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ABSTRACT:

Maintaining canal tunnels is not only a matter of cultural and historical preservation, but also a commercial necessity and a security is-
sue. This contribution adresses the problem of building a full 3D reference model of a canal tunnel by merging SONAR (for underwater
data recording) and LASER data (for the above-water parts). Although both scanning devices produce point clouds, their properties are
rather different. In particular, SONAR data are very noisy and their processing raises several issues related to the device capacities, the
acquisition setup and the tubular shape of the tunnel. The proposed methodology relies on a denoising step by meshing, followed by the
registration of SONAR data with the geo-referenced LASER data. Since there is no overlap between point clouds, a 3-step procedure
is proposed to robustly estimate the registration parameters. In this paper, we report a first experimental survey, which concerned the
entrance of a canal tunnel. The obtained results are promising and the analysis of the method raises several improvement directions
that will help obtaining more accurate models, in a more automated fashion, in the limits of the involved technology.

1. INTRODUCTION

In France, there are 33 canal tunnels still in service for commer-
cial navigation and boating, representing 42 km of underground
waterway. The preservation of those structures, mostly bored dur-
ing the 19"" and 20*" centuries, aims at conserving a heritage
and at protecting goods and persons. Hence, periodical inspec-
tions are necessary. However, on-site visual investigations are
time-consuming and difficult to put into practice. In this context,
Voies Navigables de France (VNF, the French operator of water-
ways), the Centre d’Etude des tunnels (CETU) and the Cerema,
in collaboration with the Photogrammetry and Geomatics Group
(INSA) are devising an automatic inspection system based on
image and SONAR recording. A photogrammetric acquisition
prototype was initially developed for dynamically surveying the
above-water part of tunnels (Charbonnier et al., 2014), see Fig. 1.
In the future, an underwater recording device will complement
the system. To assess the accuracy of such a mobile recording
system, it is necessary to build a reference model of the whole
tunnel (i.e. including its under and above-water parts).

For the purpose of building an accurate reference model, we pro-
ceed to static acquisitions along the tunnel. For the above-water
parts, a 3D Terrestrial LASER Scanner (TLS) was selected for
its ability to get accurate and easily geo-referenced data (Char-
bonnier et al., 2014). For the underwater part, a 3D Mechanical
Scanning SONAR (MSS) was chosen because the turbidity of the
canal water excludes optical solutions. It enables scanning the
environment from stations in the same manner as a TLS, see e.g.
(Drap et al., 2011, Sohnlein et al., 2011).

Both devices automatically provide point clouds through a me-
chanical scanning system. However, while processing and geo-
referencing TLS data to obtain a 3D model is rather straightfor-
ward, handling MSS data is more complicated. In particular,
MSS data are very noisy, which requires robust reconstruction
and registration methods to obtain a 3D model of the underwater
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Figure 1: Modular on-board mobile image recording system on
the experimental site.

part of the structure. Moreover, in practice, the absolute loca-
tion and orientation of the SONAR is not available, so a direct
geo-referencing of MSS data is impossible. Hence, we proceed
in an indirect manner, by co-registering the above and underwa-
ter models, which provides a geo-referenced full 3D model of the
canal tunnel.

Another difficulty arises from the fact that the above and under-
water point clouds do not overlap. This makes the co-registration
task more complex. Fortunately, we can exploit some geomet-
ric primitives (planes, lines) which are common to its above and
underwater parts of the structure. Moreover, we immersed two
wooden ladders, that we robustly fitted in both models to provide
additional constraints to the registration algorithm.

The rest of the paper is organized as follows. We first propose a
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brief overview of related works in Sect. 2. Then, in Sect. 3, we
show how we use TLS and MSS for data recording. In Sect. 4, we
focus on the meshing of MSS data to filter noise and obtain a 3D
model of the underwater part of the tunnel. Sect. 5 is dedicated to
the construction of the full 3D model by co-registering the above
and underwater models. In Sect. 6, we comment the experimental
results and propose future directions for this work.

