
BUILT BY ALGORITHMS
– STATE OF THE ART REPORT ON PROCEDURAL MODELING –

C. Schinkoa,b∗, U. Krispela,b, T. Ullricha,b, D. Fellnerb,c

aFraunhofer Austria Research GmbH, Visual Computing
bInstitute of ComputerGraphics and KnowledgeVisualization (CGV), TU Graz, Austria

cGRIS, TU Darmstadt & Fraunhofer IGD, Darmstadt, Germany

Commission V, WG V/4

KEY WORDS: Generative Modeling, Procedural Modeling, Inverse Modeling, Modeling Applications, Shape Description, Language
Design

ABSTRACT:

The idea of generative modeling is to allow the generation of highly complex objects based on a set of formal construction rules. Using
these construction rules, a shape is described by a sequence of processing steps, rather than just by the result of all applied operations:
Shape design becomes rule design. Due to its very general nature, this approach can be applied to any domain and to any shape
representation that provides a set of generating functions. The aim of this report is to give an overview of the concepts and techniques
of procedural and generative modeling as well as their applications with a special focus on Archaeology and Architecture.

1. INTRODUCTION

The task of generating highly complex objects based on a set of
formal construction rules is called generative modeling (Krispel
et al., 2014). In contrast to classical modeling, where the object is
just the end result of applied operations, this modeling paradigm
describes a shape by a sequence of processing steps. The result is
a paradigm shift from shape design to rule design. This general
approach can be applied to many domains.

1.1 Ruler and Compass

Geometry from the days of the ancient Greeks placed great em-
phasis on problems of constructing various geometric figures us-
ing only a ruler without markings (to draw lines) and a compass
(to draw circles). Ruler-and-compass constructions are based on
EUCLID’s axioms (Heiberg, 2007) using points, lines and cir-
cles that have already been constructed. The resulting geometric
primitives together with the ruler-and-compass constructions are
the first algorithmic descriptions of generative models.

When a line is considered constructed when its two endpoints are
located, all constructions possible with a compass and straight-
edge can be done with a compass alone. The reverse is also
true, since JACOB STEINER showed that all constructions pos-
sible with straightedge and compass can be done using only a
straightedge, as long as a fixed circle and its center have been
drawn beforehand. Such a construction is known as a Steiner
construction.

The long history of geometric constructions (Martin, 1998) is
also reflected in the history of civil engineering and architec-
ture (Mitchell, 1990). Gothic architecture, especially window
tracery, exhibits a good example of these constructions. Their
complexity is achieved by combining only a few basic geomet-
ric patterns. SVEN HAVEMANN and DIETER W. FELLNER show
how constructions of prototypic Gothic windows can be formal-
ized using generative modeling techniques (Havemann and Fell-
ner, 2004). By combining modular construction rules it is possi-
ble that complex configurations can be obtained from elementary

∗Corresponding author.

constructions. The different combinations of specific parametric
features can be grouped together, leading to the concept of styles.
A differentiation between basic shape and appearance allows, for
example, the creation of ornamental decoration (Thaller et al.,
2013a). This leads to an extremely compact representation for a
whole class of shapes (Berndt et al., 2005a).

1.2 Civil Engineering

Because the generative modeling approach is very general, it can
be applied to any domain and is not restricted to shape represen-
tations (Chakrabarti et al., 2011), (Compton and Mateas, 2006).
The discipline of civil engineering focuses on computer-aided de-
sign, shape design, and 3D modeling.

Each design process which involves repetitive tasks is perfectly
suited for a generative approach. Engineering processes can be
classified in repetitive and creative processes. In contrast to cre-
ative processes, repetitive ones consist of nearly identical tasks
and are therefore independent of creative decisions. This is a pre-
condition for modeling them in a system of rules as demonstrated
by GERALD FRANK (2012): Liebherr manufactures and sells an
extensive range of products including different kinds of cranes.
Each crane has to be partially or fully engineered tailored to the
needs of the customer. Nevertheless, the design process of as-
cent assemblies is based on repetitive tasks that are described by
a set of invariant rules. These rules have been modeled and stored
by Liebherr. The integration into the existing CAD pipeline now
allows a construction engineer to create ascent assemblies only
by determine the defining parameters and filling out the corre-
sponding input fields in a user interface. Using the procedural
approach, the efforts of engineering ascent assemblies have been
reduced to 10%.

1.3 Natural Patterns

In today’s procedural modeling systems, scripting languages and
grammars are often used to create a set of rules to achieve a de-
scription of an object or pattern. Early systems based on gram-
mars were Lindenmayer systems, short L-systems, named af-
ter ARISTID LINDENMAYER (Prusinkiewicz and Lindenmayer,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
469



1990). They were successfully used for modeling plants (Deussen
and Lintermann, 2005) or fractal structures (Mandelbrot, 1982).
Given a set of string rewriting rules, complex strings are created
by applying these rules to simpler strings. Starting with an ini-
tial string the predefined set of rules form a new, possibly larger
string. In order to use L-systems to model geometry an interpre-
tation of the generated strings is necessary.

The modeling power of L-systems was limited to creating fractals
and plant-like branching structures. This limitation lead to the in-
troduction of parametric L-systems. The idea is to associate nu-
merical parameters with L-system symbols to address continuous
phenomena which were not covered satisfactorily by L-systems
alone.

In combination with additional 3D modeling techniques, Lin-
denmayer systems can be used to generate complex geometry.
ROBERT F. TOBLER et al. (2002) introduce a combination of sub-
division surfaces, fractal surfaces, and parametrized L-systems to
create models of natural phenomena. Different combinations can
be used at each level of resolution. Since the whole description of
such multi-resolution models is procedural, their representation is
very compact and can be exploited by level-of-detail renderers.

This trade-off between data storage and computation time can be
found in various fields of computer graphics, e.g. the tessellation
of curved surfaces specified by a few control points directly on
the GPU. The result is low storage costs allowing the generation
of complex models only when needed, while also reducing mem-
ory transfer overheads. Although L-systems are parallel rewriting
systems, derivation through rewriting leads to very uneven work-
loads. Since the interpretation of an L-system is an inherently
serial process, they are not straightforwardly applicable to paral-
lel processing. In 2010, MARKUS LIPP et al. (2010) presented a
solution to this algorithmic challenge.

2. LANGUAGES & GRAMMARS

Scripting languages have been designed for a special purpose,
e.g., for client-side scripting in a web browser. Nowadays, script-
ing languages are used for many different applications. JavaScript,
for example, is used to animate 2D and 3D graphics in VRML
(Brutzman, 1998) and X3D (Behr et al., 2007) files. It checks
user forms in PDF files (Breuel et al., 2011), controls game en-
gines (Di Benedetto et al., 2010), configures applications, de-
fines 3D shapes (Schinko et al., 2011a), and performs many more
tasks. According to JOHN K. OUSTERHOUT (1998) scripting lan-
guages use a higher level of abstraction compared to system pro-
gramming languages as they are often typeless and interpreted
to emphasize the rapid application development purpose. Sys-
tem programming languages, on the other hand, are designed for
creating algorithms and data structures based on low-level data
types and memory operations. Consequently, graphics libraries
(OpenGL Architecture, 1993), shaders (NVidia, n.d.) and scene
graph systems (Reiners et al., 2002), (Voß et al., 2002) are usu-
ally written in C/C++ dialects (Eckel, 2003), whereas procedu-
ral modeling frameworks incorporate scripting languages such as
Lua, JavaScript, etc.

2.1 Language Processing & Compiler Construction

For the evaluation of procedural descriptions typically techniques
used for description of formal languages and compiler construc-
tion are used (Parr, 2010). There is a wide range of different
concepts of languages to describe a shape including all kinds of
linguistic concepts (Chomsky, 1956). The main categories to de-
scribe a shape are

• rule-based: using substitutions and substitution rules to gen-
erate complex structures out of simple starting structures
(Özkar and Kotsopoulos, 2008), (Krecklau et al., 2010),
(Müller et al., 2006c), (Snyder and Kajiya, 1992).

