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ABSTRACT 
Tools and algorithms for automated image processing and 3D reconstruction purposes have become more and more available, giving 
the possibility to process any dataset of unoriented and markerless images. Typically, dense 3D point clouds (or texture 3D 
polygonal models) are produced at reasonable processing time. In this paper, we evaluate how the radiometric pre-processing of 
image datasets (particularly in RAW format) can help in improving the performances of state-of-the-art automated image processing 
tools. Beside a review of common pre-processing methods, an efficient pipeline based on color enhancement, image denoising, RGB 
to Gray conversion and image content enrichment is presented. The performed tests, partly reported for sake of space, demonstrate 
how an effective image pre-processing, which considers the entire dataset in analysis, can improve the automated orientation 
procedure and dense 3D point cloud reconstruction, even in case of poor texture scenarios. 
 
 

1. INTRODUCTION 

It is undoubted that image-based 3D reconstruction methods are 
definitely back and out of the laser scanning shadow. Indeed the 
integration of automated computer vision algorithms with 
reliable and precise photogrammetric methods is nowadays 
producing successful solutions for automated, detailed and 
accurate 3D reconstruction from image datasets (Snavely et al., 
2008; Barazzetti et al., 2010; Pierrot-Deseilligny et al., 2011). 
This is particularly true for terrestrial applications where we are 
witnessing the fact that: 
• there is a large variety of optical sensors to acquire images 

with very different performances and thus quality of the 
delivered imagery; 

• it’s constantly growing the impression that few randomly 
acquired images (or even grab from the Internet) and a 
black-box software (or mobile app) are enough to produce a 
decent 3D geometric model; 

• automation in image processing is more and more 
increasing; 

• a one-button solution is what non-experts are often seeking 
to derive 3D models out of inexpensive images. 

Due to these reasons, the quality of the acquired and used 
images is becoming fundamental to allow automated methods 
of doing their tasks correctly. Motion blur, sensor noise, jpeg 
artifacts, wrong depth of field are just some of the possible 
problems that are negatively affecting automated 3D 
reconstruction methods.  
The aim of the present work is to develop an efficient image 
pre-processing methodology to increase the quality of the 
results in two central steps of the photogrammetric pipeline: 
• the automated alignment of image datasets by: 

(i) increasing the number of correct correspondences, 
particularly in textureless areas;  

(ii) tracking features along the largest number of possible 
images to increase the reliability of the extracted 
correspondences; 

(iii) correctly orienting the largest number of images within 
a certain dataset; 

(iv) delivering sub-pixel accuracy bundle adjustment results. 
• the generation of denser and less noisier 3D point clouds. 

In this paper the proposed pre-processing pipeline will be 
evaluated on the image orientation and dense matching issues. 
The main idea is (i) to minimize typical failure causes by SIFT-
like algorithms (Apollonio et al., 2014) due to changes in the 
illumination conditions or low contrast blobs areas and (ii) to 
improve the performances of dense 3D reconstruction methods.  
The pipeline is grounded on the evaluation of many different 
state-of-the-art algorithms aiming to give solutions at specific 
problems and adapt the most promising algorithm (from a 
theoretical viewpoint), thus creating an ad-hoc methodology and 
an overall solution to radiometrically improve the image 
quality.  

 

The developed methodology 
for image pre-processing 
consists of color balancing 
(Section 2), image denoising 
(Section 3), RGB to grey 
conversion (Section 4) and 
image content enhancement 
(Section 5). All the 
algorithms are tested and 
applied to raw images, i.e. 
images as close as possible 
to the direct camera output. 

Figure 1: The proposed image pre-
processing pipeline. 

 

 

2. COLOR BALANCE AND EXPOSURE 
EQUALIZATION 

The aim is essentially to have radiometrically-calibrated images 
ensuring the consistency of surface colors along all the images 
(i.e. as much similar as possible RGB values for homologous 
pixels). Starting from captured RAW images our workflow 
includes: exposure compensation, optical correction, sharpen 
and color balance. 
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With respect of color characterization, the color targets based 
technique (Hong et al., 2001) is adopted, using a set of 
differently colored samples measured with a spectrophotometer. 
The target GretagMacbeth ColorChecker (McCamy et al. 1976) 
is employed during the image acquisitions, considering the 
measurements of each patch as reported in Pascale (2006). The 
most precise calibration for any given camera requires recording 
its output for all possible stimuli and comparing it with 
separately measured values for the same stimuli (Wandell & 
Farrell, 1993). However, storage of such a quantity of data is 
impractical, and, therefore, the response of the device is 
captured for only a limited set of stimuli - normally for the 
acquisition condition. The responses to these representative 
stimuli can then be used to calibrate the device for input stimuli 
that were not measured, finding the transformation between 
measured CIExyz values and captured RGB values. To find this 
transformation, several techniques have been developed, 
including look-up tables (Reinhard et al., 2008). 
Summarizing the method for evaluating and expressing color 
accuracy from this processing includes: a) a physical reference 
chart acquired under standard conditions; b) a reference chart 
color space with ideal data values for the chart; c) a means of 
relating or converting the device color space to the reference 
chart color space; d) a means of measuring and displaying errors 
in the device’s rendition of the reference chart. The color 
accuracy is computed in terms of the mean camera chroma 
relative to the mean ideal chroma in the CIE color metric 
(ΔE*00) as defined in 2000 by the CIE (Sharma et al., 2005): 
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This formula is a new version of the original one (1976) and is 
more suitable for our uses. It takes into consideration the 
problem of non-perceptual uniformity of the colors for which 
ΔE*00 varies the weight of L* depending on where the 
brightness range falls. Song & Luo (2000) showed that the 
perceptible and acceptable color differences in complex images 
presented on a CRT monitor are approximately 2.2 and 4.5, 
respectively. In our case, the latter value was used as a strict 
reference for accuracy, defined from perception tests on the 
results obtained using this value.  
Exposure error in f-stops was also evaluated. The ΔE*00 and 
the exposure error calculations was made using Imatest Studio 
software version 3.9.  
A captured color image containing the GretagMacbeth 
ColorChecker is neutralized, balanced and properly exposed for 
the gamma of the reference data set. Using X-Rite 
ColorChecker Passport Camera Calibration software is 
generated an ICC profile that was assigned together with the 
sRGB color space of the RAW image. Before creating ICC 
profiles, a standard gamma correction (γ = 2.2) is applied, 
converting all images to the camera’s native linear color space, 
thus improving the quality of the profiles. A protocol is 
developed to use the same calibration for groups of images with 
the same features (i.e., orientation, exposure and framed 
surfaces) thus to maintain consistency in the process and results. 
From an operational point of view, the preservation of color 
fidelity throughout the image processing is ensured by: 
- taking pictures in the most possible homogeneous operative 

