of frame imagery (old and new, 
colour and greyscale, airborne and terrestrial, large-and small scale), most programs internally convert the source imagery to single-
band, greyscale images. This conversion is often assumed to have little, if any, impact on the final outcome. 
To verify this assumption, this article compares the output of an academic and a commercial SfM software package using seven 
different collections of architectural images. Besides the conventional 8-bit true-colour JPEG images with embedded sRGB colour 
profiles, for each of those datasets, 57 greyscale variants were computed with different colour-to-greyscale algorithms. The success rate 
of specific colour conversion approaches can therefore be compared with the commonly implemented colour-to-greyscale algorithms 
(luma Y’601, luma Y’709, or luminance CIE Y), both in terms of the applied feature extractor as well as of the specific image content (as 
exemplified by the two different feature descriptors and the various image collections, respectively).  
Although the differences can be small, the results clearly indicate that certain colour-to-greyscale conversion algorithms in an SfM-
workflow constantly perform better than others. Overall, one of the best performing decolourization algorithms turns out to be a newly 
developed one. 
 
 

 *  Corresponding author. Geert.Verhoeven@archpro.lbg.ac.at 

1. INTRODUCTION 

1.1 Image-based modelling 

Over the past few years, image-based modelling (IBM) with 
Structure-from-Motion (SfM) and Multi-View Stereo (MVS) 
approaches has become omnipresent in all possible fields of 
research: from medical sciences to a variety of geospatial 
applications. This success story can largely be attributed to the 
ease-of-use of such IBM applications, the limited knowledge 
required to create a geometrical three-dimensional (3D) model 
and the wide variety of frame imagery that can be used as input: 
old as well as new, colour and greyscale, airborne and terrestrial, 
large- and small-scale. 
 
Although many users consider such IBM-pipelines as ideal 
means to yield visually-pleasing, photo-realistic 3D models in a 
fast and straightforward way, many applications rely on it to 
deliver (highly) accurate digital representations of real-world 
objects and scenes. For those applications, the accuracies of the 
interior and exterior camera orientations computed during the 
SfM step are of the utmost importance. To this end, Ground 
Control Points (GCPs) are generally applied, hereby functioning 

as constraints in the bundle block adjustment to avoid instability 
of the bundle solution or to correct for errors such as drift in the 
recovered camera and sparse point locations. 
 
1.2 Interest points 

The camera self-calibration and network orientation heavily 
depend on the number of image features that can be detected, 
properly described and reliably matched throughout the entire 
image collection. Although these features can be edges, ridges or 
regions of interest, the image features used in most SfM 
approaches comprise Interest Points (IPs). In past decades, 
several algorithms have been proposed to compute IPs. Aside 
from differences in computational complexity, they vary widely 
in effectiveness. 
 
Ideally, IPs should only depend on the visible scene, but be 
invariant to perspective transformations and changes in the 
apparent brightness. As IPs are zero-dimensional, this goal can 
be achieved to a large extent by consideration of derivatives of 
the radiometric information with respect to the image and scale 
spaces. An efficient way to match IPs detected in different 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-307-2015

 
307



images is to describe their local neighbourhoods in image space 
at the respective scale and with respect to each neighbourhood's 
principal direction, and then match these feature vectors by 
nearest-neighbour searches in the space spanned by them. 
 
However, current, efficient IP description methods are merely 
invariant to linear changes in apparent brightness and to the 
geometric transformations of translation, rotation, and scale. 
Combinations of these basic geometric transformations are valid 
approximations only to small perspective changes and hence, 
large perspective changes cannot be handled. 
 
1.3 Greyscale input 

Although the input for feature extraction (i.e. IP detection and 
description) is generally a collection of true-colour frame images, 
the most common feature detectors and descriptors such as SIFT 
and SURF have been developed to work on single-band greyscale 
images, since this – amongst other reasons – greatly reduces the 
computational complexity of the algorithm compared to the 
utilization of the common three channels of a full colour image. 
In practice, this means that the algorithm can be applied onto 
each colour channel separately, or that a standard greyscale 
conversion (conventionally the computation of the luma Y’601, 
luma Y’709 or the luminance CIE Y component) provides the 
necessary single-band input. However, the exact algorithm to 
convert a colour image into its greyscale variant is often not 
documented for SfM software and the conversion is commonly 
assumed to have little, if any, impact on the final SfM outcome. 
 
