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ABSTRACT: 

 

Generally, the dynamic hand gestures are captured in continuous video sequences, and a gesture recognition system ought to extract 

the robust features automatically. This task involves the highly challenging spatio-temporal variations of dynamic hand gestures. The 

proposed method is based on two-level manifold classifiers including the trajectory classifiers in any time instants and the posture 

classifiers of sub-gestures in selected time instants. The trajectory classifiers contain skin detector, normalized skeleton 

representation of one or two hands, and motion history representing by motion vectors normalized through predetermined directions 

(8 and 16 in our case). Each dynamic gesture is separated into a set of sub-gestures in order to predict a trajectory and remove those 

samples of gestures, which do not satisfy to current trajectory. The posture classifiers involve the normalized skeleton representation 

of palm and fingers and relative finger positions using fingertips. The min-max criterion is used for trajectory recognition, and the 

decision tree technique was applied for posture recognition of sub-gestures. For experiments, a dataset “Multi-modal Gesture 

Recognition Challenge 2013: Dataset and Results” including 393 dynamic hand-gestures was chosen. The proposed method yielded 

84–91% recognition accuracy, in average, for restricted set of dynamic gestures. 
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1. INTRODUCTION 

During three decades after appearance of graphical user 

interface with mouse and keyboard, the sensor and display 

technologies evolve persistent improving and expanding the 

novel devices ranging from very large displays for design and 

educational projects to small smartphones or smart watches for 

conventional consuming. All these devices keep pushing 

researchers to develop new interaction techniques based on 

natural human possibilities, first of all, using human gestures 

and body movements as more natural and intuitive 

communication between people and devices. Hand gestures 

have been studied for a long time since 1990s starting with 

indispensable attributes such as different color gloves in order 

to provide the simplified tracking of hands and fingers in 3D 

environment. 

 

Design of formal visual languages with the goal of easy human–

computer communication through the use of graphics, drawings, 

or icons meets the challenge of complicated technical 

implementation because of variety of locations, shapes, overlaps 

of hands and cluttered background in a scene. Human gestures 

are classified as the head, the hand, and the body gestures. Each 

group assumes special capturing, tracking, and recognition 

methods. The upper-body gestures are represented in two forms: 

as natural and artificial gestures. The natural gestures are 

uncertain, with cultural and local diversity while the artificial 

gestures are more comprehensible for predefined actions. Also 

existing gesture systems are classified as encumbered (when a 

user ought to hold an external device to make gestures (Lu et 

al., 2014)), touch-based (systems with the touch-screen and 

different commands), and vision-based (allow users to make 

gestures without contact). The detailed review of vision-based 

hand gesture recognition is presented by Rautaray and Agrawal 

(Rautaray and Agrawal, 2015). 

 

Before recognition, a segmentation stage is necessary. Any 

gesture segmentation is a difficult process, especially for 

dynamic gestures. The segmentation process is characterized by 

ambiguities, when the start and end time instants of dynamic 

gesture are difficult identified in continuous sequence (Yang et 

al., 2007), and a spatio-temporal variability, which is caused by 

gesture variety in shape, location, duration, and trajectory, even 

for the same person at different time instants (Kosmopoulos and 

Maglogiannis, 2006). However, a simultaneous procedure of 

gesture segmentation and recognition is discussed in some 

researches (Kim et al., 2007). 

 

Our contribution deals with building of hierarchy of manifold 

classifiers including two levels: the trajectory classifiers in any 

time instants and the posture classifiers in selected time instants. 

The trajectory classifiers include skin detector, normalized 

skeleton representation of hand/hands, and motion history 

representing by motion vectors normalized through 

predetermined directions (8 and 16 in our case). Each dynamic 

gesture is separated into a set of sub-gestures in order to predict 

a trajectory and remove those samples of gestures, which do not 

satisfy to current trajectory. The posture classifiers involve the 

normalized skeleton representation of palm and fingers and 

relative fingers position using fingertips. 

 

The rest of this paper is organized as follows. Section 2 reviews 

the existing methods of dynamic gesture capturing and tracking 

as well as methods of gesture recognition. The proposed gesture 
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trajectory classifiers are described in Section 3.  

Section 4 provides a discussion about the posture classifiers. 

