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ABSTRACT:

This paper proposes a new approach on digital building detection through the integration of LIDAR data and aerial imagery. It is
known that most building rooftops are represented by different regions from different seed pixels. Considering the principals of
image segmentation, this paper employs a new region based technique to segment images, combining both the advantages of LIiDAR
and aerial images together. First, multiple seed points are selected by taking several constraints into consideration in an automated
way. Then, the region growing procedures proceed by combining the elevation attribute from LiDAR data, visibility attribute from
DEM (Digital Elevation Model), and radiometric attribute from warped images in the segmentation. Through this combination, the
pixels with similar height, visibility, and spectral attributes are merged into one region, which are believed to represent the whole
building area. The proposed methodology was implemented on real data and competitive results were achieved.

1. INTRODUCTION

The acquisition of building positions can not only provide basic
information for wise earth, and also it provides decision making
support for governments. Therefore, there is an increasing
demand for digital building model (DBM) generation.
Automated building detection in urban areas is one of the
difficult problems in photogrammetry even with the advent of
LiDAR techniques.

Digital Building Model generation is usually performed in two
steps: building  detection/recognition  and  building
reconstruction. Building detection is the process of generating
the building hypothesis by differentiating buildings from other
objects within the data. Building reconstruction, on the other
hand, utilizes the hypothesized building regions in the data to
derive the building model parameters for its 3D representation
(Ma, 2004). A number of authors have proposed the integration
of different data sources in 3D building reconstruction. The
integration of imagery and 2D GIS data (i.e. building ground
plans) has been proposed by Suveg (2004). The use of the
ground plans helps in the building hypothesis generation and
provides clues about the structure of the building. This is
particularly useful in the process of partitioning the building
into simple parts when using the CSG model. The integrated use
of LiDAR and 2D GIS data for DBM generation has been
exploited by Haala (1998) and Suveg (2001). They also employ
the CSG model in the reconstruction process. The ground plans
are subdivided into rectangular primitives and the selection of
the parametric primitive for each 2D rectangle is based on the
analysis of the LIDAR DSM. Although existing ground plans
can be useful information in the sense that they reduce the
search space in the reconstruction procedure, they might be out-
of-date, incomplete or not co-aligned with LiDAR or imagery
data.

Since the advent of LiDAR data, the integration of LiDAR and
photogrammetric data for DBM generation has been the target
of research of a number of authors (Rottensteiner, 2002;

Mcintosh, 2002; Seo, 2003; Ma, 2004). This integration is
mainly motivated by their complementary nature (Habib, 2004;
Baltasavias, 1999). The main pitfall of DBM generation using
only LiDAR is the lack of accuracy of the generated building
boundaries. Since photogrammetry provides accurate breakline
definition, and its integration with LiDAR can lead to a more
accurate and automated DBM generation. Most of the
researches proposing the integration of LiDAR and imagery
data perform the building hypothesis generation and the
building reconstruction using only LiDAR data (Seo, 2003; Ma,
2004), before the data are integrated. The outcome is an initial
building model in the sense that its boundaries must be refined.
Before the two data are integrated to refine the DBM, the
photogrammetric and LiDAR data should be co-aligned relative
to the same reference frame. For this purpose, LIDAR features
can be used to georeference the imagery relative to the LiDAR
reference frame. Since point primitives are not appropriate for
LiDAR surfaces due to its irregular nature, other primitives such
as lines and planar patches are usually employed (Habib, 2004;
Ma, 2004). After the co-registration of the data, the initial
LiDAR-derived building boundaries can be projected to the
image space. The image edges are usually detected using the
Canny edge detector (Canny, 1986). The projected building
model is very close to the building boundary edges in the image.
In this regard, valuable clues are provided for reducing the
search space for matching of conjugate building edges. In
addition, the plane parameters for the building roof planes,
which are derived from the LIiDAR data, provide additional
constraints in the photogrammetric reconstruction process
increasing its reliability and accuracy. After the imagery edges
are correctly detected, they can be used to refine the projected
model edges. Finally the refined DBM can be generated.
Kwaw/(2013) focused on generating building models by using a
model-driven method. The focus of the research is generating
models with right-angled-corners, which can be described with
a collection of rectangles (e.g., L-shape, T-shape, U-shape,
gable roofs, and more complex building shapes which are
combinations of the aforementioned shapes), under the
assumption that the majority of the buildings in urban areas
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belong to this category.