This paper investigates the effect of different greyscale 
conversion algorithms used to decolourize colour images as input 
for an SfM-based architectural IBM-pipeline. To this end, 57 
different decolourization methods have been implemented in 
MATLAB: from very common methods that use a simple 
weighted sum of the linear R, G, B channels or non-linear, 
gamma-corrected R’, G’ and B’ components to more complex, 
perception-based colour-to-greyscale methods that claim to more 
or less preserve lightness, meaningful colour contrast and other 
visual features in the greyscale variant. 
 

2. METHODS 

2.1 Software and IP extractors 

Since none of the decolourization algorithms a priori suggest a 
better performance in terms of feature detection and description, 
two different feature extractors have been chosen so that their 
behaviour can be assessed when fed different greyscale versions. 
One of those IP extractors, SIFT (Lowe, 1999), is implemented 
in OrientAL: a research-based software package developed at TU 
Vienna aiming to provide a fully automated processing chain 
from aerial photographs to orthophoto maps. 
 
To this end, high-level command-line scripts and lower level 
functions enable manual, semi- and fully automatic image 
orientation, camera calibration and object reconstruction (Karel 
et al., 2013). OrientAL considers especially the characteristics of 
archaeological aerial images, including oblique imagery, little 
overlap, poor approximate georeferencing and historic aerial 
photographs (Karel et al., 2014). OrientAL (version 20150107) 
allows the user to apply three different feature extractors: aside 
from SIFT, SURF (Bay et al., 2006) and Affine-SIFT or ASIFT 
(Morel and Yu, 2009) are offered as well. The latter two are not 
investigated in this study. 

 
Table 1. Parameters employed for the different SfM solutions. 

 
Next to OrientAL, all datasets have been processed with the 
well-established commercial package PhotoScan Professional 
edition (PhotoScan Pro 1.1.0 build 2004, 64-bit) from the 
Russian manufacturer Agisoft LLC. The choice for this software 
was based on its features, cost and completeness. Moreover, 
recent studies have shown the accuracy and reliability of the 
results generated by this commercial program (Remondino et al., 
2012). The exact algorithms that are programmed in PhotoScan 
are, however, not publicly known. In the remaining part of the 
article, the PhotoScan Feature Extractor will therefore be denoted 
PSFE. All the parameters that were used for the detection and 
matching of the IPs in both SfM approaches are listed in Table 1. 
 
2.2 Image sets 

Besides variation in feature extraction, there should also be 
variation in the architectural image collections. More specifically, 
seven different image sets were assembled for this study. They 
were chosen so as to represent the wide variety of possible 
historical architectural objects one might wish to geometrically 
document within an IBM-pipeline. Moreover, the image sets 
were captured with a mixture of digital still cameras and focal 
lengths under various illumination conditions (Table 2). 
 

 
Table 2. Characteristics of the seven different image collections 

used in this study. 
 
2.2.1 Set 1 – Building 5 
The first image set consists of 25 JPEG images which all have 
been captured with a 6 MegaPixel (MP) Kodak EasyShare M590 
compact camera (6.3 mm focal length). As is usual with images 
from such cameras, they have the sRGB IEC61966-2.1 colour 
profile embedded. This image set is made publically available by 
Ceylan and colleagues (http://www.duygu-ceylan.com/duygu-
ceylan/symmCalib.html) and accompanies their article which 
deals with the ambiguity in establishing correspondences 
encountered by SfM algorithms when dealing with repeated 
structures in urban facades (Ceylan et al., 2014). Whereas well-
established SfM approaches often erroneously reconstruct such 
scenes, their framework allows for the robust extraction of those 
repeated façade elements and generates a proper output using a 
symmetry-based SfM algorithm. The image set used here is their 
‘Building 5’, for which both Bundler (Snavely et al., 2006) and 
the method of Zach et al. (2010) failed to generate an accurate 
sparse point cloud and camera orientations. The difficulty of this 
dataset does not only lie in the repetitive character of the 
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architectural elements, but also the amount of indistinctive image 
features. However, the global illumination of the building is very 
diffuse. No further information about the building’s age or its 
location is provided. 
 