• imperative and scripting-based: using a scripting engine
and techniques from predominant programming languages
(Havemann, 2005), (Schinko et al., 2011a), (Krecklau and
Kobbelt, 2011), or

• GUI and dataflow-based: using new graphical user inter-
faces (GUI) and intelligent GUIs to detect structures in mod-
eling tasks, which can be mapped onto formal descriptions
(Lipp et al., 2008), (Thaller et al., 2012).

The general principles of formal descriptions and compiler con-
struction are the same in all cases – independent of ahead-of-time
compilation, just-in-time compilation or interpretation (Schinko
et al., 2012). In the first stage of the compilation process, the in-
put source code is passed to lexer and parser. A first step here
is to convert a sequence of characters into a sequence of tokens,
which is done by special grammar rules forming the lexical anal-
ysis. Typically only a limited number of characters is allowed
for an identifier: all characters A-Z, a-z, digits 0-9 and the under-
score are allowed with the condition that an identifier must not
begin with a digit or an underscore. The lexer rules are embed-
ded in another set of rules – the parser rules. They are evaluating
the resulting sequence of tokens to determine their grammatical
structure. The complete grammar is of hierarchical structure and
consists of rules for analyzing all possible statements and expres-
sions that can be formed in the language, thus forming the syn-
tactic analysis.

For each available language construct a set of rules ensures syn-
tactic correctness and incorporates mechanisms to report possible
syntactic errors and warnings. These rules are also used to create
the intermediate AST structure that is a representation of the in-
put source code to be used for the next stage: semantic analysis.
Once all statements and expressions of the input source code are
collected in the AST, a tree walker checks their semantic relation-
ships for errors and warnings. After performing all compile-time
checks, a translator uses the AST to generate platform-specific
files possibly involving other intermediate structures.

As mentioned in the Introduction, the first procedural modeling
systems were L-systems. Later on, L-systems were used in com-
bination with shape grammars to model cities. YOGI PARISH
and PASCAL MÜLLER (2001) presented a system that generates
a street map enriched with geometry for buildings using a num-
ber of image maps as input. The resulting framework called
CityEngine is a modeling environment for the shape grammar
CGA Shape. MARKUS LIPP et al. (2008) presented another mod-
eling approach based on CGA Shape following the notation of
PASCAL MÜLLER (2006). It enables more direct local control
of the underlying grammar by introducing visual editing. Princi-
ples of semantic and geometric selection are combined as well as
functionality to store local changes persistently over global mod-
ifications.

SVEN HAVEMANN (2005) takes a different approach to genera-
tive modeling. He proposes a stack based language called Gen-
erative Modeling Language (GML). The postfix notation of the
language is very similar to that of Adobe Postscript. High-level
shape operations are created by using low-level shape functional-
ity. A number of applications are based on the GML platform be-
cause it is easily extensible and offers an integrated visualization
engine. Current efforts in the context of the GML are devoted to
directly creating interactive generative visualizations for the web.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
470



Generative modeling inherits methodologies of 3D modeling and
programming (Ullrich et al., 2008a), which leads to drawbacks in
usability and productivity. The need to learn and use a program-
ming language is a significant inhibition threshold especially for
non-computer scientists. The choice of the scripting language
has a huge influence on usability and effectiveness of procedural
modeling. Processing is a good example of how an interactive,
easy to use, yet powerful, development environment can open up
new user groups. It has been initially created to serve as a soft-
ware sketchbook and to teach students fundamentals of computer
programming. It quickly developed into a tool that is used for
creating visual arts (Reas et al., 2007).

Processing is a Java-like interpreter offering new graphics and
utility functions together with some usability simplifications. The
large community behind the tool produced libraries to facilitate
computer vision, data visualization, music, networking, and elec-
tronics. The success of Processing is based on two factors: the
simplicity of the programming language and the interactive expe-
rience. Instant feedback of the scripting environments allow the
user to program via “trial and error”.

2.2 Scripting Languages for Generative Modeling

There are many different programming paradigms in software de-
velopment that are also used in the field of generative modeling,
where some paradigms emerged to be useful for specific domains.

imperative: Many generative models are described using clas-
sical programming paradigms: A programming language is
used to generate a specific object possibly using a library
that utilizes some sort of geometry representation and oper-
ations to perform changes. Any modeling software that is
scriptable by an imperative language or provides some sort
of API falls into this category.

dataflow based: A generative description can be represented by
a directed graph of the data flowing between operations.
This graph representation also allows for a graphical repre-
sentation; Visual Programming Languages (VPL) allow to
create a program by linking and modifying visual elements.
Many VPL’s are based on the dataflow paradigm. Exam-
ples in the domain of generative modeling are the Grasshop-
per3D1 plug-in for the Rhinoceros3D2 modeling suite, or the
work of GUSTOVA PATOW et al. (2012) built on top of the
procedural modeler Houdini3.

rule based systems: Another different representation for gener-
ative modeling are rule-based systems. These systems pro-
vide a declarative description of the construction behavior
of a model by a set of rules. An example are L-Systems,
as described in the Introduction. Furthermore, the semi-
nal work of GEORGE STINY and JAMES GIPS (1971) intro-
duced shape grammars, as a formal description of capturing
the design of paintings and sculptures. Similar to formal
grammars, shape grammars are based on rule replacement.

Shape Grammars
In the classical definition of GEORGE STINY and JAMES GIPS,
a shape grammar is the 4-tuple SG = (VT , VM , R, I), where
VT a set of shapes, VT

∗ denotes the set of the shapes of VT with
any scale or rotation. VM is a finite set of non-terminal shapes
(markers) such that VT

∗ ∩ VM = ∅. R denotes the set of rules,
1http://www.grasshopper3d.com
2http://www.rhino3d.com
3http://www.sidefx.com

which consists of pairs (u, v), such that u = (s,m) consists of a
shape s ∈ VT

∗ combined with a marker of m ∈ VM , and v is a
shape consisting of either

• v = s

• v = (s, m̃) with m̃ ∈ VM

• v = (s ∪ s̃, m̃ with s̃ ∈ VT
∗ and m̃ ∈ VM

Elements of the set VT
∗ that appear in rules of R are called ter-

minal shapes. I is called the initial shape, and typically contains
an u ∈ (u, v) ∈ R. The final shape is generated from the shape
grammar by starting with the initial shape and applying match-
ing rules from R: for an input shape and a rule (u, v) whose
u matches a subset of the input, the resulting shape is another
shape that consists of the input shape with the right side of the
rule substituted in the matching subset of the input. The matching
identifies a geometric transformation (scale, translation, rotation,
mirror) such that u matches the subset of the input shape and ap-
plies it to the right side of the rule. The language defined by a
shape grammar SG is the set of shapes that will be generated by
SG that do not contain any elements of VM .

Split Grammars
The work of PETER WONKA et al. (2003) applied the concepts
of shape grammars to derive a system for generative modeling of
architectural models. This system uses a combination of a spatial
grammar system (split grammar) to control the spatial design and
a control grammar, which distributes the design ideas spatially
(e.g. set different attributes for the first floor of a building). Both
of these grammars consist of rules with attributes that steer the
derivation process. The grammar consists of two types of rules:
split and convert. The split rule is a partition operation which
replaces a shape by an arrangement of smaller shapes that fit in
the boundary of the original shape. The convert rule replaces a
shape by a different shape that also fits in the boundary of the
original shape.

This system has further been extended by the work of PASCAL
MÜLLER et al. (2006), which introduced a component split to
extend the split paradigm to arbitrary 3d meshes, as well as oc-
clusion queries and snap lines to model non-local influences of
rules. For example, two wall segments that intersect each other
should not produce windows such that the window of one wall co-
incides with the other wall, therefore occlusion queries are used
to decide if a window should be placed or not.

The derivation of a split grammar, starting from an initial shape,
yields a tree structure, which suggests that the derivation can be
speed up by a parallel implementation, which has been shown by
JEAN-EUDES MARVIE et al. (2012). Parallel generation is espe-
cially useful in an urban context, with scenes with high complex-
ity and detail. The work of LARS KRECKLAU et al. (2013) used
gpu accelerated generation in the context of generating and ren-
dering high detailed building façades; the work of ZHENGZHENG
KUANG et al. (2013) proposes a memory-efficient procedural
representation of urban buildings for real-time visualization.