In this research, building rooftop patch can be segmented from
large amount of LiDAR data, and rough building rooftop
boundaries are generated as well, however, the derived building
boundaries are still not exact to some extent because of the
irregularity of LIiDAR data. It is believed the integration of
LiDAR data and aerial imagery will come up with more reliable
and high accurate building rooftop boundaries. Line feature
detection and matching is the common way employing aerial
imagery for building rooftop reconstruction. It is relatively easy
to detect linear features from imagery, on the other hand, failed
linear feature detection and line matching will also lead to non-
reliable building boundaries. In this case, region growing
methods are believed to give good segmentations that
correspond well to the observed edges (Zhai, 2008). Combining
region growing results from left and right images will represent
whole rooftop area. This paper will be mainly focusing on the
issues related to region oriented building rooftop generation.

The paper is organized as follows. Section 2 introduces and
analyzes the proposed methodology used in our research, and
the subparts will look at each of these questions. It will be
shown that these questions are useful as a suitable base for
analyzing the proposed techniques, although some of the
questions are not entirely independent. Section 3 will do the
experiments by using real datasets and analysis, which
demonstrates the feasibility of the proposed method. The
conclusion and future work is drawn in Section 4.

2. METHODOLOGIES

The process of extracting and representing information from an
image to group pixels together into regions of similarity is
commonly called segmentation (Fan, 2004). In 2D imagery, we
would like to group pixels together according to the rate of
change of their intensity and other properties (attributes) over a
region. As for building rooftops, it is known that most building
rooftops are represented by different regions from different seed
pixels. Considering the purpose of this research and the
principals of image segmentation, this paper employs a new
region based technique to segment images, combining the
advantages of cluster based and region based techniques. In the
image segmentation process, we combine the elevation attribute
from LiDAR data, visibility attribute from DEM (Digital
Elevation Model), and radiometric attribute from warped
images in the segmentation. Through this combination, the
pixels with similar height, visibility, and spectral attributes are
merged into one region. There are several questions to be
answered through the process of automated building rooftop
reconstruction based on this methodology. Each of the
subsections will be explaining all the questions in detail.

2.1 Input Data

As introduced above, the segmentation procedures proceed by

taking advantage of several attributes from different data source.

Thus, several data are considered as the input data source,
building roof patch generated from LiDAR data, building
boundaries generated from LiDAR data, left and right warped
image, left and right visibility maps, and Colour histogram of
the building rooftop area. Each of them will be described in
detail as follows.

Building patch generated from LiDAR data. As
abovementioned, segmentation technique of LiDAR data has
been employed to derive exact building rooftop planar patches

and rough building boundaries (Kim, 2007). Planar patch is
generated by fitting large set of discrete LiDAR points located
at a same plane. Therefore, the segmentation technique can
successfully identify the LiDAR points located on a building
rooftop, which will be the rough building rooftop area because
of the irregularity of LiDAR data.

Building boundaries generated from LiDAR data. The derived
boundaries (Kim, 2007) do not represent the actual boundaries
of the physical objects being segmented. In other words, these
are the boundaries as determined by the LiDAR footprints, and
their deviation from the actual physical boundaries depends on
the average point density of the LiDAR data. However, they are
still the rough boundaries of building rooftops. If these
boundaries are projected onto imagery, it is expected that the
derived boundaries will be rough estimates of rooftop
boundaries.

Left and Right warped images. Distortions caused by different
angles of viewing must be rectified. It is necessary to ensure
that the imaging distortion does not affect the estimation of
building rooftop area. For this purpose, we use a combination of
a warping algorithm with assigning pixel values to an output
image (matrix) after the transformation. The assigning is
performed by resampling algorithms. Thus, in warping
algorithms there are two main steps: (i) transformation and (ii)
resampling. A warped image is computed by indirect
transformation between input image and out image. Here, the
mathematical model of the transformation is projective
transformation. First, a plane segmented from LiDAR data is
extracted and its range is determined from the derived rough
boundary. The range of the plane is more extended than the
exact boundary of the derived rough boundary while
considering the resolution of LIiDAR data. Using simple
projective transformation, the corresponding colour (or grey)
value from the original imagery is registered on the positions of
each object point on the segmented plane. Two warped images
are generated by projecting the left and right original images of
a stereo-pair onto the relevant segmented plane. In addition, the
original imagery and LiDAR data are integrated through the
common reference frame and the warped images are produced.
The utilization of the warped images will provide great benefit
in the proposed DBM generation methodologies by handling
spectral and positional information simultaneously (Kim, 2009).