conditions (aperture/exposure direction and intensity of 
light); 

- including ColorChecker target inside the photographed 
scenes in order to correct the image radiometry; 

- storing photos in RAW format; 

- using an appropriate color space from the beginning of the 
image processing. 

An important and critical issue is the acquisition of the color 
target. In order to maintain uniform lighting in an external 
environment, for each image, we need to consider: (i) surfaces 
illuminated and oriented as the ColorChecker and that presents 
an angle of incidence with sunlight of approximately 20-45 
degrees or (ii) image acquisitions performed with overcast sky. 
To minimize the light glare, that would give unexpected results 
in the calibration process, the ColorChecker is normally placed 
on a tripod with a dark background and orthogonal to the 
camera optical axis. Finally we verified that a ColorChecker 
image width of 500 to 1500 pixels is sufficient for ΔE*00 
analysis, as suggested also in Imatest user guide. 
 
 

3. IMAGE DENOISING 

Image noise is defined in the ISO 15739 standard as “unwanted 
variations in the response of an imaging system” (ISO 15739, 
2003). It is formed when incoming light is converted from 
photons to an electrical signal and originates from the camera 
sensor, its sensitivity and the exposure time as well as by digital 
processing (or all these factors together). Noise type includes: 
• Fixed pattern noise (‘hot’ and ‘cold’ pixels): it is due to 

sensor defects or long time exposure, especially with high 
temperatures. Fixed pattern noise always appears in the 
same position. 

• Random noise: it includes intensity and color fluctuations 
above and below the actual image intensity. They are 
always random at any exposure and more influenced by ISO 
speed. 

• Banding noise: it is caused by unstable voltage power and is 
characterized by the straight band in frequency on the 
image. It is highly camera-dependent and more visible at 
high ISO speed and in dark image. Brightening the image or 
white balancing can increase the problem. 

In real-world photographs, the highest spatial-frequency detail 
consists mostly of variations in brightness (‘luminance detail’) 
rather than variations in hue (‘chroma detail’): 
• Luminance noise is composed of noisy bright pixels that 

give the image a grainy appearance. High-frequency noise is 
prevalent in the luminance channel, which can range from 
fine grain to more distinct speckle noise. This type of noise 
does not significantly affect the image quality and can be 
left untreated or only minimally treated if needed. 

• Chrominance noise appears as clusters of colored pixels, 
usually green and magenta. It occurs when the luminance is 
low due to the inability of the sensor to differentiate color in 
low light levels. As a result, errors in the way color is 
recorded are visible and hence the appearance of color 
artifacts in the demosaicked image. 

Under all these considerations, the noise model can be 
approximated with two components: 

a) A signal-independent Gaussian noise modeling the fixed 
pattern noise (FPN); 

b) A signal-dependent Poisson noise modeling the temporal 
(random) noise, called Shot Noise.  

Several denoising methods deal directly with the Poisson noise. 
Wavelet-based denoising methods (Nowak & Baraniuk, 1997; 
Kolaczyk, 1999) propose adaptation of the transform threshold 
to the local noise level of the Poisson process. Recent papers on 
the Anscombe transform by Makitalo & Foi (2011) and Foi 
(2011), argue that, when combined with suitable forward and 
inverse variance-stabilizing transformations (VST), algorithms 
designed for homoscedastic Gaussian noise work just as well as 
ad-hoc algorithms based on signal-dependent noise models. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-315-2015

 
316



 

This explains why the noise is assumed to be uniform, white 
and Gaussian, having previously applied a VST to the noisy 
image to take into account the Poisson component.  
An effective restoration of image signals will require methods 
that either model the signal a-priori (i.e. Bayesian) or learn the 
underlying characteristics of the signal from the given data (i.e. 
learning, nonparametric, or empirical Bayes’ methods). Most 
recently, the latter approach has become very popular, mainly 
using patch-based methods that exploit both local and nonlocal 
redundancies or ‘self- similarities’ in the images (Lebrun et al., 
2012). A patch-based algorithm denoises each pixel by using 
knowledge of (a) the patch surrounding it and (b) the probability 
density of all existing patches. 
Typical noise reduction software reduces the visibility of noise 
by smoothing the image, while preserving its details. The 
classic methods estimate white homoscedastic noise only, but 
they can be adapted easily to estimate signal- and scale-
dependent noise. 
The main goals of image denoising algorithms are: 
• Perceptually flat regions should be as smooth as possible 

and noise should be completely removed from these 
regions; 