With more advanced shape grammar systems, the non-local in-
fluences are a problem because they introduce dependencies be-
tween arbitrary nodes of the derivation tree. Recent work by
MARKUS STEINBERGER et al. (2014) shows how to overcome
this problem in an GPU implementation. Furthermore, the same
authors presented methods to interactively generate and render
only the visible part of a procedural scene using procedural oc-
clusion culling and level of detail (Steinberger et al., 2014b)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
471



3. MODELING BY PROGRAMMING

3D objects consisting of organized structures and repetitive forms
are well suited for procedural descriptions, e.g. by the combina-
tion of building blocks or by using shape grammars.

3.1 Building Blocks & Elementary Data Structures

Creating shapes with elementary data structures requires the defi-
nition of modeling operations. Depending on the underlying rep-
resentation, certain modeling operations are difficult or impos-
sible to implement. The selection of operations for these data
structures are manifold and can be grouped as follows:

• Instantiations are operations for creating new shapes.

• Binary Creations are operations involving two shapes such
as constructive solid geometry (CSG) operations.

• Deformations and Manipulations stand for all deforming and
modifying operations like morphing or displacing.

Building blocks can also be regarded as modeling operations.
When creating an algorithmic description of a shape, an impor-
tant task is to identify inherent properties and repetitive forms.
These properties must be accounted for in the structure of the de-
scription. Identified subparts or repetitive forms are best mapped
to functions in order to be reusable. However, the true power
of an algorithmic description becomes obvious when parameters
are introduced for these functions. Even if only used to position a
subpart at a different location. From that point on, the algorithmic
description no longer stands for a single object, but for a whole
object family.

3.2 Architectural Modeling with Procedural Extrusions

This method utilizes the paradigm of footprint extrusion to au-
tomatically derive geometry from a coarse description. Input to
this system are polygons whose segments can be associated with
an extrusion profile polygon. The system utilizes the weighted
straight skeleton method (Aurenhammer, 2008) to calculate the
resulting geometry. Examples can be seen in Figure 1.

The growing demand for new building models for virtual worlds,
games, and movies, makes the easy and fast creation of mod-
ifiable models more and more important (Watson and Wonka,
2008). Nevertheless, 3D modeling of buildings can be a tedious
task due to their sometimes complex geometry (Whiting et al.,
2009). For historic buildings, especially the roofs can be chal-
lenging. JOHANNES EDELSBRUNNER et al. (2014) present a
new method of combining simple building solids to form more
complex buildings, and give an emphasis on the blending of roof
faces. Their method can be integrated in common pipelines for
procedural modeling of buildings and extends their expressive-
ness compared to existing methods.

3.3 Deformation Aware Shape Grammars

Generative models based on shape and split grammar systems
often exhibit planar structures. This is the case because these
systems are based on planar primitives and planar splits. There
are many geometric tools available in modeling software to trans-
form planar objects into curved ones, e.g. free-form deformation
(Sederberg and Parry, 1986). Applying such a transformation as
a post-processing step might yield undesirable results. For exam-
ple, if a planar facade of a building is bent into a curved shape,

Figure 1: The work of TOM KELLY and PETER WONKA (2011)
offers a framework to specify the geometry of a building by ex-
trusion profiles. The segments of footprint polygons (c) are asso-
ciated with extrusion profiles - the green segments are associated
to the profile a, the purple segments to the profile b. The resulting
geometry can be seen in d.

the windows inside the façade will have a curved surface as well.
Another possibly unwanted property arises when an object is de-
formed by scaling: the windows on a façade would have different
appearances.

RENÉ ZMUGG et al. (2013) introduced deformation aware shape
grammars, which integrate deformation information into gram-
mar rules. The system still uses established methods utilizing pla-
nar primitives and splits, however, measurements that determine
the available space for rules are performed in deformed space.
In this way, deformed splits can be carried out, the deformation
can be baked at any point to allow for straight splits in deformed
geometry. An example is shown in Figure 2.

3.4 Procedural Shape Modeling

The effectiveness of procedural shape modeling can be demon-
strated with mass customization of consumer products (Berndt
et al., 2012). A generative description composed of a few well-
defined procedures can generate a large variety of shapes. Fur-
thermore, it covers most of the design space defined by an exist-
ing collection of designs – in this case wedding rings.

The basic shape of most rings can be defined using a profile poly-
gon, the angular step size defined by the number of supporting
profiles to be placed around the ring’s center, the radius, and a
vertex transformation function. A ring’s design variations are de-
composed into a set of transformation functions. Each function
transforms selected parts of the profile in a certain way. Effects
can be combined by calling a sequence of different transforma-
tions. The creation of the basic shape is separated from optional
steps to create engravings, change materials, or add gems. En-
gravings are implemented as per-vertex displacements (to main-
tain the option for 3D-printing) and can be applied on quadrilat-
eral parts of the ring’s mesh using half-edges to specify position
and spatial extend.

Materials like gold, silver, and platinum are used for wedding
rings. Their surfaces can be treated with various finishing tech-

Figure 2: Deformation aware shape grammars allow the integra-
tion of free-form deformation into a grammar-based system based
on planar primitives and splits. An undeformed building with
rooms (top image) is deformed using two different deformations
(middle, bottom).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
472



niques like polishing, brushing, or hammering. In order to ac-
count for these effects, a per-pixel shading model is used featur-
ing anisotropic highlights. By using a cube map, visually appeal-
ing reflections are created and predefined surface finishes can be
applied using normal mapping techniques. Procedural gem in-
stances can also be placed on the ring.

The presented approch is used in a hardware accelerated server-
side rendering framework (Schinko et al., 2014), which has been
included in an online system called REx by JohannKaiser. It of-
fers intuitive web interface for configuring and visualizing wed-
ding rings.

This work demonstrates the efficiency of procedural shape mod-
eling for the mass customization of wedding rings. The presented
generative description is able to produce a large variety of wed-
ding rings. Figure 3 shows a few results of the parametric toolkit.

Figure 3: The presented generative description is able to produce
a large variety of wedding rings. Features like engravings, re-
cesses, different materials, unusal forms and gems can be created
and customized.

3.5 Variance Analysis

The analysis and the visualization of differences of similar ob-
jects is important in many research areas: scan alignment, nomi-
nal/actual value comparison, and surface reconstruction to name
a few. In computer graphics, for example, differences of sur-
faces are used to validate reconstruction and fitting results of laser
scanned surfaces. Scanned representations are used for documen-
tation as well as analysis of ancient objects revealing smallest
changes and damages. Analyzing and documentation tasks are
also important in the context of engineering and manufacturing
to check the quality of productions.

CHRISTOPH SCHINKO et al. (2011) contribute a comparison of
a reference / nominal surface with an actual, laser-scanned data
set. The reference surface is a procedural model whose accuracy
and systematics describe the semantic properties of an object,
whereas the laser-scanned object is a real-world data set without
any additional semantic information. The first step of the process
is to register a generative model (including its free parameters) to
a laser scan. Then, the difference between the generative model
and the laser scan is stored in a texture, which can be applied to
all instances of the same shape family.

A generative models represent an ideal object rather than a real
one. The combination of noisy 3D data with an ideal description
enhances the range of potential applications. This bridge between
both the generative and the explicit geometry description is very

important: it combines the accuracy and systematics of gener-
ative models with the realism and the irregularity of real-world
data as pointed out by DAVID ARNOLD (2006). Once the proce-
dural description is registered to a real-world artifact, we can use
the fitted procedural model to modify a 3D shape. In this way we
can design both low-level details and high-level shape parameters
at the same time.

3.6 Semantic Modeling

In the context of digital libraries, semantic meta data plays an im-
portant role. It provides semantic information that is vital for dig-
ital library services: indexing, archival, and retrieval. Depending
on the field of application, meta data can be classified according
to the following criteria (Ullrich et al., 2010b):

Data Type The data type of the object can be of any elementary
data structure (e.g. Polygons, NURBS, Subdivision Sur-
faces, . . . ).