Left and Right visibility maps (Habib, 2007). The visibility map
is a data structure that describes the projection of the visible
scene onto the image plane. The visibility of every cell from the
observer cell is computed. Visibility is calculated by measuring
the off-nadir angle from the observer's eye to each cell starting
from the cells which are the closest to the observer. As long as
the off-nadir angle increases in the line of site from the observer,
the cell is considered as visible. If the off-nadir angle decreases,
the cell is not visible anymore. In this research, the visibility
map is generated using the generated DEM from LiDAR data
and corresponding image EOP and 10P. The resolution of the
visibility image should be consistent with the resolution of
warped images. Therefore, interpolation techniques are
introduced in the visibility map generation.

Colour histogram of the building rooftop area. A colour
histogram is a representation of the distribution of colours in an
image, derived by counting the number of pixels of each of a
given set of colour ranges in a typically two dimensional or
three dimensional colour space. In this work, the colour
histogram will be done in 3D colour space, and only related to
the image area located inside the projected boundary.
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2.2 Multi Seed Pixel Selection

One building rooftop is most likely composed of multiple
regions. Therefore, it is not probably that only one region
growing from one seed pixel will represent an entire building
rooftop. The projected boundaries from LiDAR, as we have
mentioned, will be the rough estimates of building boundaries.
We are mainly interested in the image area located inside the
LiDAR boundary, which is referred to as the Area of Interest
(AQI) in this research. As previously mentioned, one building
rooftop is probably composed of several different parts, i.e.,
multiple seed pixels should be selected before region growing
proceeds. Therefore, this section will be focusing on this issue
and proposing several conditions that one seed pixel should
satisfy.

In order to find appropriate seed pixels, the following criteria
that a seed pixel should satisfy are:Seed pixel should be
located inside the area defined by the projected boundary from
the LIiDAR data, i.e. within the AOI. @Colour at the seed pixel
should correspond to, or be sufficiently close to, a peak in the
colour histogram in the AOI. ®Seed pixel should be located
within a homogeneous area. That is, the standard deviation of
gray values in a window (e.g., 5*5) should be less than a given
threshold (e.g., 10.0). @Height at seed pixel is consistent with
the height of the segmented LiDAR patch; ®Seed pixel should
be located inside the visible area. As we have a visibility map, if
one pixel satisfies the first four constraints, but is not visible in
the visibility map, this pixel should not be considered as a seed
pixel.

The detailed procedures of multiple seed point selection can be
illustrated as follows.(Pick up all the pixels inside the initial
LiDAR boundary to generate a new image (Image_1), with
same size to original image (Image_0), shown as Figure 1(a)
and Figure 1(b), respectively. @Do histogram statistics (Figure
1(c)) to the generated image (Image_1), without considering the
black area; @Pick up the pixel at the first peak in the histogram,
check the height constraint, homogeneous characteristic, and the
statistics number of this pixel. If all of these conditions are
satisfied, this point will be determined as the first seed point, do
region growing. @A new image (Image_2) will be generated
through region growing using the first seed point. Check the
ratio between the area inside the LiDAR boundary from
Image_2 and Image_1. If the ratio is smaller than the given
threshold, go to Step ®. Area ratio computation is defined as
Equation (1). ®Generate a new image with all pixels as black.
Considering image (1_2), set the gray values of all segmented
pixels inside the LiDAR boundary as black, to generate this new
image (I_3). ® Do histogram statistics for the new generated
image (I_3). @ Repeat Step @-O), till there is no new seed
point, or the ratio between the segmented region to the region
inside the LiDAR boundary is smaller than one threshold (e.g.,
0.95)
growing_area_1

image_area_inside_ LiDAR _boundary

area_ratio=

D)
area_ratio defines the ratio between growing regions
and the building area
growing_area 1 defines the region area from one
seed point

Where

image_area_inside_LiDAR_boundary defines the
whole building roof top area inside the initial
building boundary generated from LiDAR data

= il
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Figure 1 Multiple seed selection

2.3 Region growing strategy based on multiple seed pixels

After one seed pixel is selected, region growing proceeds
increasing the size of the region by adding in neighbouring
pixels that are similar with respect to one or more properties, e.g.
colour, visibility and height properties.