Experimental results are situated in Section 5. Finally, Section 6 

concludes the paper. 

 

2. RELATED WORK 

In this section, two mutual issues will be briefly reviewed 

representing the dynamic gesture capturing and tracking 

methods and the recognition methods in Sections 2.1–2.2, 

respectively. 

 

2.1 Methods of Gesture Capturing and Tracking 

The Hidden Markov Models (HMMs) and the Dynamic Time 

Warping (DTW) are the most popular methods for dynamic 

gesture recognition. Many researchers employed the HMM for 

gesture capturing in the spatio-temporal framework successfully 

as well as for gesture recognition. The HMM and its 

modifications was especially popular in 1990s. The HMM-

based threshold model was proposed by Lee and Kim (Lee and 

Kim, 1999). The start and end points were fixed by a likelihood 

threshold calculated for predefined gesture models. The DTW is 

a method for sequence comparison, initially used in various 

applications. For gestures with varying lengths, the DTW warps 

the tested trajectory in order to match with a predetermined 

template of an exemplary gesture trajectory. A precursor to the 

DTW was the Longest Common Subsequence (LCS) method of 

alignment. It was successfully applied by Stern et al. (Stern et 

al., 2010) for TV remote control. The LCS algorithm was 

developed for matching sub-word sequences in documents 

temporally, using feature distance costs. The LCS is more 

robust to noise and outliers the DTW in computational speed. 

Instead of a complete mapping between all points, the LCS 

algorithm ignores a point without good matching. The classifier 

uses the “spotted” gesture trajectories or moving window of 

trajectory points. 

 

Alon et al. (Alon et al., 2005) developed the method with core 

of Dynamic Space-Time Warping (DSTW) algorithm. The 

DSTW algorithm as an extension of the DTW aligns a pair of 

query and model gestures in both space and time dimensions. A 

warping path in time is aligned with detection the best hand 

candidate region in every query frame by dynamic 

programming. The DSTW algorithm models the multiple 

candidate feature vectors (hypotheses) for hand location in each 

frame. The warping path in the spatial and the temporal 

dimensions has some constraints such as the boundary 

conditions, the temporal continuity, and the temporal 

monotonicity. The system worked in cluttered background, 

multiple moving objects, and multiple skin-colored image 

regions. However, the starting and ending frame of each gesture 

were pointed manually. 

 

Krishnan et al. (Krishnan et al., 2010) proposed to form a 

gesture spotting network using the individual gesture models 

and the adaptive threshold model learnt from Adaptive Boosting 

algorithm. This technique was evaluated for hand gestures 

spotting from continuous accelerometer data streams and 

recognizing by the HMM based on the adaptive threshold 

model with precision of 78% and recall of 93%. 

 

The attempts of simultaneous gesture spotting and recognition 

attract some researchers due to a good idea to reduce an 

unavoidable time delay between segmentation and recognition 

for on-line continuous gesture recognition. The forward scheme 

computing a Competitive Differential Observation Probability 

(CDOP) between a gesture and a non-gesture was proposed by 

Kim et al. (Kim et al., 2007). This scheme modelled a 

sequentially variant time-series of gestures using the HMM and 

Self Organizing Maps (SOMs). The authors computed 

observation probability of gesture or non-gesture by use a 

number of continuing observations within the sliding window 

for several observations. This helps to avoid an undesirable 

effect of an abrupt change of observations within a short 

interval. An association mapping technique was used to 

estimate a correlation measure between 2D shape data and 3D 

articulation data. Then the gestures were recognized by the 

trained HMM. 

 

The Conditional Random Fields (CRFs) as an alternative 

approach to the HMM are studied by Elmezain et al. (Elmezain 

et al., 2010) for simultaneous spotting and recognition of digits. 

Such interpretation can be useful for dynamic gesture 

recognition. The CRFs are undirected graphical models for 

labeling sequential data, which overcome the weakness of 

maximum entropy Markov models. The authors conducted good 

idea about initially constructed the non-gesture pattern by the 

CRFs due to the CRFs uses a single model for the joint 

probability of the sequences. As a result, they obtained good 

reliability accuracy estimations of 96.51% and 90.49% for 

recognition of isolated and meaningful gestures, respectively. 