2.2.2 Set 2 – Viennese fountain (Austria) 
The second image collection consists of 42 images captured with 
a 16 MP Nikon D7000 (14 mm focal length) and stored as 
losslessly compressed 14-bit NEF (Nikon Electronic Format; i.e. 
Nikon’s RAW format). Subsequently, the images were converted 
to 8-bit JPEGs using Nikon’s Capture NX 2.4.7 software. 
Except for the conversion of the data into the sRGB colour 
space, no other parameters were altered so as to simulate an in-
camera generated JPEG. The scene comprises a small wall 
fountain in the middle of the Strudlhofstiege, an outdoor 
staircase in the city of Vienna. Aside from the running water, the 
presence of people to the left of the fountain and the similar 
colour tones of the wall, this scene should not pose any 
significant difficulties for an SfM algorithm. Moreover, the 
illumination is very uniform. Given the similarity of the colours 
in this scene, it is deemed a good example to test different 
decolourization approaches. 
 
2.2.3 Set 3 – Akrotiri (Greece) 
The third set of images depicts some parts of the Bronze Age 
town of Akrotiri on the Greek island of Thera/Santorini. While 
most of the prehistoric town is still covered by volcanic ash and 
pumice, a dozen buildings – sometimes up to four stories high – 
have been excavated. With the aim to digitally safeguard this 
earthquake-threatened site, the entire excavated area has been 
covered with about 850 terrestrial laser scanning positions and 
several thousand photographs. Twenty of those images constitute 
the third image collection used in this study. Similar to the 
second set of images, they have been acquired with a Nikon 
D7000 (16 MP), but now with a 13 mm focal length lens and 
stored as 12-bit losslessly compressed NEFs. The conversion to 
JPEG was identical to the method described for image set 2. 
Although those twenty images feature quite a lot of structure, 
they cover a rather small colour gamut. Aside from the very 
similar colour tones, the scene consists of shadowed and sunlit 
parts (which also slightly changed over the image set due to the 
presence of clouds), moving people and a very repetitive set of 
white pillars supporting the roof over the site. 
 
2.2.4 Set 4 – Palacol palace (Croatia) 
Image collection four holds 47 aerial images of the Croatian 
island of Palacol. A ruined, presumed fortress is located in the 
middle of the very small island. Although the original image 
sequence held 165 images, the number of images was heavily 
reduced in order to have less overlap between neighbouring 
images and thus to create larger differences regarding their 
viewpoints. Aside from the very large scale differences, the 
images feature very repetitive vegetation patterns and difficult to 
handle water surfaces, often largely affected by sun glint. The 
original losslessly compressed 14-bit NEF images were captured 
with a full-frame Nikon D700 (12 MP), while the focal length 
varied from 31 mm to 120 mm. 
 
2.2.5 Set 5 – Roman Heidentor (Austria) 
The fifth dataset comprises a collection of eighty GoPro images 
(Figure 1). More specifically, the GoPro HERO3+ Black Edition 
was used and 7 MP (3000 x 2250) JPEG images were saved 
using the sRGB IEC61966-2.1 colour profile. The images where 
acquired to test the suitability of the Fotokite, a novel low-

altitude aerial platform consisting of a tethered quadcopter. The 
airborne images depict the Roman monument ‘Heidentor’, which 
is part of the archaeological site of Carnuntum (Austria). This 
antique monument measures approximately 15 m by 15 m and 
has a height of circa 14 m. The corresponding image dataset is 
very suitable for the present analysis, given the less than perfect 
nature of these images. Geometrically, the images are highly 
distorted. On top of that, they suffer from very serious JPEG 
compression, whereas the scene itself featured bright skylight 
(which resulted in lens flare) and moving persons. 
 