Colour Consistency in Region Growing. As we have multiple
bands(R, G and B), there can be various stopping conditions
combining stop conditions in individual bands during the region
growing procedures, strict condition and loose condition(Habib,
1999). In particular, strict condition means the region growing
procedure stops only when all the three bands, Red, Green, and
Blue, satisfy the stop condition. While loose condition means
the growing procedure stops one of them satisfies the stop
condition. In the research, we are using strict condition, but we
have one extra condition as in the 8-connected neighbourhood,
number of pixels satisfying this loose condition should be
greater than the 4. Two threshold values are defined in region
growing procedures by considering colour consistency: Mean
threshold value (p), and range threshold value (o). Mean
threshold value is the mean gray value of segmented area. The
initial value is defined by the gray value of seed pixel. In the
process of region growing, it is determined by the mean gray
value of the segmented image area based on one seed pixel.
Range threshold value is the standard deviation of the gray
value in growing the region. The initial value is given by the
user, or comes from the standard deviation of the check window,
which is used for seed pixel selection.
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The segmented building rooftop patch from LiDAR data is
more reliable than the LiDAR-derived boundaries. Thus, the
height of the image pixels located on the roof area should be
consistent with the segmented LiDAR patch, which is
introduced in the region growing procedures as height
consistency with the segmented LiDAR building rooftop
patchA pixel, with the height constraint no more than a given
threshold between the 3D point corresponding to this pixel and
the LiDAR plane, will be added to the growing region. Two
threshold values will be defined in the region growing process,
by considering height consistency between the point being
checked and the height of the segmented building rooftop:
radius threshold value in X, Y plane (r_thr) and height threshold
value (h_thr). r_thr defines the radius of a circle, which is used
to check whether there is a LIDAR point close to a certain 3D
point in this circle., while height threshold value (h_thr); defines
the maximum distance between the searched LiDAR point
corresponding with the checking pixel and segmented LiDAR
planar patch.

Given one seed pixel shown in Figure 2 in image space, the
corresponding 3D coordinates (X, Y, Z) can be computed using
projective transformation. Define a circle with a given radius
r_thr, centered at (X, Y), to search the closest LIDAR point in
all the LiDAR data, including ground LiDAR points and non-
ground LiDAR points. If there is no LiDAR data available in
the certain search area, region growing will stops at that pixel,
on the other hand, once some LiDAR points are found in the
circle, the distance between the searched LIiDAR data and the
segmented LiDAR planar patch is computed, only when the
distance is less than the given threshold h_thr, the region will
keep growing, or it will also stop. Growing pixel 2 shows this
case. It avoids the case that some building regions will invade
into other building rooftops or ground area, given the color
between the building rooftop and other objects are consistent.
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Figure 2. Height consistency constrained in region growing

By considering height consistency in region growing, a radius
threshold value is defined when utilizing visibility information.
Radius threshold value in visibility map (r_thr_visiblity) defines
the radius of a circle so as to check whether the added point is
located inside the visible area. When one new pixel (X, y) is
added to a region, all the pixels located inside the circle,
centered at the checking pixel (X, y) with the given radius
(r_thr_visiblity), are checked to find if there are image pixels
that are visible in this circle area. If yes, the region growing
process will proceed, otherwise it will stop at the pixel (X, y).

Visibility images are generated using a DEM from LiDAR data
and available image EOPs. In building areas, especially in urban
areas, a visibility map is a useful way to determine whether a
certain area is visible in image space. If there are occluded parts

on the building rooftop, they will be invisible in the visibility
map.

Building 1(visible)

Building 2(visible)~

Figure 3. Visibility Consistency constrained in growing

2.4 Region growing procedures

The rough building rooftop boundaries derived from LiDAR
data, visibility map generated from DEM, and warped images
from different viewpoints, are all considered in order to segment
the whole building rooftop area from warped images. The
procedures of the region growing for segmentation are as
follows. (DSelect seed pixels that satisfy the criteria specified
above;@Region growing from the first selected seed pixel is
performed until there are no other neighbouring pixels to be
added to the region;@Remove the segmented region in the AOI,
and check whether there is another seed pixel that can be
selected; @ Region growing from another seed pixel occurs,
until there are no other pixels to be added to the current region;
(®Repeat Step 3)-4). Region growing will stop if there is no
other possible seed pixel; ®Ilmplement all the above steps in
both left warped image and right image. Rooftop regions are
represented in the left and right images respectively .The whole
rooftop building area will be represented by combining all the
regions grown from left and right images, which are illustrated
as Figure 4.
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Figure 4. Roof region defined by combining the
segmented left and right regions