2. RELATED WORK

Partly immersed structures are exposed to water conditions in ad-
dition to classical degradations. Therefore, surveying systems
were recently developed to detect anomalies, both under and above
the surface. In some works, typically for dams or harbors in-
spection, LASER and SONAR acquisitions are combined. Such
techniques are based on dynamic acquisitions and involve Inertial
Navigation Systems and Global Positioning Systems (INS+GPS)
to monitor the attitude and localization parameters of the plat-
form. This approach is for instance used in (Mitchell et al., 2011)
and (Rondeau et al., 2012). Of course, GPS signals are not avail-
able in tunnels, so other solutions must be sought. In (Papadopou-
los et al., 2014), the authors propose a Simultaneous Localisation
And Mapping (SLAM) technique that relies on the registration of
TLS point clouds, thanks to the Iterative Closest Point (ICP) algo-
rithm. However, the tubular shape of the tunnel is a disadvantage
for this method.

In the previously mentioned works, both TLS and MSS sensors
are embedded on a common, mobile platform, which is not the
case in our application: we are faced with the problem of lo-
cating individual MSS acquisitions. Such problem is similar to
Remotely Operated Vehicle (ROV) and Autonomous Underwater
Vehicule (AUV) localisation. In (Ridao et al., 2010) a triangula-
tion system based on acoustic is proposed. The apparatus is com-
posed of surface buoys equipped with ultra-short baseline trans-
ducers (USBL) tied up with GPS receivers. Another frequently
employed method is visual odometry (Scaramuzza and Fraundor-
fer, 2011, Scaramuzza and Fraundorfer, 2012), from optical or
acoustic imaging in addition to SLAM algorithms see (Guth et al.,
2014) and references therein, but it is not suited to static acquisi-
tions. A simpler problem is the relative positioning of MSS data,
for which the more commonly used algorithm is ICP (Dobke et
al., 2013, Drap et al., 2011) or its robust version.

3. DATA RECORDING

The experimental acquisitions have been carried out in a canal
tunnel located in Niderviller, Lorraine region, France. The tun-
nel (see Fig. 1), was constructed between 1839 and 1845. It is
straight and lined with stonework. It is 475 m long and, for prac-
tical reasons, the acquisitions were focused on its entrances, in
this first experimental campaign.

3.1. Laser scanning

The above-water acquisitions were performed using a Far0® Fo-
cus 3D TLS. To survey the environment in 3D, a laser beam
sweeps the visible surface, vertically and horizontally. Several
solutions are possible to get the distance between the TLS and
the object. The one implement in the Focus involves measuring
the phase difference between the emitted and received pulse.

For each entrance, two stations have been performed, from each
bank of the canal, the same day as the underwater acquisition.
The model can be complemented using a previously performed

Figure 2: Data acquisitions in Niderviller’s tunnel : photograph
of TLS device and spherical targets (top); schematic representa-
tion of MSS devices (bottom)

TLS surveying of the whole tunnel. To register point clouds,
spherical targets have been placed in the shared scanning area,
as shown in Fig. 2 (top). In order to geo-reference the model, the
coordinates of sphere centers have been determined with tradi-
tional surveying methods based on a set of points known in the
French reference coordinate system (RGF 93 and NGF-IGN 69)
implemented on the site.

3.2. SONAR scanning

The underwater acquisition was carried out with the Blueview®
BV5000 MSS, see Fig 2 (bottom). The device is made up of
a multi-beam echo-sounder with vertical swath direction, and of
a rotation system with vertical axis, enabling a 360° horizontal
scan. Since the swath aperture is 45°, a mechanical system is
used to tilt the sensing head so potentially a 320° vertical range
can be scanned. The acoustic sensor emits high frequency sig-
nal (1.35 Mhz) which offers a good distance resolution but at the
same time limits the maximum acquisition range to 30 m. Ac-
cording to the constructor’s data sheet, the vertical and horizontal
resolution at 10 m are 16 mm and 30 mm, respectively.

Two stations placed at 10 m from each other have been performed
on each entrance of the tunnel, one inside and one outside it, see
Fig. 3. Two wooden ladders (3.60 m high 0.32 m wide) and were
partly immersed in the water, so they were recorded by both the
MSS and the TLS. This will enable the registration of the under-
water and above-water models.