Scale of Semantic Information This property describes, whether
meta data is added for the entire data set or only for a sub
part of the object.

Type of Semantic Information The type of meta data can be
descriptive (describing the content), administrative (provid-
ing information regarding creation, storing, provenance, etc.)
or structural (describing the hierarchical structure).

Type of creation The creation of the semantic information for
an object can be done manually (by a domain expert) or au-
tomatically (e.g. using a generative description).

Data organization The two basic concepts of storing meta data
are storing the information within the original object (e.g.
EXIF data for images), or storing it separately (e.g. using a
database).

Information comprehensiveness The comprehensiveness of the
semantic information can be declared varying from low to
high in any gradation.

Many concepts for encoding semantic information can be applied
to 3D data, unfortunately only a few 3D data formats support
semantic markup (Settgast, 2013):

Collada The XML-based Collada format allows storing meta
data like title, author, revision etc. not only on a global scale
but also for parts of the scene. This file format can be found
in Google Warehouse where meta data is, for example, used
for geo-referencing objects.

PDF 3D PDF 3D allows to store annotations separated from the
3D data even allowing annotating the annotations. An ad-
vantage is that the viewer application is widely spread and
PDF documents are the quasi standard for textual documents.

Due to the persistent naming problem, a modification of the 3D
model can break the integrity of the semantic information. Any
change of the geometry can cause the referenced part of the model
to no longer exist or being changed. There are a lot of exam-
ples for semantic modeling in various contexts (Boulch et al.,
2013), (Haegeler et al., 2009), (Mendez et al., 2008), (Thaller
et al., 2013b), (Van Gool et al., 2013), (Yong et al., 2012).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
473



4. INVERSE MODELING

The full potential of generative techniques is revealed when the
inverse problem is solved; i.e. what is the best generative descrip-
tion of one or several given instances of an object class? This
problem can be interpreted in different ways. The simplest way
is to create a generative model out of a given 3D object and to
store it in a geometry definition file format. Obviously, this is not
the desired result as the generative model can only represent a
single object, not a family of objects.

4.1 Parsing shape grammars

Shape grammars can be used to describe the design space of
a class of buildings / façades . An interesting question in this
context is: given a set of rules and measurements of a building,
typically photographs or range scans, which application of rules
yields the measurements? Here, the applied rules can also be seen
as parse tree of a given input.

The work of HAYKO RIEMENSCHNEIDER et al. (2012) utilizes
shape grammars to enhance the results of a machine learning
classifier that is pre-trained to classify pixels of an orthophoto
of a façade into categories like windows, walls, doors and sky.
The system applies techniques from formal language parsing to
parse a two-dimensional split grammar consisting of horizontal
and vertical splits, as well as repetition and symmetry operations.
For the reduction of the search space, an irregular grid is derived
from the classifications, and the parsing algorithm is applied to
yield the most probable application of rules that yields a classi-
fication label per grid cell. These parse trees can easily be con-
verted into procedural models.

FUZHANG WU et al. (2014) also address the problem of how
to generate a meaningful split grammar explaining a given fa-
cade layout. Given a segmented facade image, the system uses
an approximate dynamic programming framework to evaluate if
a grammar is a meaningful description. However, the work does
not contribute to the problem of facade image segmentation.

4.2 Model synthesis

PAUL MERELL and DINESH MANOCHA (2008) present an ap-
proach that given an object (i.e. a mesh) and constraints, derives a
locally similar object. This method is related to texture synthesis.
It computes a set of acceptable states, according to several types
of constraints and constructs parallel planes that correspond to
faces orientations of the input model. The intersections of these
planes yield possible vertex positions in the output model. Ac-
ceptable states are assigned to a vertex while incompatible states
are removed in its neighbourhood. The system terminates, if ev-
ery vertex has been assigned a state.

4.3 Inverse procedural modeling of trees

The method proposed by ONDREJ STAVA et al. (2014) estimates
the parameters of a stochastic tree model, given polygonal in-
put tree models. This is done in such a way that the stochastic
model produces trees similar to the input. The parameters are es-
timated using Markov Chain Monte Carlo (MCMC) optimization
techniques. A statistical growth model consisting of 24 geomet-
rical and environmental parameters is used. The authors propose
a similarity measure between the statistical model and a given
input mesh that consists of three parts: shape distance, measur-
ing the overall shape discrepancy, geometric distance, reflecting
the statistics of geometry of its branches, and structural distance,
encoding the cost of transforming a graph representation of the

statistical tree model into a graph representation of the input tree
model. The MCMC method has also been applied by other meth-
ods to find parameters of a statistical generative model: (Talton
et al., 2011), (Vanegas et al., 2012), (Yu et al., 2011).

4.4 Parameter Fitting and Shape Recognition

TORSTEN ULLRICH and DIETER W. FELLNER (2011) presented
an approach that uses generative modeling techniques to describe
a class of objects and to identify objects in real-world data e.g.
laser scans. A point cloud P and a generative model M are the
input data sets of the algorithm. It answers the questions

1. whether the point cloud can be described by the generative
model and if so,

2. what are the input parameters x0 such that M(x0) is a good
description of P .

A hierarchical optimization routine based on fuzzy geometry and
a differentiating compiler is used. The complete generative model
description M(x1, . . . , xk) (including all possibly called subrou-
tines) is differentiated with respect to the input parameters. This
differentiating compiler offers the possibility to use gradient-based
optimization routines in the first place. Without partial derivatives
many numerical optimization routines cannot be used at all or in
a limited way.

5. SEMANTIC ENRICHMENT

The increasing number of (3D) documents makes digital library
services become more and more important. A digital library pro-
vides markup, indexing, and retrieval services based on available
metadata. In a simple case, metadata is of the Dublin Core (1995)
type: title, creator/author, time of creation, etc. This is insuffi-
cient for large collections of 3D objects, because of their versatil-
ity and rich structure.

Scanned models are used in raw data collections, for documenta-
tion archival, virtual reconstruction, historical data analysis, and
for high-quality visualization for dissemination purposes (Settgast
et al., 2007). Navigation and browsing through the geometric
models should be possible on the semantic level - this requires
higher-level semantic information. The need for semantic infor-
mation becomes immediately clear in the context of electronic
data exchange, storage and retrieval (Fellner, 2001), (Fellner et
al., 2007). The problem of 3D semantic enrichment is closely
related to the shape description problem (Maybury, 2012):

How to describe a shape and its structure
on a higher, more abstract level?

The traditional way of classifying objects, pursued both in math-
ematics and, in a less formal manner, in dictionaries, is to define
a class of objects by listing their distinctive properties. This ap-
proach is hardly realizable because of the fact that definitions can-
not be self-contained. They depend on other definitions, which
leads to circular dependencies that cannot be resolved automat-
ically by strict reasoning, but rely on intuitive understanding at
some point.

An alternative, non-recursive approach for describing shape uses
examples. Each entry in a picture dictionary is illustrated with

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
474



a photo or a drawing. This approach is widely used, for exam-
ple in biology for plant taxonomy. It avoids listing an exhaustive
list of required properties for each entry. However, it requires
some notion of similarity, simply because the decision whether
object x belongs to class A or B requires measuring the close-
ness of x to the exemplars a ∈ A resp. b ∈ B. This decision can
be reached by a classifier using statistics and machine learning
(Bishop, 2007), (Ulusoy and Bishop, 2005). A survey on content-
based 3D object retrieval is provided by BENJAMIN BUSTOS et
al. (2007). Statistical approaches clearly have their strength in
discriminating object classes. However, feature-based object de-
tection, e.g., of rectangular shapes, does not yield object param-
eters: width and height of a detected rectangle must typically be
computed separately.