 

Extraction and tracing of hand region using entropy analysis 

was utilized by Lee et al. (Lee et al., 2004). It was one of the 

first attempts for proposition of video-based non-contact 

interaction techniques. A hand region was extracted based on 

color information and entropy distribution. In common case, a 

gesture tracking can be based on various techniques, e.g., 

fingertips tracking for restricted set of gestures, hand’s position 

tracking by optical flow method, motion energy analysis to 

estimate a dominant motion of hand, and adaptive skin color 

model and Motion History Image (MHI), splitting a feature 

trajectory into sub-trajectories. 

 

2.2 Methods of Dynamic Gesture Recognition 

In general, two types of recognition techniques, 2D shape data 

and 3D articulation data, are possible for dynamic gesture 

recognition. Bobick and Davis (Bobick and Davis, 2001) 

recognized human movements by 2D temporal templates 

including a motion energy image and the MHI. Hu moments 

were descriptors of the temporal templates. A human gesture 

recognition based on fitted quadratic curves as a place of centre 

points of skin region and 2D foreground silhouettes was 

proposed by Dong et al. (Dong et al., 2006). The principal 

disadvantage consists in the evident dependence of the obtained 

20 features from a viewing angle between a human and 

cameras. Also a gesture may be classified in a conventional 

manner, when a sequence of postures is processed, using 

principal component analysis, and then it is recognized applying 

Finite State Machines (FSMs) also called as a finite-state 

automata (Hong et al., 2000). 

 

Bhuyan (Bhuyan, 2012) proposed a concept of key frames 

detection, in which a hand changes its shape significantly. Next 

keyframes are extracted by measuring a shape similarity using a 

Hausdorff distance measure. Thus, such key frame selection 

eliminates redundant frames. Each FSM constructed through the 

training stage corresponds to a particular gesture. Recognition is 

executed by matching only a current keyframe state with the 

states of different FSMs obtained during the training stage. All 
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the FSMs in the gesture vocabulary use an angular radial 

transformation shape descriptor that speeds up the recognition 

in many times. 

 

Dynamic Bayesian Network (DBN) is a generalized class of 

probabilistic models including the HMM and Kalman filter or 

particle filter as special cases. Suk et al. (Suk et al., 2010) 

proposed the DBN model for recognition of hand gestures 

implementing a control of media players and slide 

presentations. Ten isolated one-hand and two-hand gestures are 

enough simple, and the authors received the recognition rate of 

99.59%. More practical continuous gesture recognition was 

addressed based on a cyclic spotting network connecting with 

gesture DBN. A Viterbi dynamic programming method was 

used to recognize gesture and detect the start and end points of 

gesture simultaneously. 

 

Al-Rousan et al. (Al-Rousan et al., 2010) studied the dynamic 

gestures of Arabic sign language using two-stage scheme, when, 

first, a group of gestures is recognized and, second, a gesture 

within a group is recognized. A set of spatial features was 

extracted including a hand region, coordinates of its centre, a 

direction angle of hand region, and a hand vector representing a 

shape of hand. The authors considered these features invariant 

to scale and transition. The HMM was used for hand 

recognition. The authors divided all features into two types: six 

simple features and seventeen complex (in vector 

representation) features. The recognition rate for the signer-

dependent achieved 92.5% while for the signer-independent 

was 70.5%. 

 

3D modelling of hand gesture is usually connected with 

multiple cameras shooting during training stage or Kinect 

application in order to obtain the depth images of a hand. For 

example, Keskin et al. (Keskin et al., 2011) proposed a 3D 

skinned mesh model with a hierarchical skeleton, consisting of 

19 bones, 15 joints and 21 different parts for representation of 

American Sign Language. The methodology is based on fitting 

3D skeleton to the hand. Random decision forests were trained 

on animated 3D hand model for pixel classification during the 

testing stage. 

 

Holte and Moeslund (Holte and Moeslund, 2008) proposed to 

build and analyze the harmonic shape context as 3D motion 

primitives, which are received from motion characteristic 

instances of gestures. The authors used 3D image data from a 

range camera to achieve invariance to viewpoint. For this 

purpose, a family of orthogonal basis functions in a form of 

spherical harmonics was applied. 3D motion primitives 

representing as the strings of letters and/or digits with different 

lengths were compared by probabilistic edit distance method. 