3.3. Comparison of TLS and MSS devices

The comparison of device features (see Tab. 1) highlights the
differences that the recorded point clouds show. We can note a
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Figure 3: Illustration of the acquisition setup seen from above,
featuring TLS and MSS stations, as well as the location of ladders
(LD)

large difference in spatial resolution, i.e. the distance between
a recorded point and its closest neighbor. But the main contrast
concerns the beam width which has a direct impact on the im-
agery resolution, i.e. the ability to distinguish two echoes coming
from two different targets. For exemple, the signal footprint on
a plane perpendicular to the signal direction 10 m away from the
device is a circle of 6 mm diameter for the Focus 3D and a square
of 175 mm side length for the BV5000. In addition, the more the
incident angle of the beam, the more these dimensions increase.
In the case of canal tunnels, which are elongated structures, the
incidence angle quickly becomes unfavorable. This influence is
visible on the acoustic images, shown on Fig. 4. One can see that
the vertical line, which corresponds to the footprint of the swath
on the canal’s wall is much wider for a small grazing angle of ac-
quisition than for an almost perpendicular acquisition. According
to a theoretical model of the acquisition setup and to the datasheet
of the BV5000, we estimate horizontal width of the beam foot-
print (see Fig. 5). We see that, in the case of canal tunnels, this
length can easily reach more than 0.5 m.

Figure 4: Multi-beam echo-sounder swaths under two different
incidence angles. Left: almost perpendicular incidence (see red
line in Fig. 5); Right: small grazing angle (see green line in
Fig. 5)). The swath is wider in the second case. Distances are
given in meters

Another important difference between terrestrial and underwater
imaging is that in the latter case, no visual control can be made in
practice. Hence, if the MSS moves during the acquisition, there is
no way of knowing it. This might lead to artifacts or inconsistent
measurements.

4. 3D SURFACE RECONSTRUCTION

Most of the time in surveying applications, surface reconstruc-
tion is performed by post-processing to obtain a simplified dig-
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Figure 5: Top-view of the theoretical acquisition setup (top); Es-
timation of the SONAR horizontal resolution as a function the
distance from the orthogonal projection (bottom)

ital model of structures. The surface can be reconstructed from
the point cloud, by detecting geometric primitives or by meshing,
which is better suited to complex geometries. In our case, we
are faced with very noisy data. Hence, we use meshing as a pre-
processing, mainly for denoising the underwater model. There
are two main ways of processing surface reconstruction by mesh-
ing. The first one uses cloud points as vertices for triangulation.
Such method is obviously sensitive to noise, so it cannot be di-
rectly applied to MSS data. A first solution to this problem is to
filter the point cloud before meshing, for example by selecting
evenly spaced points. A second one is to compute the nearest
surface to points using robust estimators, at the risk of obtaining
an over-smooth model. In fact, with both cases, there is a risk
of loosing details. The choice of the method heavily relies on
the properties of the point cloud. As noticed in the previous part,
the above and underwater recorded data present many character-

Table 1: TLS and MSS acquisition parameters

Faro Focus 3D | Blue View BV5000
X330
horizontal reso- | 0.036° ~0.09°
lution (16 mm/10 m)
vertical resolu- | 0.036° 0.18°
tion (30 mm/10 m)
beam width 225 mm + 2 x | 1°/1°
0.011°
ranging error 2 mm (10-25 m) 15 mm
maximum 330 m 30 m
range
field-of-view 300°/360° 45° /360°
(320°/360°)
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istic differences, so the suitable reconstruction methods are also
different.

The meshing of both the MSS and TLS data has been made using

3DReshaper®. Both previously mentioned meshing techniques
are implemented in the software. The advantage of this program
is to allow surface reconstruction by successive refinements using
the point cloud.

As previously mentioned, MSS data are very noisy, so the un-
derwater model reconstruction was performed in a coarse-to-fine
manner. A first large-scale mesh is made by selecting points in
the mesh according to a distance criterion. Then, the resolution
of the mesh is progressively increased by picking points again in
the cloud or by interpolating new points. Point selection involves
either a distance-to-mesh or a maximum surface deviation crite-
rion. These parameters must be carefully chosen. In this first
experiment, they are manually tuned by an operator.

Unlike MSS point clouds, TLS point clouds have a negligible
noise for points located at a certain distance from the device as
well as for certain target material properties. Thus, to use maxi-
mum of point cloud informations, all points (except outliers) have
been employed as triangle vertices to reconstruct the surface.