 
Figure 1. A visualisation of five decolourization methods. 

 
2.2.6 Set 6 – Castle K-19 (Switzerland) 
The sixth dataset is a long-standing computer vision benchmark 
image collection. The image set, which is referred to as Castle 
K19 (Strecha et al., 2008), consists of nineteen 8-bit PNG 
images that can be downloaded online from: 
http://cvlabwww.epfl.ch/data/multiview/knownInternalsMVS.ht
ml. The 6 MP images were acquired with a Canon EOS-D60 but 
do not have any colour profile embedded (nor any other 
metadata). From the camera calibration matrix provided together 
with the images, a focal length of approximately 17.5 mm can be 
inferred. All images are underexposed and incorrectly white 
balanced (they are too blue), making them interesting for the 
decolourization approaches. 
 
2.2.7 Set 7 – Piazza Bra (Italy) 
The last set of images is rather large: 331 JPEG images covering 
the Piazza Bra in Verona, Italy. The images, which can be found 
at http://www.diegm.uniud.it/fusiello/demo/samantha/, have been 
featured in a few publications that introduced a hierarchical SfM 
scheme (Farenzena et al., 2009; Gherardi et al., 2010). This new 
SfM pipeline was developed to better cope with drift problems in 
such large datasets. As such, it is interesting to see whether the 
greyscale values fed into a normal SfM chain can minimise this 
possible drift. All images were shot with a 6 MP Nikon D50. 
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2.3 Decolourization methods 

Over the past decades, several simple and more complex colour-
to-greyscale algorithms have been developed to derive the best 
possible decolourized version of a colour input image. In essence, 
the decolourization problem is one of dimension reduction since 
multiple input channels have to be mapped onto a single channel. 
In doing so, the colour contrast and image structure contained by 
the colour image should be preserved in the greyscale image. 
 
Although different colour models exist to mathematically code 
the colours of an image, every pixel of a colour image is usually 
coded by a triplet of RGB numbers (indicating Red, Green and 
Blue). Perceptually, a colour image can be thought of having 
three components: an achromatic variable (such as luminance or 
lightness) and two chromatic channels. Most common 
decolourization methods use a simple weighted sum of the linear 
R, G, B channels or non-linear, gamma-corrected R’, G’, and B’ 
components to form a greyscale image that is more or less 
representative of luminance such as the CIE Y channel or the 
luma channels Y’601 and Y’709 (Figure 1), the latter two differing 
by the weighting coefficients used since they are based on the 
Rec. 601 NTSC primaries and the Rec. 709 sRGB primaries, 
respectively. The CIE L* lightness channel is another, very 
common method for decolourization. Being one of the three 
channels in the CIE L*a*b* and CIE L*u*v* colour spaces, 
lightness L* has almost perceptually uniform values. As such, a 
numerical increment in the CIE L* lightness will more or less 
correspond to an equal increment in tone perception for a human 
observer. The fifth, rather common greyscale conversion used in 
this study is average: a very simple method that is completely 
unrelated to any human sensation. Here, both the linear (using R, 
G, B) and non-linear (using R’, G’, B’) versions are applied. 
 
Apart from those four common methods, more complex colour-
to-greyscale algorithms have been implemented as well. Those 
methods were developed to retain as much information as 
possible during the decolourization of the colour image (second 
row in Figure 1). To this end, they encode the chromaticity 
contrast rather than the luminance information. Socolinsky and 
Wolff (2002) were amongst the first to propose an elegant 
decolourization technique that embedded this principle. During 
the past years, many new perception-based decolourization 
approaches have surfaced, all claiming to more or less preserve 
lightness, meaningful colour contrast and other visual features in 
the greyscale variant. Very often, these algorithms start from the 
operating principles of the human visual system, which are then 
combined with the physics of colour image production. 
 