• Image boundaries should be well preserved and not blurred; 
• Texture detail should not be lost; 
• The global contrast should be preserved (i.e. the low-

frequencies of denoised and input images should be equal); 
• No artifacts should appear in the denoised image. 
Numerous methods have been developed to meet these goals, 
but they all rely on the same basic method to eliminate noise: 
averaging. The concept of averaging is simple, but determining 
which pixels to average is not. To meet this challenge, four 
denoising principles are normally considered: 
- transform thresholding (sparsity of patches in a fixed basis), 
- sparse coding (sparsity on a learned dictionary), 
- pixel averaging and block averaging (image self-similarity) 
- Bayesian patch-based methods (Gaussian patch model). 

Each principle implies a model for the ideal noiseless image. 
The current state-of-the-art denoising recipes are in fact a smart 
combination of all these ingredients.  
 
3.1 Evaluated methods and proposed approach 
We investigated different denoise algorithms, mostly 
commercial, namely:  
• Imagenomic Noiseware (Imagenomic LLC, 2012; 

Petrosyan, & Ghazaryan, 2006); 
• Adobe Camera RAW denoise (Schewe & Fraser, 2010);  
• Non-Local Bayesian filter (Buades et al. 2005; Kervrann & 

Boulanger, 2006; Awate & Whitaker, 2006); 
• Noise Clinic (Lebrun et al. 2014; Colom et al. 2014; 
• Color Block Matching 3D (CBM3D) filter (Dabov et al., 

2007b) a color variant of Block Matching 3D (BM3D) filter 
(Dabov et al., 2007a). 

Following results of these experiments, an in-house solution 
was developed starting from the CBM3D method. CBM3D 
extends the multi-stage approach of BM3D via the YoUoVo 
color system. CBM3D produces a basic estimate of the image, 
using the luminance data and deliver the denoised image 
performing a second stage on each of the three color channels 
separately. BM3D is a sliding-window denoising method 
extending the DCT (Yaroslavsky, 1996) and NL-means 
algorithms. Instead of adapting locally a basis or choosing from 
a large dictionary, it uses a fixed basis. The main difference 
from DCT denoising is that a set of similar patches is used to 
form a three-dimensional block, which is filtered by using a 
three-dimensional transform, hence the name collaborative 
filtering. The algorithm works in two stages: ‘basic estimate’ of 

the image and the creation of the final image. A variant of 
CBM3D from the original Matlab code was implemented, with 
some customizations. Among these, the most significant is the 
automatic selection of the parameters based on the ISO 
sensitivity, the type of camera and stored profiles. Stored 
profiles (camera, ISO) enable presets for each one of those (can 
be interpolated, potentially), reading initialization data from the 
EXIF.  
 
 

4. RGB TO GRAY 

Most image-based 3D reconstruction algorithms are 
conceptually designed to work on grayscale images instead of 
the RGB triple.  Color to grayscale conversion can be seen as a 
dimensionality reduction problem. This operation should not be 
underestimated, since there are many different properties that 
need to be preserved. In most of the cases isoluminant color 
changes are usually not preserved during the RGB to Gray 
conversion. Many conversion methods have been proposed in 
recent years. They mainly focus on the reproduction of color 
images with grayscale mediums, with the goal of a perceptual 
accuracy in terms of the fidelity of the converted image. These 
kinds of approaches are not designed to fulfill the needs of 
image matching algorithms where local contrast preservation is 
crucial during the matching process. This was observed also in 
Lowe (2004) where the candidate keypoints with low contrast 
are rejected in order to decrease the ambiguity of the matching 
process. 
RGB to Gray conversion can be done in: 
• Color Space (linear or non-linear): the CIE Y method is a 

widely used conversion, based on the CIE 1931 XYZ color 
space. It takes the XYZ representation of the image and uses 
Y as the grayscale value. 

• Image Space (called functional): following Benedetti et al. 
(2012), they can be divided in three groups:  
(a) trivial methods: they are the most basic and simple ones, 
as they do not take into account the power distribution of 
the color channels. They lose a lot of image information as 
for every pixel they discard two of the three color values, or 
discard one value averaging the remaining ones, not taking 
into account any color properties. Despite this loss, they are 
commonly used for their simplicity. A typical trivial method 
is the RGB Channel Filter that selects a channel between R, 
G or B and uses this channel as the grayscale value 
(afterwards called GREEN2GRAY).  
(b) direct methods: the conversion is a linear function of the 
pixel’s color values. Typically, this class of functions takes 
into account the spectrum of different colors. The Naive 
Mean direct method takes the mean of the color channels. 
The advantage, compared to the other trivial ones, is that it 
takes information from every channel, though it does not 
consider the relative spectral power distribution of the RGB 
channels. The most popular of these methods is 
RGBtoGRAY that uses the NTSC CCIR 601 luma weights, 
with the formula 

Y′= 0.2989R+0.5870G+0.1140B. 
Another solution embedded inside Adobe Photoshop uses 
these specific weights for the channels R, G, and B: 0.4, 0.4, 
0.2. 
(c) chrominance direct methods: they are based on more 
advanced color spaces, trying to mitigate the problem 
related to isoluminant colors. Albeit they are local functions 
of the image pixels, they assign different grayscale values to 
isoluminant colors, altering the luminance information using 
the chrominance information. Chrominance direct methods 
can be performed either locally (Smith et al., 2008; Kim et 
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al., 2009) or globally (Grundland & Dodgson, 2007). Local 
methods make pixels in the color image not processed in the 
same way and usually rely on the local chrominance edges 
for enhancement. Global methods strive to produce one 
mapping function for the whole image thus producing same 
luminance for the same RGB triplets and high-speed 
conversion.  