To describe a shape and its construction process, its inner struc-
ture must be known. Structural decomposition is well in line
with human perception. In general, shapes are recognized and
coded mentally in terms of relevant parts and their spatial con-
figuration or structure (King and Wertheimer, 2005). One idea
to operationalize this concept was proposed, among others, by
MASAKI HILAGA et al. (2001), who introduce the Multiresolu-
tion Reeb Graph, to represent the skeletal and topological struc-
ture of a 3D shape at various levels of resolution. Structure recog-
nition is a very active branch in the field of geometry process-
ing. The detection of shape regularities (Pauly et al., 2008), self-
similarities (Bokeloh et al., 2010) and symmetries (Mitra et al.,
2006), (Mitra et al., 2007) is important to understand a 3D shape.
To summarize, structural decomposition proceeds by postulating
that a certain type of general regularity or structure exists in a
class of shapes. This approach clearly comes to its limits when
very specific structures are to be detected, i.e., complicated con-
structions with many parameter interdependencies.

A possibility to describe a shape is realized by the generative
modeling paradigm (Özkar and Kotsopoulos, 2008), (Ullrich et
al., 2010a). The key idea is to encode a shape with a sequence of
shape-generating operations, and not just with a list of low-level
geometric primitives. In its practical consequence, every shape
needs to be represented by a program, i.e., encoded in some form
of programming language, shape grammar (Müller et al., 2006c),
modeling language (Havemann, 2005) or modeling script (Au-
todesk, 2007).

The implementation of the “definition by algorithm” approach is
based on a scripting language (Ullrich and Fellner, 2011): Each
class of objects is represented by one algorithm M . Furthermore,
each described object is a set of high-level parameters x, which
reproduces the object, if an interpreter evaluates M(x). As this
kind of modeling resembles programming rather than “design-
ing”, it is obvious to use software engineering techniques such as
versioning and annotations. In this way, model M may contain a
human-readable description of the object class it represents.

In contrast to other related techniques using fitting algorithms,
such as “Creating Generative Models from Range Images” by
RAVI RAMAMOORTHI and JAMES ARVO (1998), the approach
by TORSTEN ULLRICH (2011) can classify data semantically. Al-
though RAVI RAMAMOORTHI and JAMES ARVO also use gener-
ative models to fit point clouds, they modify the generative de-
scription during the fitting process. As a consequence the op-
timization can be performed locally with a computational com-
plexity, which is significantly reduced. But starting with the same
generative description to fit a spoon as well as a banana does not
allow to generate or preserve semantic data.

An example illustrates this process. The generative model to de-
scribe a vase takes 13 parameters: R(rx, ry, rz) is the base ref-
erence point of the vase in 3D and T (tx, ty, tz) is its top-most

point. The points R and T define an axis of rotational symmetry.
The remaining seven parameters define the distances d0, . . . , d6
of equally distributed Bézier vertices to the axis of rotation (see
Figure 4). The resulting 2D Bézier curve defines a surface of
revolution – the generative vase.

R(rx, ry, rz)

T (tx, ty, tz)

d0

d1

d2

d3

d4

d5

d6

Figure 4: The vase on the left hand side is a digitized artifact of
the “Museum Eggenberg” collection. It consists of 364 774 ver-
tices and 727 898 triangles. The example of a procedural shape
on the right hand side takes two points R and T in 3D and dis-
tance values, which define the control vertices of a Bézier curve.

6. ARCHAEOLOGY & ARCHITECTURE

The huge volume of cultural objects is a challenge even for the
most ambitious plans for digitization campaigns (Arnold, 2014b).
The fact that probably 90 percent of museum collections are in
storage and not accessible to the public is almost demanding for
digitization and public accessibility. However, the digitization
alone is only part of a larger process that begins at a field exca-
vation and does not end with the presentation in museum exhi-
bitions. Secondary exploitation, database access and sustainable
long-time archival of digitized artifacts is also part of the process
(Havemann et al., 2006). A very important aspect is the choice of
the 3D format used during this process (Niccolucci, 2002), (Nic-
colucci and D’Andrea, 2006). However, the availability of large
quantities of cultural heritage data will enable new methods for
analysis and new applications (Arnold, 2014a).

The presented modeling system by CHRISTOPH SCHINKO et al.
(2010) is restricted to techniques to meet sustainability condi-
tions. By using JavaScript, the inhibition threshold to use a pro-
gramming language is reduced resulting in a beginner-friendly
tool with a high degree of usability. RENÉ BERNDT et al. (2005)
present a system for the production of three-dimensional inter-
active illustrations in the domain of medieval castles. A special
focus is on creating generic modeling tools that increase the us-
ability with a unified 3D user interface.

One of the advantages of procedural modeling techniques is the
included expert knowledge within an object description (Ullrich
and Fellner, 2011). Classification schemes used in architecture,
archaeology and other domains can be mapped to procedures
(Ullrich et al., 2008b). When a procedural object description
is available, only type and instantiation parameters have to be
identified in order to create an object (Ullrich et al., 2013) (see
Figure 5).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
475



Figure 5: Gothic architecture is defined by strict rules with
its characteristics. The generative description of Gothic cathe-
drals encodes these building blocks and the rules on how to
combine them. These building blocks have been created by
MICHAEL CURRY, http://www.thingiverse.com/thing:2030.

The usage of generative modeling techniques in architecture is
not limited to buildings of the past (Müller et al., 2006a), (Müller
et al., 2006b). Over the last few decades, architects have used a
new class of design tools that support generative design. Gen-
erative modeling software extends the design abilities of archi-
tects and may even help to reduce costs by harnessing comput-
ing power in new ways. Computers, of course, have long been
used to capture and implement the design ideas of architects by
means of CAD and 3D modeling. Generative design actually
helps architects design by using computers to extend human abil-
ities (Hohmann et al., 2009).

In the context of urban modeling, procedural systems can be used
to cover different levels of detail (Musialski et al., 2012b). On a
coarse scale, the procedural paradigm is applicable to the gener-
ation of terrain using methods based on hydrology (Génevaux et
al., 2013), as well as the generation of roads (Galin et al., 2010),
entire city layouts (Lipp et al., 2011) and urban spaces (Vanegas
et al., 2010). Within the scale of a building, layouts can be gener-
ated (Merrell et al., 2010), (Bao et al., 2013b) exhibiting different
façades (Musialski et al., 2012a), (Bao et al., 2013a). Exterior
Lighting can be designed even for buildings with complex con-
straints (Schwarz and Wonka, 2014). When it comes down to the
interior of a building, furniture can be placed following interior
design guidelines (Merrell et al., 2011).

7. OPEN RESEARCH QUESTIONS

According to DIETER W. FELLNER (2001, 2005) and SVEN
HAVEMANN (2011) several research challenges have to be met:
from the classification of shape representations via generic, sta-
ble, and detailed 3D markup to 3D query operations (Havemann
and Fellner, 2007).

A particularly important problem occurs in the context of inter-
nal structure organization and interfaces. Within a composition
of modeling functions, where each function is attached via its pa-
rameters to topological entities defined in previous states of the
model, referenced entities must be named in a persistent way in
order to be able to reevaluate the model in a consistent manner.
In particular, when a reevaluation leads to topological modifica-
tions, references between entities used during the design process
are frequently reevaluated in an erroneous way, giving results dif-
ferent from those expected. This problem is known as “persistent
naming problem” (Marcheix and Pierra, 2002).

REFERENCES ON “THEORY OF MODELING”

Aurenhammer, F., 2008. Weighted skeletons and fixed-share de-
composition. Computational Geometry 40(2), pp. 93 – 101.

Deussen, O. and Lintermann, B., 2005. Digital Design of Nature:
Computer Generated Plants and Organics. Springer.

Galin, E., Peytavie, A., Marechal, N. and Guerin, E., 2010. Pro-
cedural Generation of Roads. Computer Graphics Forum 29,
pp. 429–438.

Havemann, S., 2005. Generative Mesh Modeling. PhD-Thesis,
Technische Universität Braunschweig, Germany 1, pp. 1–303.

Heiberg, J. (ed.), 2007. Euclid’s Elements of Geometry. Fitz-
patrick, Richard.