‘We note that this step of the process requires many manual oper-
ations like outlier removal or the correction of mesh reconstruc-
tion mistakes. While such interventions can be supported by pho-
tographs or other physical measurements for TLS data, this is of
course not the case for underwater data. Hence, the construction
of the underwater model from MSS data involves an important
part of interpretation.

5. REGISTRATION AND GEO-REFERENCING

Both the TLS and the MSS provide point clouds that must be
registered in order to obtain a geo-referenced 3D model.

In general, there are two ways of registering and geo-referencing
point clouds. The first one is direct: it requires the knowledge
of the position of the scanner. This can be obtained a priori, by
placing the device at a point of known coordinates, or a posteri-
ori, by surveying its position using conventional techniques. The
second one is indirect: the point clouds are first co-registered and
then, the geo-referencing is made using elements of the cloud
with known coordinates. The registration of point clouds can be
based either on targets or on clouds.

Target-based registration requires to anticipate and place targets
in the field of view. Their geometry and scale depend on the spa-
tial resolution and precision of the scanner. Spheres are usually
used for TLS recording because the determination of their centers
can be made very accurately. Of course, the quality of the reg-
istration also depends on the distribution and number of targets.
This method is very usual in lasergrammetry and is the one that
we chose for our application.

Cloud-based registration involves to automatically find homol-
ogous points between scans, and then, to compute the geomet-
ric transformation (rotations, translations) between sets of points.
The most popular algorithm is the ICP (Iterative Closest Point)
method, introduced by (Besl and McKay, 1992), which itera-
tively minimizes the difference between the first set of points
and the geometric transformation of the second set of points.
This method requires a certain overlap between point clouds and
also, a first estimation of the transformation. An alternative tech-
nique is based on finding homologous geometrical entities be-
tween scans. These entities can be planes, spheres, cylinders or
lines and to find the best way to align them.

5.1. Underwater registration

Registration and geo-referencing are more complicated for the
BV5000 scans than for TLS data. Since, in our setup, the posi-
tion and orientation of the underwater scanner cannot be directly
determined, we have to resort to the indirect method. Cloud-to-
cloud registration seems to be the easiest technique to implement
but it also raises several issues. Some are due to the nature of
the technology itself: MSS data are very noisy and the resolu-
tion is rather coarse, so finding correspondences is difficult. A
second issue is related to the elongated shape of the canal and to
our experimental setup, that produce small grazing angles: the
farther the point, the less the accuracy, which also influences the
quality of registration. In these conditions, it is very difficult to
resolve the longitudinal ambiguity, i.e. to accurately estimate the
translation along the tunnel axis. Immersing geometric reference
objects (e.g. ladders) or decreasing the distance between stations
to increase the overlap quality are possible solutions to alleviate
this problem. In our case, we found it more practical to register
MSS data with TLS data as explained in more details in the above
sub-section.

5.2. Underwater geo-referencing

As the geo-referencing of TLS data is straightforward, we chose
to register MSS point clouds on TLS acquisitions to get a geo-
referenced global model. The main issue is the lack of overlap
between TLS and MSS acquisition, which prevents from using
cloud-to-cloud registration directly, hence we split up the prob-
lem into three steps that are described below.

5.2.1. Attitude correction There is no common scan zone
between under and above water acquisitions, but certain parts of
both models can be approximated by a same geometrical entity.
For example, planes can approximate some parts of canal banks
and projecting elements can be defined by lines. We use plane
normals and line directions to estimate the rotation matrix. A
minimum of two non-collinear vectors are required to get the at-
titude corrections.

=~

Figure 6: Geometric entities (plane, line) for attitude correction

A property of the rotation matrix that must be taken into account
in the computation is its orthogonality. We use the solution de-
scribed in (Golub and Van Loan, 2012) who suggest an answer to
the so-called “orthogonal Procrustes problem’:

min || A — BQ |3 subjectto QTQ =1 (1)
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were || . ||r denotes the Frobenius norm, and where A and B
are respectively the direction vectors of the elements extracted
from the TLS and the MSS models and Q is the 3x3 rotation ma-
trix. The algorithm computes the Singular Value Decomposition
(SVD) of the BT A product, UT (BT A)V = X, to get the rota-
tion matrix @, as:

Q=uv" @

5.2.2. Vertical translation During this step, we compute the
vertical translation using the ladders, whose dimensions are known.
More specifically, we use the positions of the ladder rungs in both
models to estimate the difference in altitude. But the underwater
acquisition provides noisy point clouds, so the information can-
not be directly extracted from the point cloud. Hence, to get an
accurate result we developed a robust estimation method to model
the ladder.