 
4.1 Evaluated methods and proposed approach 
We investigated different RGB to Gray methods, namely:  
• GREEN2GRAY; 
• Matlab RGB2GRAY; 
• GRUNDLAND-DODGSON (Grundland & Dodgson, 2007); 
• REALTIME (Lu et al. 2012a,b); 
• Adobe Photoshop.  
Following the tests with the aforementioned methods, a new 
RGB to Gray conversion technique, named Bruteforce 
Isoluminants Decrease (BID), was developed. The aim was to 
preserve the consistency between the images considering the 
following matching requirements: 
-‐ Feature discriminability: the method should preserve the 

image features discriminability to be matched as much as 
possible; 

-‐ Chrominance awareness: the method should distinguish 
between isoluminant colors; 

-‐ Global mapping: while the algorithm can use spatial 
information to determine the mapping, the same color 
should be mapped to the same grayscale value for every 
pixel in the image; 

-‐ Color consistency: the same color should be mapped to the 
same grayscale value in every image of the dataset; 

-‐ Grayscale preservation: if a pixel in the color image is 
already achromatic it should maintain the same gray level in 
the grayscale image; 

-‐ Unsupervised algorithm: it should not need user tuning to 
work properly. 

BID computes the statistical properties of the input dataset with 
the help of a representative collection of image patches. It takes 
in input and analyses simultaneously the whole set of images 
that need to be matched. Differently from other similar solutions 
as the Multi-Image Decolorize method (Benedetti et al., 2012), 
BID is a generalization of the Matlab RGB2Gray algorithm. . 
BID has its foundation in the statistics of extreme-value 
distributions of the considered images and presents a more 
flexible strategy, adapting dynamically channel weights 
depending on specific input images, in order to find the most 
appropriate weights for a given color image. BID preserves as 
much as possible the amount of the conveyed information. The 
algorithm behind BID tries to maximize the number of peaks 
obtained in the image converted and to distribute as evenly as 
possible the amount of tones present in the converted image by 
evaluating the goodness of fit of the distribution with respect to 
a rectangular distribution. To calculate the best rectangular 
fitting we assumed a 0 slope regression line. If the general 
equation of the regression line is: 

β = y−mx  
β is equivalent to the average of the histogram points. After 
calculating the average, the minimum error within all the 
calculated combinations of channel mixings if sought. The error 
is calculated as least squares error: 

S = (
iy −β)2

i=1

n

∑  

where yi are the actual points, while β is the best linear fitting of 
the histogram. BID cyclically varies the amount of red, green 
and blue and for each variation calculates the distribution of the 
resulting grayscale image and assesses the fitting quality with 

respect to a rectangular distribution. Finally BID chooses the 
mixing that maximizes the number of tones obtained in the 
converted image. Similarly to Song et al. (2013), BID uses a 
measurement criterion to evaluate the decolorization quality, i.e. 
the newly defined dominant color hypothesis. Main 
disadvantage of BID is the high computational pre-processing 
cost relieved using sampled patches on each image of the 
dataset. 
 
 

5. IMAGE CONTENT ENHANCEMENT 

Low-texture surface such as plaster causes difficulties for 
feature detection such as the Difference-of-Gaussian (DoG) 
function, which extracts features in pixel level and compares 
them with adjacent ones and in stereo-matching algorithms. 
The Wallis filter (Wallis, 1976), is a digital image processing 
function that enhances the contrast levels and flattens the 
different exposure to achieve similar brightness in the images. 
The filter is normally applied in order to optimize image 
datasets for subsequent image-matching procedures (Baltsavias, 
1991; Baltsavias et al., 1996; Seiz et al. 2002; Ohdake et al. 
2005; Remondino et al., 2008; MacDonald et al. 2014).  
Wallis uses two parameters to control the enhancement’s 
amount, the contrast expansion factor A and the brightness 
forcing factor B. The algorithm is adaptive and adjusts pixel 
brightness values in local areas only, contrary to a global 
contrast filter, which applies the same level of contrast 
throughout an entire image. The resulting image contains 
greater detail in both low and high-level contrast regions 
concurrently, ensuring that good local enhancement is achieved 
throughout the entire image. The Wallis filter requires the user 
to accurately set a target mean and standard deviation in order 
to locally adjusts areas and match the user-specified target 
values. Firstly the filter divides the input image into 
neighboring square blocks with a user-defined size (‘window 
size’) in order to calculate local statistics. Then mean (M) and 
standard deviation (S) of the unfiltered image are calculated for 
each individual block based on the grey values of the pixels and 
the resulting value is assigned to the central cell of each block. 
The mean and standard deviation values of all other cells in the 
block are calculated from this central cell by bilinear 
interpolation. In this way, each individual pixel gets its own 
initial local mean and standard deviation based on surrounding 
pixel values. The user-defined mean and standard deviation 
values are then used to adjust the brightness and the contrast of 
the input cells. The resulting Wallis filtered image is thus a 
weighted combination of the original and user-defined mean 
and standard deviation of the image. The implementation of the 
filter of Wallis, given the aforementioned factor A and B, can be 
summarized as follows:  
- let S be the standard deviation for an image 
- let M be the mean for an image 
- for each (x,y) pixel in the image 
- calculate local mean m and standard deviation s using an 