Krecklau, L., Pavic, D. and Kobbelt, L., 2010. Generalized Use
of Non-Terminal Symbols for Procedural Modeling. Computer
Graphics Forum 29, pp. 2291–2303.

Krispel, U., Schinko, C. and Ullrich, T., 2014. The Rules Behind
– Tutorial on Generative Modeling. Proceedings of Symposium
on Geometry Processing / Graduate School 12, pp. 2:1–2:49.

Lipp, M., Wonka, P. and Wimmer, M., 2010. Parallel Generation
of Multiple L-Systems. Computers & Graphics 34, pp. 585–593.

Mandelbrot, B. B., 1982. The Fractal Geometry of Nature. W. H.
Freeman and Co.

Marvie, J.-E., Buron, C., Gautron, P., Hirtzlin, P. and Sourimant,
G., 2012. GPU Shape Grammars. Computer Graphics Forum 31,
pp. 2087–2095.

Maybury, M. T. (ed.), 2012. Multimedia Information Extraction.
John Wiley & Sons.

Merrell, P. and Manocha, D., 2008. Continuous Model Synthesis.
ACM Transactions on Graphics 27, pp. 158:1–9.

Özkar, M. and Kotsopoulos, S., 2008. Introduction to shape
grammars. International Conference on Computer Graphics and
Interactive Techniques ACM SIGGRAPH 2008 (course notes)
36, pp. 1–175.

Prusinkiewicz, P. and Lindenmayer, A., 1990. The Algorithmic
Beauty of Plants. Springer-Verlag.

Schinko, C., Ullrich, T. and Fellner, D. W., 2012. Minimally
Invasive Interpreter Construction – How to reuse a compiler to
build an interpreter. Proceedings of the International Conference
on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (Computation Tools) 3, pp. 38–44.

Schinko, C., Ullrich, T., Schiffer, T. and Fellner, D. W., 2011.
Variance Analysis and Comparison in Computer-Aided Design.
Proceedings of the International Workshop on 3D Virtual Recon-
struction and Visualization of Complex Architectures XXXVIII-
5/W16, pp. 3B21–25.

Schwarz, M. and Wonka, P., 2014. Procedural Design of Exterior
Lighting for Buildings with Complex Constraints. ACM Trans-
actions on Graphics 33, pp. 166:1–166:16.

Sederberg, T. W. and Parry, S. R., 1986. Free-form Deformation
of Solid Geometric Models. Proceedings of the Conference on
Computer Graphics and Interactive Techniques 13, pp. 151–160.

Settgast, V., 2013. Processing Semantically Enriched Content for
Interactive 3D Visualizations. PhD-Thesis, Technische Univer-
sität Graz, Austria 1, pp. 1–233.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
476



Snyder, J. M. and Kajiya, J. T., 1992. Generative modeling: a
symbolic system for geometric modeling. Proceedings of 1992
ACM Siggraph 1, pp. 369–378.

Stava, O., Pirk, S., Kratt, J., Chen, B., Měch, R., Deussen, O.
and Benes, B., 2014. Inverse Procedural Modelling of Trees.
Computer Graphics Forum p. to appear.

Stiny, G. and Gips, J., 1971. Shape Grammars and the Generative
Specification of Painting and Sculpture. Best computer papers of
1971 1, pp. 125–135.

Talton, J. O., Lou, Y., Lesser, S., Duke, J., Mech, R. and Koltun,
V., 2011. Metropolis Procedural Modeling. ACM Transactions
on Graphics 30, pp. 11:1–14.

Thaller, W., Krispel, U., Havemann, S. and Fellner, D., 2012.
Implicit Nested Repetition in Dataflow for Procedural Model-
ing. Proceedings of the International Conference on Computa-
tional Logics, Algebras, Programming, Tools, and Benchmarking
(Computation Tools) 3, pp. 45–50.

Thaller, W., Krispel, U., Zmugg, R., Havemann, S. and Fellner,
D. W., 2013. A Graph-Based Language for Direct Manipulation
of Procedural Models. International Journal on Advances in Soft-
ware 6, pp. 225–236.

Ullrich, T., 2011. Reconstructive Geometry. PhD-Thesis, Tech-
nische Universität Graz, Austria 1, pp. 1–322.

Ullrich, T. and Fellner, D. W., 2011. Generative Object Defini-
tion and Semantic Recognition. Proceedings of the Eurographics
Workshop on 3D Object Retrieval 4, pp. 1–8.

Ullrich, T., Krispel, U. and Fellner, D. W., 2008a. Compilation
of Procedural Models. Proceeding of the 13th International Con-
ference on 3D Web Technology 13, pp. 75–81.

Ullrich, T., Schinko, C. and Fellner, D. W., 2010a. Procedural
Modeling in Theory and Practice. Poster Proceedings of the 18th
WSCG International Conference on Computer Graphics, Visual-
ization and Computer Vision 18, pp. 5–8.

Ullrich, T., Schinko, C., Schiffer, T. and Fellner, D. W., 2013.
Procedural Descriptions for Analyzing Digitized Artifacts. Ap-
plied Geomatics 5(3), pp. 185–192.

Ullrich, T., Settgast, V. and Berndt, R., 2010b. Semantic En-
richment for 3D Documents: Techniques and Open Problems.
Publishing in the Networked World: Transforming the Nature of
Communication, Proceedings of the International Conference on
Electronic Publishing 14, pp. 374–384.

Ullrich, T., Settgast, V. and Fellner, D. W., 2008b. Semantic Fit-
ting and Reconstruction. Journal on Computing and Cultural Her-
itage 1(2), pp. 1201–1220.

Ulusoy, I. and Bishop, C. W., 2005. Generative versus Dis-
criminative Methods for Object Recognition. Proceedings of the
2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 2, pp. 258 – 265.

Voß, G., Behr, J., Reiners, D. and Roth, M., 2002. A multi-
thread safe foundation for scene graphs and its extension to clus-
ters. Proceedings of the Fourth Eurographics Workshop on Par-
allel Graphics and Visualization 4, pp. 33–37.

Watson, B. and Wonka, P., 2008. Procedural Methods for Ur-
ban Modeling. IEEE Computer Graphics and Applications 28(3),
pp. 16–17.

REFERENCES ON “ARCHITECTURE”

Bao, F., Schwarz, M. and Wonka, P., 2013a. Procedural Facade
Variations from a Single Layout. ACM Transactions on Graphics
32, pp. 8:1–8:13.

Bao, F., Yan, D.-M., Mitra, N. J. and Wonka, P., 2013b. Gener-
ating and Exploring Good Building Layouts. ACM Transactions
on Graphics 32, pp. 122:1–122:10.

Berndt, R., Fellner, D. W. and Havemann, S., 2005. Generative
3D Models: a Key to More Information within less Bandwidth at
Higher Quality. Proceeding of the 10th International Conference
on 3D Web Technology 1, pp. 111–121.

Edelsbrunner, J., Krispel, U., Havemann, S., Sourin, A. and Fell-
ner, D. W., 2014. Constructive Roof Geometry. Proceedings of
the International Conference on Cyberworlds 12, pp. 63–70.

Génevaux, J.-D., Galin, E., Guérin, E., Peytavie, A. and Beneš,
B., 2013. Terrain Generation Using Procedural Models Based
on Hydrology. ACM Transactions on Graphics 32, pp. 143:1–
143:13.

Havemann, S. and Fellner, D. W., 2004. Generative Parametric
Design of Gothic Window Tracery. Proceedings of the 5th Inter-
national Symposium on Virtual Reality, Archeology, and Cultural
Heritage 1, pp. 193–201.

Hohmann, B., Krispel, U., Havemann, S. and Fellner, D. W.,
2009. Cityfit: High-Quality Urban Reconstructions by Fitting
Shape Grammars to Images and Derived Textured Point Clouds.
Proceedings of the ISPRS International Workshop 3D-ARCH 3,
pp. 61–68.

Kelly, T. and Wonka, P., 2011. Interactive Architectural Modeling
with Procedural Extrusions. ACM Transactions on Graphics 30,
pp. 14:1–15.