Although it has been the aim of this study to rather exhaustively 
implement all of these recently emerged colour-to-greyscale 
methods, the unresponsiveness or unwillingness of most authors 
to share their code results in a much more restricted list. Of that 
list, only those methods are used that can compute a decolourized 
image in a matter of seconds instead of minutes. Therefore, the 
popular method of Gooch et al. (2005) is omitted, but the 
approaches of Grundland and Dodgson (2007), Zhao and 
Tamimi (2010), Lu et al. (2012a, 2012b) and Wu and Toet 
(2014) are applied. 
 
Finally, a whole amalgam of new, but computationally simple 
approaches has been programmed as well (third row in Figure 1). 
These comprise the standard deviation, variance, norm, minimum 
and maximum averages (i.e. the minimum/maximum value of the 

R’G’B’ triplet averaged with the R’G’B’ mean), minimum and 
maximum median, midpoint, PCA, (weighted) NTSC PCA (i.e. a 
(weighted) PCA after converting the sRGB image to the Y’IQ 
colour space), (weighted) CIE L*a*b* PCA, (weighted) Y’CBCR 
PCA and several variants and combinations of those methods. 
 
In total 57 decolourization methods have been implemented in 
MATLAB and applied to each image of every dataset described 
above. To make sure that only the respective colour-to-greyscale 
method is properly assessed, no other pre-processing of the 
source imagery is undertaken. This does not necessarily mean 
that any such pre-processing would be useless. When an image is 
generated by a digital camera, it can conventionally be stored as a 
RAW image (i.e. minimally processed sensor data that have a 
gain, quantisation and some basic correction processes applied), 
or as a lossy compressed JPEG image. Although RAW files 
always end up as JPEG or TIFF files, the main difference 
between both lies in the device that executes the RAW 
development: the camera itself or the computer. Obviously, any 
of these development steps, such as white balancing, 
demosaicking, sharpening, denoising and contrast enhancement, 
can have a serious impact on the feature extraction performance. 
Even the bit-depth and output colour space (indicated as ‘profile’ 
in Table 2) of an image are very important characteristics, since 
they define the possible variety of colours contained in an image. 
As mentioned above, none of these pre-processing choices have 
been applied for the present study. 
 
All these decolourized, single band images were saved as 
losslessly compressed 8-bit TIFFs to make sure that no further 
data loss occurred after the greyscale conversion. Moreover, Phil 
Harvey’s ExifTool (Harvey, 2014) was used to copy all original 
metadata (except the embedded thumbnail and information on 
the colour space) back into the newly converted greyscale image. 
 

 
Figure 2. An overview of all possible processing combinations. 

 
2.4 Repeated runs 

Given the various decolourization approaches and one colour 
photo image set, a total of 406 subsets is generated [(57+1)x7]. 
Since SfM pipelines are non-deterministic, repeated SfM runs 
can result in (slightly) different results. To take the stochastic 
nature of these results into account and to make sure that valid 
information can be obtained from these tests, every SfM software 
with one of the two specified feature extractors is executed ten 
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times for every subset. This amounts to a total of 8120 executed 
SfM runs (Figure 2). 
 
2.5 Extracted metrics 

Obviously, the first metric that comes to mind when varying the 
input of an SfM chain is the total amount of IPs that are 
extracted. This number does, however, not at all express the 
strength and reliability of those features nor the camera’s exterior 
and interior orientation upon which they are based. As such, over 
thirty different metrics were computed. Since some of them are 
ratios and normalized versions of others, Table 3 lists only the 
most important ones. Furthermore, it is indicated which statistics 
can be computed by which SfM package. 
 

 
Table 3. Some of the metrics computed by both SfM packages. 

 
Since no extremely accurate reference data are available for most 
of these seven datasets, the only means of verifying the 
reconstructed camera positions is through a visual assessment of 
the SfM result (i.e. the sparse cloud of 3D Object Points – OPs – 
and the relative camera positions). It goes without saying that 
this is a hugely time-consuming operation. Since not all SfM 
outputs could be visually checked so far, the OrientAL results 
presented in the next section will mainly concentrate on image 
sets 1, 3 and 6. An overview of those four remaining image 
collections will be the subject of a forthcoming, more extended 
paper. The latter will also hold a more rigorous statistical 
analysis of all the results combined. 
 