NxN neighborhood 
- calculate the enhanced output  

(x,y) = S*(input(x,y) – m)/(s + A)+ M*B + m*(1-B) 
 

5.1 Selection of Wallis parameters 
The main problem when using the Wallis filter is the correct 
selection of its parameters. In fact, although several authors 
reported parameters for successful projects, the filter is more an 
'ad-hoc' recipe than an easily deployable system in an automatic 
photogrammetry pipelines. To overcome this problem, a Wallis 
parameters characterization study was carried out using three 
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different datasets able to encompass the majority of possible 
surveying case studies. The three datasets consist of: 
1. a cross vault characterized by smooth bright-colored plaster;
2. a building facade with porticos with smooth plaster in both 

the main and front portico; 
3. a Venetian floor, with asphalt and porphyry cubes with a 

background facade overexposed and an octagonal pillar in the 
foreground coated with smooth plaster. 

For every dataset, three images were matched using a calibrated 
version (Apollonio et al., 2014) of the SIFT operator available 
in Vedaldi’s implementation (Vedaldi & Fulkerson, 2010). 
 
a)  a)

  

b) 

 
 
c) 

 
Figure 2: Results of the Wallis evaluation on the plaster dataset (1). 
 
From the characterization procedure (Fig. 2), it can be 
summarized that: 
1. the number of tie points found is inversely proportional to the 

value of the parameter A, but the number of correct matches 
remains basically stable varying A, which can then be set at 
high values (6-8); 

2. varying the user-specified standard deviation, the number of 
tie points and correct matches increases substantially linearly 
up to a value of 100 and then remains constant (Fig.2a); 

3. sensor resolution and window size are linearly related and the 
increasing of the window size beyond the optimal value does 
not involve any improvement in either the number of positive 
matches and in the number of extracted tie points (Fig. 2b); 

4. the mean presents optimal values between 100 and 150 with a 
decay afterwards (Fig. 2c). 

Starting from these observations, a new implementation of the 
filter was realized to automatically select the filter parameters 
and achieve the highest possible ratio of corrected matches wrt 
the number of extracted tie points. 

 
 

6. EXPERIMENTAL SETUP AND EVALUATION 
RESULTS 

For the evaluation of the implemented methods, different image 
networks were used with different imaging configurations, 
textureless areas and repeated pattern/features. The datasets 
tried to verify the efficiency of the implemented pre-processing 
pipeline and evaluate its performances. Hereafter, for reasons of 
space, one peculiar dataset is reported (Building with Porticoes, 
35 images – Fig. 3), acquired with a Nikon D3100 (sensor size: 
23,1 x 15,4 mm), with a 18 mm nominal focal length. The 
historical building (19 m height x 10 m width) has three floors 
characterized by arcades with four aches, pillars/columns, cross 
vault and plastered wall. The camera was moving along the 
porticoes, with some closer shots of the columns. The dataset 
represents an urban test framework and summarizes a typical 
historical urban scenario. It contains, besides convergent images 
and some orthogonal camera rolls (ideal for self-calibration), a 
variety of situations typical of failure cases, i.e. 3D scenes (non-
coplanar) with homogeneous regions, distinctive edge 
boundaries (e.g. buildings, windows/doors, cornices, arcades), 
repeated patterns (recurrent architectural elements), textureless 
surfaces and illumination changes. 
The performances of the pre-processing strategies previously 
described are reported using the statistical output of the bundle 
adjustment (reprojection error), the number of points in the 
dense point cloud and an accuracy evaluation of the dense 
matching results. This latter is achieved using a Terrestrial 
Laser Scanning (TLS) survey as reference (Fig. 4a). Three 
textureless regions (A1, A2, A3) are identified and, in order to 
have a reference comparable to the dense matching results, the 
range data are subsampled to a grid of 5x5 mm. The average 
image GSD in the three regions of interest is ca 2 mm but the 
dense matching was carried out using the second-level image 
pyramid, that is, at a quarter of the original image resolution 
(i.e. dense point clouds with a sampling resolution of twice the 
original image GSD). 
For every pre-processing method, the Portico dataset is 
relatively oriented (Fig. 4b) with 4 different tools (Visual SFM, 
Apero MicMac, Eos Photomodeler and Agisoft Photoscan), 
trying to keep a uniform number of extracted keypoints and tie 
points. Then, a dense point cloud is extracted with a unique tool 
(nFrames SURE) by using (fixing) the same camera parameters 
for all methods.  
 
6.1 Color balance results 
The results of the orientation and dense matching steps are 
reported in Table 1. The color balancing procedure generally 
helps in increasing the number of oriented images, except in PS 
where – as also visible in the next results – the dataset is 
entirely oriented at every run.  
 
 6.2 Image denoising results 
After the denoising procedure, the Wallis filtering ia applied to 
the dataset before running the automated orientation and 
matching procedures. The achieved adjustment results, 
according to the different denoising methods, show that more 
images can be oriented (Table 2) and denser point clouds can be 
retrieved (Table 3). 
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Figure 3: The Portico dataset (35 images) used for the evaluation of the developed image pre-processing pipeline. 