Krecklau, L., Born, J. and Kobbelt, L., 2013. View-Dependent
Realtime Rendering of Procedural Facades with High Geometric
Detail. Comput. Graph. Forum 32(2), pp. 479–488.

Lipp, M., Scherzer, D., Wonka, P. and Wimmer, M., 2011. In-
teractive Modeling of City Layouts using Layers of Procedural
Content. Computer Graphics Forum 30, pp. 345–354.

Lipp, M., Wonka, P. and Wimmer, M., 2008. Interactive Visual
Editing of Grammars for Procedural Architecture. ACM Trans-
actions on Graphics 27(3), pp. 1–10.

Merrell, P., Schkufza, E. and Koltun, V., 2010. Computer-
generated residential building layouts. ACM Transactions on
Graphics 29, pp. 181:1–11.

Merrell, P., Schkufza, E., Li, Z., Agrawala, M. and Koltun, V.,
2011. Interactive Furniture Layout Using Interior Design Guide-
lines. ACM Transactions on Graphics 30, pp. 87:1–10.

Müller, P., Vereenooghe, T., Ulmer, A. and Van Gool, L.,
2006a. Automatic Reconstruction of Roman Housing Architec-
ture. Recording, Modeling and Visualization of Cultural Heritage
1, pp. 287–298.

Müller, P., Wonka, P., Haegler, S., Andreas, U. and Van Gool, L.,
2006b. Procedural Modeling of Buildings. Proceedings of 2006
ACM Siggraph 25(3), pp. 614–623.

Musialski, P., Wimmer, M. and Wonka, P., 2012a. Interactive
Coherence-Based Facade Modeling. Computer Graphics Forum
31, pp. 661–670.

Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., van Gool,
L. and Purgathofer, W., 2012b. A Survey of Urban Reconstruc-
tion. Proceedings of EUROGRAPHICS, State of the Art Report
(STAR) 31, pp. 1–28.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
477



Parish, Y. and Müller, P., 2001. Procedural Modeling of Cities.
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques 28, pp. 301–308.

Patow, G., 2012. User-Friendly Graph Editing for Procedural
Modeling of Buildings. IEEE Computer Graphics and Applica-
tions 32, pp. 66–75.

Riemenschneider, H., Krispel, U., Thaller, W., Donoser, M.,
Havemann, S., Fellner, D. W. and Bischof, H., 2012. Irregular
lattices for complex shape grammar facade parsing. Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) 25, pp. 1640–1647.

Steinberger, M., Kenzel, M., Kainz, B., Müller, J., Peter, W. and
Schmalstieg, D., 2014a. Parallel Generation of Architecture on
the GPU. Computer Graphics Forum 33, pp. 73–82.

Steinberger, M., Kenzel, M., Kainz, B., Wonka, P. and Schmal-
stieg, D., 2014b. On-the-fly generation and rendering of infinite
cities on the GPU. Comput. Graph. Forum 33(2), pp. 105–114.

Thaller, W., Zmugg, R., Krispel, U., Posch, M., Havemann, S.
and Fellner Dieter, W., 2013. Creating Procedural Windowbuild-
ing Blocks using the Generative Fact Labeling Method. Proceed-
ings of the ISPRS International Workshop 3D-ARCH 5, pp. 235–
242.

Tobler, R. F., Maierhofer, S. and Wilkie, A., 2002a. A Multires-
olution Mesh Generation Approach for Procedural Definition of
Complex Geometry. Proceedings of the Shape Modeling Interna-
tional 6, pp. 35 – 44.

Tobler, R. F., Maierhofer, S. and Wilkie, A., 2002b. Mesh-Based
Parametrized L-Systems and Generalized Subdivision for Gener-
ating Complex Geometry. International Journal of Shape Model-
ing 8, pp. 173–191.

Van Gool, L., Martinovic, A. and Mathias, M., 2013. Towards
Semantic City Models. Proceedings of Photogrammetric Week
1, pp. 217–232.

Vanegas, C. A., Aliaga, D. G., Wonka, P., Müller, P., Waddell, P.
and Watson, B., 2010. Modelling the Appearance and Behaviour
of Urban Spaces. Computer Graphics Forum 29, pp. 25–42.

Vanegas, C. A., Garcia-Dorado, I., Aliaga, D. G., Benes, B. and
Waddell, P., 2012. Inverse Design of Urban Procedural Models.
ACM Transactions on Graphics 31, pp. 168:1–.

Whiting, E., Ochsendorf, J. and Durand, F., 2009. Procedu-
ral Modeling of Structurally-Sound Masonry Buildings. ACM
Transactions on Graphics 28, pp. 112:1–9.

Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W., 2003. In-
stant Architecture. International Conference on Computer Graph-
ics and Interactive Techniques, ACM SIGGRAPH 2003 22(3),
pp. 669 – 677.

Wu, F., Yan, D.-M., Dong, W., Zhang, X. and Wonka, P., 2014.
Inverse Procedural Modeling of Facade Layouts. ACM Transac-
tions on Graphics 33, pp. 121:1–121:10.

Yong, L., Mingmin, Z., Yunliang, J. and Haiying, Z., 2012. Im-
proving procedural modeling with semantics in digital architec-
tural heritage. Computers & Graphics 36, pp. 178–184.

Zmugg, R., Thaller, W., Krispel, U., Edelsbrunner, J., Have-
mann, S. and Fellner, D. W., 2013. Procedural Architecture using
Deformation-Aware Split Grammars. The Visual Computer 12,
pp. 1–11.

REFERENCES ON “CULTURAL HERITAGE”

Arnold, D., 2014a. Computer Graphics and Cultural Heritage:
Continuing Inspiration for Future Tools. Computer Graphics and
Applications 34, pp. 70–79.

Arnold, D., 2014b. Computer Graphics and Cultural Heritage:
From One-Way Inspiration to Symbiosis. Computer Graphics
and Applications 34, pp. 76–86.

Berndt, R., Gerth, B., Havemann, S. and Fellner, D. W., 2005.
3D Modeling for Non-Expert Users with the Castle Construction
Kit. Proceedings of the 6th International Symposium on Virtual
Reality, Archaeology and Cultural Heritage (VAST) 6, pp. 1–9.

Haegeler, S., Müller, P. and Van Gool, L., 2009. ProceduralMod-
eling for Digital Cultural Heritage. Journal on Image and Video
Processing 9, pp. 1–11.

Havemann, S., Settgast, V., Krottmaier, H. and Fellner, D. W.,
2006. On the Integration of 3D Models into Digital Cultural Her-
itage Libraries. Proceedings of the 7th International Symposium
on Virtual Reality, Archaeology and Cultural Heritage (VAST) 1,
pp. 161–169.

Müller, P., Vereenooghe, T., Wonka, P., Paap, I. and Van Gool,
L., 2006. Procedural 3D Reconstruction of Puuc Buildings in
Xkipche. Proceedings of Eurographics Symposium on Virtual
Reality, Archaeology and Cultural Heritage (VAST) 1, pp. 139–
146.

Schinko, C., Strobl, M., Ullrich, T. and Fellner, D. W., 2010.
Modeling Procedural Knowledge – a generative modeler for cul-
tural heritage. Proceedings of EUROMED 2010 - Lecture Notes
on Computer Science 6436, pp. 153–165.

Settgast, V., Ullrich, T. and Fellner, D. W., 2007. Information
Technology for Cultural Heritage. IEEE Potentials 26(4), pp. 38–
43.

REFERENCES ON “CAD / ENGINEERING”

Berndt, R., Schinko, C., Krispel, U., Settgast, V., Havemann, S.,
Eggeling, E. and Fellner, D. W., 2012. Ring’s Anatomy – Para-
metric Design of Wedding Rings. Proceedings International Con-
ference on Creative Content Technologies 4, pp. 72–78.

Bokeloh, M., Wand, M. and Seidel, H.-P., 2010. A Connec-
tion between Partial Symmetry and Inverse Procedural Modeling.
Proceedings of ACM SIGGRAPH 2010 29, pp. 104:1–104:10.