The first step of the method is the segmentation of the underwater
acquisition to extract the ladder points from the MSS point cloud.
Then, the ladder plane is computed using a robust version of Prin-
cipal Component Analysis, based on a M-estimator. Finally the
points of the ladder cloud are projected onto the plane, so the rest
of the process is performed in two dimensions.

The second step is the automatic segmentation of ladder’s compo-
nents (vertical bars and rungs) thanks to histogram analysis. The
previous step provides a 2D point cloud in a coordinate system
with abscissa axis parallel to the vertical bars and ordinate axis
parallel to the rungs. The statistical distributions of point coordi-
nates along both axes show peaks that allow an easy segmentation
of the cloud. Hence, points are split into clusters, that correspond
either to vertical bars or to rungs.

Then, the third step is the robust adjustment of straight lines on
the data, to model the bars and rungs. For this purpose, we use
a linear regression and we simultaneously fit all the lines, tak-
ing into account that rungs are parallel, that the two vertical bars
are also parallel, and that vertical bars are perpendicular to rungs.
Such constraints are very useful in our context, where data are
very noisy. In this experiment, we use an orthogonal fit, i.e.
the residual is the orthogonal distance between the point and the
model. One may note that affine fitting could also be used be-
cause the components of the ladder are almost parallel to axes. In
both cases, we use a M-estimator, i.e. we replace the usual sum
of squared residuals by a function of the form:

J(0) = Z p(r:) 3)

where 6 is the vector of model parameters, p is a non-quadratic
potential or penalty function and 7; is the residual, i.e. the differ-
ence between the observation and its prediction according to the
model. In the half-quadratic setup, see e.g. (Charbonnier et al.,
1997), it is shown that minimizing J is equivalent to minimizing

JH0,0) = bir + W(bi) “4)

where W is a convex the cost function whose expression can be
related to p and b; is an auxiliary variable, whose role is both
to mark outliers and to linearize the problem. Indeed, J* is
quadratic with respect to 7 (hence, w.r.t. 6 in linear regression)
when b is fixed, and convex w.r.t. b when r is fixed. Moreover, in
the latter case, the minimum is obtained for b = p’(r)/2r. Such
properties suggest a deterministic algorithmic strategy that con-
sists in alternately fixing each variable and minimizing w.r.t. the
other.

In the affine regression setup, this leads to the well-known Iter-
ated Reweighted Least-squares (IRLS) algorithm. This strategy
may be extended to the simultaneous fit of several curves, see
e.g. (Tarel et al., 2007, Tarel et al., 2008). However, the algorithm
we obtain here is slightly different because of the additional par-
allelism and orthogonality constraints related to the geometry of
ladders. In the orthogonal setup, the resulting algorithm simul-
taneously estimates the centroids of bars and rungs in an IRLS
fashion, and their direction using a reweighted version of PCA.

Finally, the intersection points between rungs and vertical bars
are calculated and transformed back in 3D coordinates.
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Figure 7: Ladder fitting. Left: front view with inter-rung dis-
tances and errors (e) with respect to ground truth. Right: sectional
view showing the adjustment of the ladder plane.

Fig. 7 shows an example of robust ladder fitting. One may see
that, despite the strong noise level, the ladder is well approxi-
mated (the maximum error with respect to ground truth measure-
ments of inter-rung distances is 46 mm and most errors are less
than 10 mm).

5.2.3. Horizontal translation Once the attitude and vertical
translation have been correctly estimated, the last operation con-
sists in estimating the horizontal translation vector. The 2D sil-
houette of the waterline along the structure can be extracted on
both the TLS ans MSS model by intersecting the corresponding
point clouds with the plane that corresponds to the water surface.
Finally, we apply a 2D ICP algorithm to estimate the translation
vector between the two models.