2.5 How to derive boundaries using segmented regions

In order to generate building boundaries using segmented
regions from warped images. As mentioned above, the
segmented regions are composed of small regions coming from
different seed pixels, also, there are some small holes existing in
the combination of images. What we are interested are the outer
boundaries of the segmented regions. Thus, inflation and
erosion is first used to remove the small holes. Then, the
generated area is utilized for boundary generation. In this
research, LSD (Line Segment Detector) Detector is adapted to
generate the building boundary (Rafael, 2012).
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3. EXPERIMENTAL RESULTS AND DISCUSSION

To test the feasibility and evaluate the performance of the
proposed methodology, we will present experimental results
from real LiDAR and image data. An airborne laser scanning
dataset was acquired. The dataset is from an Optec 3100 Sensor
model, was acquired at a flying height of 1400 meters, has a
ground point spacing of 0.75m, and vertical accuracy of 15cm.
Aerial imagery, with an image scale 1:5000, was also acquired.
To illustrate the proposed procedures used in this research, the
intermediate results for two specific building roofs are presented
in Figure 5 and Figure 6, respectively. As shown in Figure 5,
the building is a rectangular building with one protruding part
which is shown inside the ellipse. The initial building boundary
generated from LiDAR data were projected onto the left and
right images to generate a small image which only include the
building roof top area, respectively. Figure 5(b) shows the
segmented results from left and right image based on the
proposed methodology in this research. As you can see, the
protruding part is not included in the region growing results
because of the height consistency. In other words, since the
height of the protruding part is higher than that of the roof top,
region growing procedures will not invade this area. Figure 5(c)
shows the building area combining the left and right image. The
building rooftop area after inflation and erosion is shown as
Figure 5(d). Figure 5(e) shows the line segments derived from
the segmentation results by using LBD method. In contrast with
the result by using the edge information, straight line segment
extraction and matching were also implemented on the same
building, which was shown as Figure 5(f) (Habib, 2010). Figure
6 shows the intermediate results on another building. Part of this
building is occluded by another higher neighbouring building as
shown in the red ellipse. The boundaries we can see from the
image come from higher building, and some of the area in lower
rooftop is occluded by the higher building. Since multiple seed
selection is taken into consideration, the region outside of the
building rooftop is also included shown as the ellipse in Figure
6(c).

During the process of implementing the procedures, several
thresholds should be set. The threshold for standard deviation of
gray value to check whether the point is in homogeneous area is
set as 10.0. Meanwhile, the gray value threshold in the region
growing procedure is set as 20.0. Besides, area ratio between
the segmented image area inside LIDAR boundary and the
original area inside LiDAR boundary is set as 0.95.

®

Figure 5. Intermediate results on building one (a) Inintial
building boundaries from LiDAR data projected onto the left &
right images; (b) Segmented results from left & right images; (c)

Building image area combining left & right images; (d)
Building area after inflation and erosion; (e)the line segments
derived from the segmented results; (f) matched line segments

from left & right images
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Figure 6. Intermediate results on building one (a) Inintial
building boundaries from LiDAR data projected onto the left &
right images; (b) Segmented results from left & right images; (c)

Building image area combining left & right images; (d)
Building area after inflation and erosion; (e)the line segments
derived from the segmented results; (f) matched line segments

from left & right images

4. CONCLUSIONS

We have introduced an automated approach to recognize and
detect complex buildings from aerial imagery and LiDAR data.
Experiments with real data show that the proposed technique
could be used to generate building boundaries by combining
LiDAR data and aerial imagery. The building areas could be
improved by introducing the assistance of the LIiDAR data. It
confirms that the combination of LiDAR data and imagery data
will derive better results than using either of them individually.

Future work will focus on more testing with real datasets to
generate building model by using the boundaries generated from
this research, and the accuracy assessment will be conducted
and compared with other modethodologies. Besides, the
combination of region based and edge based methodologies will
be investigated in order to generate high accurate building
models.
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