 
 Not enhanced Enhanced a)  

 

b) 

 
  

VisualSFM (VSFM) 
Numb. oriented images 31 33 

BA quality (px) 0.476 0.481 
Apero MicMac (AP) 

Numb. oriented images 33 35 
BA reprojection error (px) 0.71 0.85 

EOS Photomodeler (PM) 
Numb. oriented images 33 35 

BA reprojection error (px) 0.476 0.481 
Agisoft Photoscan (PS) 

Numb. oriented images 35 35 
BA reprojection error (px) 0.512 0.543 

Dense Matching (SURE) 

Numb. 3D points 1.259.795 1.626.267 

Table 1: Bundle adjustment (BA) results and dense matching 
improvement for the enhancement procedure. 

Figure 4: The TLS survey with the 3 textureless regions of interest (a) and 
the camera network of the Portico dataset (b). 

 

 NO DENOISE Adobe CBM3D NL-BAYES NOISE CLINIC IMAGENOMIC 

VisualSFM (VSFM) 
Numb. oriented images 32 35 35 35 35 35 

BA quality (px) 0.297 0.476 0.485 0.450 0.694 0.371 
Apero MicMac (AP) 

Numb. oriented images 33 35 35 35 35 35 
BA reprojection error (px) 0.96 0.88 0.88 0.97 0.87 0.93 

EOS PhotoModeler (PM) 
Numb. oriented images 33 33 33 33 33 31 

BA reprojection error (px) 0.892 0.838 0.833 0.856 0.872 0.878 
Agisoft Photoscan (PS) 

Numb. oriented images 35 35 35 35 35 35 
BA reprojection error (px) 0.490 0.493 0.489 0.491 0.527 0.554 

Table 2: Bundle adjustment (BA) results of the denoising methods applied to the enhanced dataset. 
 
 NO DENOISE Adobe CBM3D NL-BAYES NOISE CLINIC IMAGENOMIC 

Numb. 3D points 998.995 1.308.768 1.456.024 1.456.561 1.428.996 1.346.559 
 

      
A1 (0,8x1,4m) 
Ref. pt. cloud: 

Numb. 3D 
points 1.227 27.508 16.257 31.386 23.419 8.194 
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36.294 pts Std Dev 
(mm) N/A 12,264 13,613 11,734 12,073 17,219 

A2 (0,5x1,9m) 
Numb. ref. pt. 

cloud: 
33.868 

Numb. 3D 
points 495 25.327 17.966 29.632 23.541 7.548 

Std Dev 
(mm) N/A 11,184 11,735 11,897 11,041 19,002 

A3 (2,6x1,3m)  
Numb. ref. pt. 

cloud: 
120.222 

Numb. 3D 
points 32.014 176.478 179.553 183.166 184.835 160.120 

Std Dev 
(mm) N/A 11,760 12,354 11,443 10,028 10,991 

Table 3: Dense matching results and evaluation of the denoising methods applied to the enhanced dataset. The ground truth is given by a TLS 
survey resampled to 5x5 mm grid. 

 

 GREEN2GRAY Adobe REALTIME GRUNDLAND - 
DODGSON RGB2GRAY BID 

VisualSFM (VSFM) 
Numb. oriented images 35 33 30 16 33 35 

BA quality (px) 0.548 0.424 0.366 0.379 0.353 0.581 
Apero MicMac (AP) 

Numb. oriented images 33 34 35 18 35 33 
BA reprojection error (px) 0.97 0.91 0.88 0.66 0.90 0.94 

EOS PhotoModeler (PM) 
Numb. oriented images 35 33 33 28 32 35 

BA reprojection error (px) 0.866 0.890 0.874 0.894 0.876 0.858 
Agisoft Photoscan (PS) 

Numb. oriented images 35 35 35 35 35 35 
BA reprojection error (px) 0.523 0.530 0.545 0.536 0.518 0.514 

Table 4: Bundle adjustment (BA) results of the RGB to GRAY methods applied to the enhanced dataset. 
 
 GREEN2GRAY Adobe REALTIME GRUNDLAND - 

DODGSON RGB2GRAY BID 

Numb. 3D points 1.703.607 1.444.269 1.522.044 1.375.971 1.184.432 1.964.397 

 

      
A1 –   

Numb. ref. 
pt. cloud: 

36.294 

Numb. 3D 
points 27.127 12.776 10.890 N/A 6.863 11.360 

Std Dev 
(mm) 11,279 14,827 12,782 N/A 15,131 18,834 

A2 –  
Numb. ref. 
pt. cloud: 

33.868 

Numb. 3D 
points 32.619 12.853 15.264 N/A 6.520 9.950 

Std Dev 
(mm) 10,765 13,820 10,768 N/A 12,388 22,287 

A3 –  
Numb. ref. 
pt. cloud: 
120.222 

Numb. 3D 
points 162.563 153.281 163.246 N/A 152.923 157.837 

Std Dev 
(mm) 11,955 10,818 8,708 N/A 8,892 10,820 

Table 5: Dense matching results and evaluation of the RGB to GRAY methods applied to the enhanced dataset. The ground truth is given by a 
TLS survey resampled to 5x5 mm grid. 

 
 
6.3 RGB to GRAY results 
The grayscale conversion (coupled with the Wallis filtering) 
shows how algorithms are differently affecting the BA 
procedure (Table 4) as well as the dense matching results (Table 
5). It can be generally noticed a larger number of oriented 
images, better reprojection errors and denser point clouds. 