3. RESULTS 

This section presents some of the first analyses of the data 
collected so far. Since only the intended PhotoScan runs have 
been entirely finished at this stage, they are presented first. 
Afterwards, some observations are made about the image sets 
that have been completely oriented with OrientAL at this stage 
(i.e. image collections 1, 3 and 6). 
 
Although it is far from the most relevant metric, many methods 
that try to optimise the SfM input aim for a high IP count. To 

this end, Figure 3 shows on overview of all IPs per image set per 
decolourization method. The results have been normalized to the 
input of the sRGB JPEG, so that it becomes easy to verify which 
methods perform better or worse than the standard colour image. 
 
Although many methods yield almost identical IP counts 
compared to the sRGB JPEG, both the standard deviation and 
variance methods differ strongly. The variance method – which 
computes per pixel the variance of its R’G’B’ triplet, delivers a 
very small amount of IPs, whereas the standard deviation 
delivers on average 20 % more IPs (for the first image set even 
98 % more) than the standard input. However, both methods are 
characterized by flaws: whereas the limited bit depth of the 
images cannot deal with the various low values of the variance 
image (hence the low IP count), the standard deviation method 
often results in waterpainting-like images, as it blurs features in 
one area and creates artefacts in another. As such, both methods 
are omitted in the following results. 
 
Upon averaging the results of all image collections, it seems like 
perception-based methods such as decol2 and decol3 (i.e. the 
decolourize method of Grundland and Dodgson (2007) with 
different effect parameter values), copdecol (i.e. the contrast 
preserving decolourization of Lu et al. (2012a)) together with 
some very simple methods such as band 1 and band 2 (i.e. the 
Red and Green image channels, respectively), the minimum 
decomposition approach (mindec, per pixel the minimum of 
R’G’B) and maxstdv (i.e. the maximum standard deviation 
variant of the previously mentioned maximum average method) 
all generate on average 2-6 % more IPs in PhotoScan Pro than 
the sRGB input (Figure 3). Most likely, PhotoScan uses the luma 
Y’709 or L* decolourization methods as their IP counts are very 
similar to the sRGB input (rounding errors in the conversion 
might explain the small differences). 
 

 
Figure 3. An overview of the number of IPs extracted by PSFE 

per conversion method and per image set (normalized to sRGB). 
 
The relative importance of total IP count is also illustrated by 
Figure 4. This graph plots the total Reprojection Error (RE) 
versus the total IP count. Each of the 56 data points (the var and 
stdv methods are omitted) equals the average of all runs on all 
seven datasets. Looking at the median IP count versus the 
median RE, it seems that both are unrelated. However, plotting 
the average IP count versus the RE (both average and median), a 
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positive correlation R² can be observed. Despite being rather 
small, this correlation indicates that the total RE even increases 
with increasing IP count. For instance, the SfM runs with decol3 
decolourized images – a method which is one of the top 
performers concerning total IP count – are characterized by 
average and median REs that are at least 20 % larger than those 
of standard sRGB SfM runs. 
 

 
Figure 4. Total IP count (PSFE) versus total RE, averaged over 

all image collections. 
 
It is often assumed that the total RE is already a very good 
indication of the global accuracy of the SfM solution. Figure 5 
indeed indicates that low REs correspond to results free of gross 
errors. In this graph, the total RE is plotted against the visual 
assessment of all PhotoScan-based SfM runs. Both values are 
averages over all seven datasets. 
 
Despite being necessary, a visual assessment of an SfM output is 
tricky because one can only assess obvious positional errors of 
the camera orientations or artefacts in the sparse point cloud. As 
soon as one of those were detected, the result was given a score 
‘0’. When no obvious inaccuracies in any of those two 
parameters could be observed, that run got score ‘1’. Although 
the runs that seem correct could still incorporate errors, the 
reverse cannot be said from SfM-runs with score ‘0’. In the latter 
category, no difference was made between ‘slightly wrong’ or 
‘full with blunders’. The visual assessment score of Figure 5 can 
thus maximally be 1 (i.e. for every run of every dataset no visual 
errors could be detected in the output). 
 