Boulch, A., Houllier, S., Marlet, R. and Tournaire, O., 2013.
Semantizing Complex 3D Scenes using Constrained Attribute
Grammars. Proceedings of Eurographics Symposium on Geom-
etry Processing 32, pp. 33–42.

Frank, G. and Hillbrand, C., 2012. Automatic support of stan-
dardization processes in design models. Proceedings of the Inter-
national Conference on Intelligent Engineering Systems (INES)
16, pp. 393–398.

Krecklau, L. and Kobbelt, L., 2011. Procedural Modeling of In-
terconnected Structures. Computer Graphics Forum 30, pp. 335–
344.

Mendez, E., Schall, G., Havemann, S., Fellner, D. W., Schmal-
stieg, D. and Junghanns, S., 2008. Generating Semantic 3D Mod-
els of Underground Infrastructure. IEEE Computer Graphics and
Applications 28, pp. 48–57.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
478



Ramamoorthi, R. and Arvo, J., 1999. Creating Generative Models
from Range Images. Proceedings of ACM Siggraph 1, pp. 195–
204.

Schinko, C., Berndt, R., Eggeling, E. and Fellner, D., 2014. A
Scalable Rendering Framework for Generative 3D Content. Pro-
ceedings of the International ACM Conference on 3D Web Tech-
nologies 19, pp. 81–87.

Yu, L.-F., Yeung, S.-K., Tang, C.-K., Terzopoulos, D., Chan, T. F.
and Osher, S., 2011. Make it Home: Automatic Optimization
of Furniture Arrangement. ACM Transactions on Graphics 30,
pp. 86:1–11.

FURTHER REFERENCES

Arnold, D., 2006. Procedural methods for 3D reconstruction.
Recording, Modeling and Visualization of Cultural Heritage 1,
pp. 355–359.

Autodesk, 2007. Autodesk Maya API. White Paper 1, pp. 1–30.

Behr, J., Dähne, P., Jung, Y. and Webel, S., 2007. Beyond the
Web Browser – X3D and Immersive VR. IEEE Virtual Reality
Tutorial and Workshop Proceedings 28, pp. 5–9.

Bishop, C. M., 2007. Pattern Recognition and Machine Learning.
Springer.

Breuel, F., Bernd, R., Ullrich, T., Eggeling, E. and Fellner, D. W.,
2011. Mate in 3D – Publishing Interactive Content in PDF3D.
Publishing in the Networked World: Transforming the Nature of
Communication, Proceedings of the International Conference on
Electronic Publishing 15, pp. 110–119.

Brutzman, D., 1998. The virtual reality modeling language and
Java. Communications of the ACM 41(6), pp. 57 – 64.

Bustos, B., Keim, D., Saupe, D. and Schreck, T., 2007. Content-
based 3D Object Retrieval. IEEE Computer Graphics and Appli-
cations 27(4), pp. 22–27.

Chakrabarti, A., Shea, K., Stone, R., Cagan, J., Campbell, M.,
Vargas-Hernandez, N. and Wood, K. L., 2011. Computer-Based
Design Synthesis Research: An Overview. Journal of Computing
and Information Science in Engineering 11, pp. 021003:1–10.

Chomsky, N., 1956. Three models for the description of lan-
guage. IRE Transactions on Information Theory 2, pp. 113–124.

Compton, K. and Mateas, M., 2006. Procedural Level Design for
Platform Games. Proceedings of the Artificial Intelligence and
Interactive Digital Entertainment Conference 2, pp. 109–111.

Di Benedetto, M., Ponchio, F., Ganovelli, F. and Scopigno, R.,
2010. SpiderGL: a JavaScript 3D graphics library for next-
generation WWW. Proceedings of the 15th International Con-
ference on Web 3D Technology 15, pp. 165–174.

Eckel, B., 2003. Thinking in C++: Introduction to Standard C++,
Practical Programming. Prentice Hall.

Fellner, D. W., 2001. Graphics Content in Digital Libraries: Old
Problems, Recent Solutions, Future Demands. Journal of Univer-
sal Computer Science 7, pp. 400–409.

Fellner, D. W. and Havemann, S., 2005. Striving for an ade-
quate vocabulary: Next generation metadata. Proceedings of the
29th Annual Conference of the German Classification Society 29,
pp. 13 – 20.

Fellner, D. W., Saupe, D. and Krottmaier, H., 2007. 3D Docu-
ments. IEEE Computer Graphics and Applications 27(4), pp. 20–
21.

Havemann, S. and Fellner, D. W., 2007. Seven Research Chal-
lenges of Generalized 3d Documents. IEEE Computer Graphics
and Applications 3, pp. 70–76.

Havemann, S., Ullrich, T. and Fellner, D. W., 2012. The Meaning
of Shape and some Techniques to Extract It. Multimedia Infor-
mation Extraction 1, pp. 81–98.

Hilaga, M., Shinagawa, Y., Kohmura, T. and Kunii, T. L., 2001.
Topology Matching for Fully Automatic Similarity Estimation
of 3D Shapes. Proceedings of the 28th annual conference on
Computer graphics and interactive techniques 28, pp. 203–212.

Initiative, D. C. M., 1995. Dublin Core Metadata Initiative.
http://dublincore.org/.

King, B. D. and Wertheimer, M., 2005. Max Wertheimer &
Gestalt Theory. Transaction Publishers. ISBN 0-7658-0258-9.

Kuang, Z., Chan, B., Yu, Y. and Wang, W., 2013. A Compact
Random-access Representation for Urban Modeling and Render-
ing. ACM Trans. Graph. 32(6), pp. 172:1–172:12.

Marcheix, D. and Pierra, G., 2002. A Survey of the Persistent
Naming Problem. Proceedings of the ACM Symposium on Solid
Modeling and Applications 7, pp. 13–22.

Martin, G. E., 1998. Geometric Constructions. Springer.

Mitchell, W. J., 1990. The Logic of Architecture: Design, Com-
putation, and Cognition. MIT Press.

Mitra, N. J., Guibas, L. J. and Pauly, M., 2006. Partial and ap-
proximate symmetry detection for 3D geometry. ACM Transac-
tions on Graphics 25, pp. 560 – 568.

Mitra, N. J., Guibas, L. J. and Pauly, M., 2007. Symmetrization.
International Conference on Computer Graphics and Interactive
Techniques 26, pp. 1–8.

Niccolucci, F., 2002. XML and the future of humanities comput-
ing. SPECIAL ISSUE: First European workshop on XML and
knowledge management 10, pp. 43–47.

Niccolucci, F. and D’Andrea, A., 2006. An Ontology for 3D Cul-
tural Objects. Proceedings of the 7th International Symposium
on Virtual Reality, Archaeology and Cultural Heritage (VAST) 7,
pp. 203–210.

NVidia, n.d. NVIDIA CUDA C Programming Guide.

OpenGL Architecture, R. B., 1993. OpenGL Reference Manual.
Addison-Wesley Publishing Company.

Ousterhout, J. K., 1998. Scripting: Higher Level Programming
for the 21st Century. IEEE Computer Magazine 31(3), pp. 23–30.

Parr, T., 2010. Language Implementation Patterns: Create Your
Own Domain-Specific and General Programming Languages.
Pragmatic Bookshelf.

Pauly, M., Mitra, N. J., Wallner, J., Pottmann, H. and Guibas,
L. J., 2008. Discovering structural regularity in 3D geometry.
ACM Transactions on Graphics 27, pp. #43, 1–11.

Reas, C., Fry, B. and Maeda, J., 2007. Processing: A Program-
ming Handbook for Visual Designers and Artists. The MIT Press.

Reiners, D., Voss, G. and Behr, J., 2002. OpenSG: Basic con-
cepts. Proceedings of OpenSG Symposium 2002 1, pp. 1–7.

Schinko, C., Strobl, M., Ullrich, T. and Fellner, D. W., 2011.
Scripting Technology for Generative Modeling. International
Journal On Advances in Software 4, pp. 308–326.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W4, 2015 
3D Virtual Reconstruction and Visualization of Complex Architectures, 25-27 February 2015, Avila, Spain

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-5-W4-469-2015

 
479