7. CONCLUSIONS 

The paper reported some pre-processing methods to improve the 
results of the automated photogrammetric pipeline. Among the 
performed tests, a salient example featuring a complex image 
network and scenario (lack of texture, repetitive pattern, etc.) - 
and reflecting also the other outcomes achieved in our 
experiments - was presented. From the results in Section 6 it is 
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clear that the pre-processing procedure, with very limited 
processing time, is generally positively influencing the 
performances of the orientation and matching tools. The pre-
processing is indeed helping in achieving complete orientation 
results, sometimes better BA reprojection errors (although it is 
not a real measure of better quality) and, above all, more dense 
and complete 3D dense point clouds. 
According to our tests, the best procedure implies to apply a 
color enhancement, a denoise procedure based on the BM3D 
method, the RGB to Gray conversion using the developed BID 
method and the Wallis filtering. This latter filtering seems to be 
fundamental also in the orientation procedure and not only at 
matching level as so far reported in the literature. 
The proposed pre-processing pipeline appears particularly 
suitable and integrable in a fully automated image processing 
method as: 
- the parameters are strictly related to the image metadata 

(EXIF header) and could be automatically set; 
- the pre-processing / filtering considers the entire dataset and 

it is not image-dependent;  
- it is based on criteria related to algorithms employed for 

automated 3D reconstruction (e.g. keypoint detection)  and 
not on perceptual criteria typically used in image 
enhancement algorithms; 

- it stems from many experiments and merges state-of-the-art 
methods; 

- it gives advantages also for the texture mapping phase. 
Some final concluding remarks derived by our experiments: 
- automated orientation is still an open issue; 
- the employed tools for automated image orientation do not 

provide a unique / standardize type of output; 
- there is a lack of repeatability, as already demonstrated in 

Remondino et al. (2012). 
In the near future work we plan to publish all the performed 
results with more detailed analyses.  
 
 

REFERENCES 

Ancuti, C.O., Ancuti C., Bekaert P., 2010. Decolorizing images for 
robust matching. ICIP 2010. IEEE International Conference on, Vol 
Vol. 1, pp. 149-153. 

Apollonio, F., Ballabeni, A., Gaiani, M., Remondino, F., 2014. 
Evaluation of feature-based methods for automated network orientation. 
ISPRS Archives of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, Vol. XL-5, pp. 47-54 

Awate, S.P., Whitaker, R.T., 2006. Unsupervised, information-theoretic, 
adaptive image filtering for image restoration. IEEE Trans. Pattern 
Anal. Mach. Intell, 28(3), pp. 364-376. 

Baltsavias, E. P., 1991. Multiphoto geometrically constrained matching. 
Ph.D. dissertation No. 9561, Institute of Geodesy and Photogrammetry, 
ETH Zurich. 221 pp. 

Baltsavias, E. P., Li, H., Mason, S., Stefanidis, A., Sinning, M., 1996. 
Comparison of two digital photogrammetric systems with emphasis on 
DTM generation: case study glacier measurement. Int. Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
Vol. XXXI, Part. B4, pp. 104-109. 

Barazzetti, L., Scaioni, M., Remondino, F., 2010. Orientation and 3D 
modeling from markerless terrestrial images: combining accuracy with 
automation. The Photogrammetric Record, 25(132), pp. 356–381. 

Buades, A., Coll, B., Morel, J. M., 2005. A review of image denoising 
algorithms, with a new one. Multiscale Modeling Simulation (SIAM 
Interdisciplinary J.), Vol. 4(2), pp. 490-530. 

Benedetti, L., Corsini, M., Cignoni, P., Callieri, M., Scopigno, R., 2012. 
Color to gray conversions in the context of stereo matching algorithms: 
An analysis and comparison of current methods and an ad-hoc 

theoretically-motivated technique for image matching. Machine Vision 
and Application, Vol. 23(2), pp. 327-348. 

Colom, M., Buades, A., Morel, J., 2014. Nonparametric noise 
estimation method for raw images. J. Opt. Soc. Am. A, Vol. 31, pp. 863-
871. 

Dabov, K., Foi, A., Katkovnik V., Egiazarian, K., 2007a. Image 
denoising by sparse 3D transform-domain collaborative Filtering. IEEE 
Trans. Image Process., Vol. 16(8), pp. 2080-2095. 

Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K., 2007b. Color image 
denoising via sparse 3D collaborative filtering with grouping constraint 
in luminance-chrominance space. Proceedings of IEEE International 
Conference on Image Processing (ICIP), Vol.1, pp. I-313 - I-316. 

Foi, A., 2011. Noise estimation and removal in MR imaging: The 
variance-stabilization approach. IEEE International Symposium on 
Biomedical Imaging: From Nano to Macro, pp. 1809-1814. 

Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B., 2005. Color2gray: 
salience-preserving color removal. ACM Trans. Graph., Vol. 24(3), pp. 
634-639. 

Grundland, M., Dodgson, N.A., 2007. Decolorize: fast, contrast 
enhancing, color to grayscale conversion. Pattern Recognition, Vol. 
40(11), pp. 2891-2896. 

Kervrann C., Boulanger J., 2006, Optimal spatial adaptation for patch-
based denoising. IEEE Trans. Image Process., Vol. 15(10), pp. 2866-
2878. 

Kim, Y., Jang, C., Demouth, J., Lee, S., 2009. Robust color-to-gray via 
nonlinear global mapping, ACM Transactions on Graphics, Vol. 28(5). 

Kolaczyk E., 1999. Wavelet shrinkage estimation of certain Poisson 
intensity signals using corrected thresholds. Statist. Sin., Vol. 9, pp. 
119-135. 