First, it is obvious that the correlation coefficient R² between 
both metrics is extremely low, indicating no real relationship 
between both. Moreover, it seems that the best method for 
decolourization is the avgLabPCAPCAwLabPCA approach. This 
long and dreadful name indicates that this method starts with a 
conversion of the non-linear R’, G’ and B’ image bands into the 
CIE L*a*b* colour space. Afterwards, a Principal Component 
Analysis (PCA) is executed and the first Principal Component 
(PC) is extracted. During the PCA, the data are centred and the 
covariance matrix is used. The output of this process yields an 
image called LabPCA, while the first PC equals a greyscale 
image. Afterwards, a weighted CIE L*a*b* version is computed 
from the source sRGB JPEG. This procedure is similar to the one 
above, but the L*a*b* channels are weighted before being PCA 
transformed. The algorithm uses three different weighting 
factors, being 0.25, 0.45 and 0.65. From the three resulting 

wLabPCA images, the first PCs are extracted and concatenated 
into one new, three channel image. On this new image, a PCA is 
run again of which the first PC yields an image called 
PCAwLabPCA. The latter is averaged with the initially computed 
LabPCA. 
 
This method, which tries to capture all possible variation in 
luminance and chrominance data, delivers greyscale images 
whose SfM output is virtually always perfect (at least visually). 
However, also the total REs of this method are among the lowest 
of all decolourization approaches. The performance of this 
method is very similar to the much faster rtcopdecol method 
developed by Lu et al. (2012b). Their real-time contrast 
preserving decolourization approach is a faster but lass accurate 
(in terms of human perception) version of the previously 
mentioned copdecol method. Despite their capability to yield 
high IP counts, band 1 and decol 3 are rather poor performers 
according to Figure 5. 
 

 
Figure 5. Total RE (PSFE) versus a visual assessment score, 

averaged over all image collections.  
 
The position of the sRGB JPEG and luma Y’601 data points is 
rather interesting as well. First, the high similarity between the 
total REs of the luma method and the sRGB JPEGs indicates 
once more that PhotoScan most likely uses this decolourization 
method. However, both approaches differ in their visual 
assessment score. That is, as long as all seven datasets are 
considered. When only the first six datasets are take into account, 
both methods also perform virtually the same. This has most 
likely to do with the limited number of runs executed with image 
collection seven. Due to the large size of that dataset (331 
images), only five runs have been computed. The difference 
between the average results of both methods could thus be due to 
the limited sample size. 
 
Although a forthcoming article will be able to quantify all ten 
runs and more thoroughly assess the performance of the 
decolourization methods using reference datasets with accurately, 
pre-computed exterior camera positions, it is still deemed useful 
to provide Table 4. Here, the five ‘best’ decolourization methods 
are enumerated, in which ‘best’ is determined by the average 
visual assessment score for both the first six image collections 
and all seven image collections. From the table (which is based 
on the PSFE results only), it can be concluded that 
avgLabPCAPCAwLabPCA is constantly one of the best 
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performers, although the standard sRGB JPEG input images can 
be considered a very viable alternative. 
 

 
Table 4. The five ‘best’ decolourization approaches, based on the 

visual assessment of the SfM output and total RE. 
 
Upon checking some of the metrics computed by OrientAL, it 
becomes clear that the PhotoScan-based results are rather similar 
to those of the SIFT-approach. In contrast to the commercial 
application PhotoScan, the default parameters of OrientAL have 
not been fine-tuned to yield an optimal result in most cases. 
Despite the – most likely – sub-optimal parameter set, the 
settings that are reported in Table 1 have been used for every 
SfM run executed with OrientAL. As such, they still allow for a 
meaningful comparison between the decolourization approaches. 
One strength of OrientAL is that it supports plotting the number 
of OPs that have been observed in at least three photographs. 
Figure 6 shows this result for each grayscale conversion and the 
three data sets completely processed so far. 
 