5.2.4. Final result The estimated transformation can be ap-
plied to the underwater meshed model as well as to the original
point cloud. Indeed, the underwater point cloud provides visual
information that may disappear in the mesh view. For example,
projected shadow highlights certain elements of the scene. Fig. 8
shows the result that we obtain. Overall, the obtained model is
visually satisfying, even if some imperfections may be observed
in regions far from the station. One may see e.g. at the bottom
left of the topmost image, that the underwater model has a very
granular aspect and that the adjustment of both models becomes
less perfect. These defects are probably due to the fact that the
footprint of the beam is very large at such a distance from the
source.
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Figure 8: Resulting full 3D geo-referenced model of Niderviller’s canal tunnel entrance. Top: point cloud visualization; bottom: mesh
visualisation (the blue mesh is the underwater model and the red line defines the waterline).

6. DISCUSSION

In this paper, we have introduced a method to record and process
TLS and MSS data with the purpose of building a 3D reference
model of a canal tunnel. A comparison between the SONAR and
LASER device characteristics highlights differences that impact
the quality of the data. In particular, it appears that MSS data
have a much lower resolution than TLS data, and that the angular
loss of resolution can be rather strong. Since the elongated shape
of the tunnel generates unfavorable incidence angles, the quality
of SONAR acquisitions becomes rather coarse at large distances
from the scanner. Moreover, this technology tends to provide
noisy data.

To limit the effect of perturbations on the processing, we first per-
form a data denoising by meshing. More specifically, a coarse-
to-fine method, which gradually increases the resolution of the
mesh, has been used. Of course, this step removes noise, but at
the same time some details can be lost. In this experiment, the
trade-off between noise and details was made empirically, which
is difficult. Contrary to TLS data, there is no direct visual or phys-
ical reference that could guide the process: MSS acquisitions are

actually the only visual information available. It might be envi-
sioned to infer the underwater texture by assuming that there is
a continuity with the above-water part, but this is not satisfac-
tory. We believe that acoustic and image processing techniques
should be explored to devise a more automatic and data-driven
denoising technique. In particular, moving least squares, bilat-
eral filtering (Tomasi and Manduchi, 1998), non-local means fil-
tering (Buades et al., 2005, Deschaud and Goulette, 2010, Digne,
2012) or structure+texture decompositions (Aujol et al., 2006)
seem appealing for this task.

A second important issue is related to the co-registration of the
point clouds provided by the scanners. While processing TLS
data to obtain the above-water geo-reference 3D model is rather
straightforward, this task is much more difficult for MSS data.
Due to the low resolution of the data and to the angular loss of
resolution, classical techniques such as ICP did not provide sat-
isfactory results in our experiments. To alleviate this problem,
its is possible to improve the experimental setup by reducing the
distance between MMS stations: an interval of about 5 m would
be recommended. Moreover, it is possible to immerse more tar-
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gets, such as the ladders that we used here, to provide additional
references to help the registration. Our experiments show that the
targets must be carefully chosen and placed on-site: for example,
the ladders should be separated from the canal walls, unless their
segmentation becomes problematic.

To obtain a geo-referenced global model of the canal-tunnel, reg-
istering MSS and TSS data is a crucial point. The main difficulty
we are faced with in this application is that there is no overlap be-
tween the above and underwater models. We therefore proposed
a 3-step procedure in which, first, geometrical entities are used
to fix the attitude parameters. The second step uses the ladders
to estimate the vertical correction: we proposed a robust method
based on M-estimation to fit lines on the bars and rungs of the
ladder using the noisy point cloud. We assessed the method by
comparing the results of the fit with direct measurement of dis-
tances. In most cases, the error is less than 10 mm (with a max-
imum of 46 mm). Third, after having extracted the intersection
lines between the water surface and the MSS and TLS models,
we apply a 2D ICP algorithm limited to estimate the remaining
2D translations.

This experimentation provides an initial overview of underwater
acquisition in canal tunnel and yields promising results. Improve-
ments of the model’s quality may be expected from a better ex-
perimental setup (closer stations, more numerous targets). More
automatic, data-driven filtering technique should help enhancing
the quality of the data and limit manual interventions. Many
problems we are faced with result from intrinsic limitations of
the acquisition techniques, but one may foresee that the technol-
ogy will progress, so we may expect increasingly accurate results
using the proposed methodology. The obtained models will be a
reference for future acquisitions, in static (to get the tunnel de-
formation) or with dynamic underwater acquisitions systems (for
assessing mobile mapping solutions).
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