Imagenomic LLC (2012). Noiseware 5 Plug-In User’s Guide 

Lebrun M., Colom M., Morel J.-M., 2014. The Noise Clinic: a blind 
image denoising algorithm, Ipol Journal, preprint. 

Lebrun, M., Colom M., Buades, A., Morel, J.-M., 2012. Secrets of 
image denoising cuisine, Acta Numerica, Vol. 21, pp. 475-576. 

Lowe, D., 2004: Distinctive image features from scale-invariant 
keypoints. Int. Journal of Computer Vision, Vol. 60(2), pp. 91-110. 

Lu C., Xu L., Jia J., 2012. Contrast preserving decolorization. ICCP, 
2012 IEEE International Conference on, pp.1-7. 

Lu C., Xu L., Jia J., 2014. Contrast preserving decolorization with 
perception-based quality metrics. International Journal of Computer 
Vision, Vol. 110(2), pp. 222-239. 

MacDonald, L., Hindmarch, J., Robson, S., Terras, M., 2014. Modelling 
the appearance of heritage metallic surfaces. Int. Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
Vol. XL(5), pp. 371-377. 

McCamy, C.S., Marcus, H., Davidson, J.G., 1976. A color rendition 
chart. Journal of Applied Photographic Engineering, Vol. 11(3), pp. 95-
99. 

Makitalo, M., Foi, A., 2011. Optimal inversion of the Anscombe 
transformation in low-count Poisson image denoising. IEEE Trans. 
Image Processing, Vol. 20, pp. 99-109. 

Nowak, R. Baraniuk, R., 1997. Wavelet-domain filtering for photon 
imaging systems. IEEE Trans. Image Processing,Vol. 8, pp. 666-678. 

Ohdake, T., Chikatsu, H., 2005. 3D modeling of high relief sculpture 
using image based integrated measurement system. Int. Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 
Vol. XXXVI(5-W17), 6 pp. 

Pascale, D., 2006. RGB coordinates of the Macbeth ColorChecker. The 
BabelColor Company, Montreal, Canada. 

Petrosyan, A., Ghazaryan, A., 2006. Method and system for digital 
image enhancement. US Patent Application, Vol. 11(116), pp. 408. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-315-2015

 
322



 

Pierrot-Deseilligny, M., De Luca, L., Remondino, F., 2011. Automated 
image-based procedures for accurate artifacts 3D modeling and 
orthoimage generation. Geoinformatics FCE CTU Journal, Vol. 6, pp. 
291-299. 

Reinhard, E., Arif Khan, E., Oguz Akyüz A., Johnson G., 2008. Color 
Imaging Fundamentals and Applications. A. K. Peters: Wellesley. 

Remondino, F., El-Hakim, S., Gruen, A., Zhang, L., 2008. Turning 
images into 3D models - Development and performance analysis of 
image matching for detailed surface reconstruction of heritage objects. 
IEEE Signal Processing Magazine, Vol. 25(4), pp. 55-65. 

Remondino, F., Del Pizzo, S., Kersten, T., Troisi, S., 2012. Low-cost 
and open-source solutions for automated image orientation – A critical 
overview. Proc. EuroMed 2012 Conference, LNCS, Vol. 7616, pp. 40-
54 

Schewe, J., Fraser, B., 2010. Real World Camera Raw with Adobe 
Photoshop CS5. Peachpit Press, Berkeley, CA, USA, 480 pp. 

Seiz G., Baltsavias E. P., Grün A., 2002. Cloud mapping from ground: 
use of photogrammetric methods. Photogrammetric Engineering and 
Remote Sensing, Vol. 68(9), pp. 941-951. 

Sharma, G., Wu, W., Dalal, E.N., 2005. The CIEDE2000 Color-
difference formula: implementation notes, supplementary test data and 
mathematical observations. Color Research and Application, Vol. 
30(1), pp. 21-30. 

Smith, K., Landes, P. E., Thollot, J., Myszkowski, K., 2008. Apparent 
Greyscale: a simple and fast conversion to perceptually accurate images 
and video. Computer Graphics Forum, Vol.27(2), pp. 193-200. 

Snavely, N., Seitz, S.M., Szeliski, R., 2008. Modeling the world from 
internet photo collections. Int. Journal of Computer Vision, Vol. 80(2), 
pp. 189-210. 

Song, Y., Bao, L., Xu, X., Yang, Q., 2013. Decolorization: Is rgb2gray() 
out?, SIGGRAPH Asia 2013 Technical Briefs (SA '13), ACM, New 
York, 15, 4pp. 

Song, T., Luo, M.R., 2000. Testing color-difference formulae on 
complex images using a CRT monitor. Proceedings of IS&T and SID 
Eighth Color Imaging Conference, pp. 44-48. 

Vedaldi, A., Fulkerson, B., 2010: VLFeat - An open and portable library 
of computer vision algorithms. Proc.18th ACM Intern. Conf. on 
Multimedia 

Wallis R., 1976, An approach to the space variant restoration and 
enhancement of images. Proceedings of Symp. Current Mathematical 
Problems in Image Science, Monterey, Naval Postgraduate School, pp. 
329-340. 

Wandell, B.A., Farrell J.E., 1993. Water into Wine: converting scanner 
RGB to tristimulus XYZ. Proceedings of SPIE, Vol. 1909, Bellingham, 
pp. 92-101 

Yaroslavsky, L.P.. 1996, Local adaptive image restoration and 
enhancement with the use of DFT and DCT in a running window. 
Proceedings of SPIE, Vol. 2825, Bellingham, pp. 2-13  

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-315-2015

 
323