Since there is no reference dataset (with known accuracy) at hand 
for any of the image collections used in this study, the graphs in 
Figure 6 are a very useful alternative way of checking the SfM 
output. It is quite unlikely that OPs that are observed at least 
three times are gross errors. From this graph, it can be inferred 
that the decolourization methods avgLabPCAPCAwLabPCA, 
LabPCA and wLabPCA1-3 produce more reliable OPs (that are 
observed at least thrice) than most other methods. However, 
those methods only perform slightly better than the sRGB input.  
 
Together with the conclusions drawn from the PSFE-based 
statistics, the avgLabPCAPCAwLabPCA greyscale conversion 
method seems to perform best from the amalgam of 
decolourization approaches tested in this study. Although none of 
the metrics indicates them as the top performer, using the 
standard sRGB JPEG images in an SfM workflow delivers on 
average also very good results, often outperforming most of the 
greyscale conversion methods tested in this paper. Until a more 
rigorous statistical assessment of all metrics has been performed 
on these and additional image collections, it remains thus a very 
valid option to continue the use of standard JPEG images – 
directly produced by the digital still camera or resulting from a 
RAW-based workflow – as input for SfM software packages.  
 

4. CONCLUSION AND OUTLOOK 

This article compared the output of an academic and a 
commercial software package to verify the assumption that the 
result of an SfM algorithm is hardly influenced by the 
decolourization approach used to convert the input imagery into 
single band, greyscale images. To this end, seven collections of 
very dissimilar architectural images were chosen as input for a 
commercial and academic SfM pipeline, which have an 

undocumented and SIFT feature extractor implemented, 
respectively. 
 

 
Figure 6. Total number of OPs that have been observed at least 

three times (SIFT), normalized to sRGB. 
 
Although the computation of all SfM-runs as well as the visual 
assessment of their outputs is still on-going, the gathered 
statistics already allow to draw some first conclusions. It was a 
positive observation that the standard method used in most SfM 
software performs very well. Using a variety of metrics, it could 
be confirmed that an sRGB JPEG image generally outperforms a 
wide variety of specific decolourized input images. However, the 
avgLabPCAPCAwLabPCA method that was newly developed to 
maximise all chrominance and luminance variation in a single 
band image proved to be the overall best performing algorithm. 
This was verified by metrics produced by both software 
packages. Using the averages of a binary scoring system, 
avgLabPCAPCAwLabPCA was also visually proven to be the 
most reliable decolourization approach. 
 
In the near future, the presented tests will be seriously expanded. 
First, several new datasets, which feature images whose exterior 
orientation is accurately known, will be introduced. This will 
allow for the unbiased assessment of the influence of the 
decolourization approaches on the exterior orientation 
computation of the image collections. Ideally, these new datasets 
would allow for statistically correlating one (or a few) of the 
metrics presented here with the accuracies of the final exterior 
orientation estimates. As such, it may become possible to create 
a rather limited set of metrics that can express the influence of 
specific decolourization methods (or other pre-processing steps) 
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on the final accuracy of the SfM result. Related to this topic is 
the development of new metrics that might be more powerful 
than the ones used so far. Although there is a great need for such 
reliable statistical measures, most currently available SfM 
packages do not provide them. In order to allow for the 
intercomparison between packages, these metrics should be 
standardized to the maximum extent possible. Therefore, more 
metrics will be incorporated into future versions of OrientAL, 
while the authors will also try to get the computation of new 
statistics into Agisoft’s PhotoScan Professional. 
 
Second, more feature extractors should be incorporated in those 
tests. As was mentioned previously, SURF and ASIFT have been 
successfully implemented in OrientAL as well. They would thus 
allow to complete the SIFT-based tests presented here and to 
investigate the extent by which various IP extractors prefer 
dissimilar inputs. Because new innovative decolourization 
algorithms are continuously being published, the third and final 
aim is to further embed and test the most promising ones. This 
intention is, however, largely limited by the willingness of the 
colour-to-greyscale developers to share their code (which was a 
serious limiting factor for this paper as well). 
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