An overall recognition rate of 82.9% was achieved under 

invariance of 3D location. 

 

3. GESTURE TRAJECTORY CLASSIFIERS 

Introduce assumptions, according to which a video sequence 

contains a hand gesture: 

 

1. A hand gesture is performed on approximately 

uniform background. 

2. A distance between a camera and a hand is nearly 

constant so that scale factor is non-significant. 

3. Consider that a moving hand appears in video 

sequence, if a motion is continuous in a predetermined 

interval (1–2 s). 

4. A hand gesture is performed in a priori known region 

of frame. 

5. A moving hand is a dominant moving object. 

6. A duration of moving is longer that L1 frames but not 

more than L2 frames with the temporal continuity and 

monotonicity. 

7. All types of gestures are a priori known. 

8. Images of hand gestures are captured with a single 

video camera and then processed by a single computer. 

 

Dynamic gesture spotting is very difficult task without 

simplifying guesses, e.g., when the gesture trajectories are 

initiated by a button press or a long interval without motion. Li 

and Greenspan (Li and Greenspan, 2011) had solved the 

endpoint localization of dynamic gestures using a multi-scale 

gesture model representing as 3D spatio-temporal surfaces. 

 

A motion history of dynamic gesture is a set of trajectory 

classifiers of sub-gestures, which model a realistic gesture by 

elements from special vocabulary. First, hand localization ought 

to be implemented (Section 3.1). Second, skeleton 

representation of gesture is built (Section 3.2). Third, trajectory 

classifiers are constructed (Section 3.3). 

 

3.1 Hand Localization 

For hand localization, it is reasonable to use two classifiers 

based on skin and motion detection. The skin-like color regions 

may be detected in a scene using various color spaces such as 

Red Green Blue (RGB), YUV (Y is a luminance component 

(brightness), U and V are the blue and red difference samples, 

respectively), YCbCr (Cb and Cr are the blue and red chromatic 

components, respectively), Hue Saturation Value (HSV), 

normalized RGB, and Log opponent (uses the base 10 logarithm 

to convert RGB values) color spaces (Favorskaya, 2013). The 

YCrCb color space was chosen for skin classifier. The linear 

equations, which determine the boundaries of skin color 

classifier, are provided by Equation 1: 
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where  Q1–Q4 = additional parameters computed by 

Equations 2–3 in dependence of Y value: 
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For reliable detection of hand/hands in frames, some authors 

proposed the approach based on a prior facial skin analysis as 

an individual skin tuning (Li et al., 2013). Such initial 

procedure is very useful for hand localization because the 

articulated user can be a single end-user of gesture recognition 

system, and this procedure can be considered as an adaptive 
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step. Face detection based on Adaboost algorithm is fast and 

accuracy method proposed by Viola and Jones (Viola and 

Jones, 2001). As in any boosting algorithm, a cascade classifier 

is adopted during 2–3 iterations in order to detect the most 

possible regions of human faces. Additionally, eyes detection 

can be recommended in regions similar to skin color. Then 

hands are detected in enlarged surrounding region, which sizes 

are chosen empirically. After hand detection using skin 

classifiers, the morphological processing is recommended for 

improvement “broken” skin regions or skin regions with 

“holes” (Favorskaya and Nosov, 2014). 

 

The use of Microsoft Kinect camera is in the area of interest for 

many segmentation tasks. The simple background subtraction 

can be applied under assumption of enough number of frames in 

static scene. First, a background accumulation is executed based 

on maximum values of depths in a set of frames. As a result, a 

background model can be constructed. Notice, an accurate 

background model is not required for hand capturing that means 

a possibility of on-line background model building. Second, the 

moving objects are extracted using a background subtraction 

model. Third, the object boundaries are computed based on 

detection and merger of contour components in order to receive 

the closed boundaries of moving objects. The depth map cannot 

be used only for body parts contour extraction but also for body 

silhouette building. The last possibility is useful for the body 

gesture recognition. For hand segmentation, the color 

distribution is analysed into segmented regions that increases 

the accuracy of palm and fingers localization in a cluttered 

background. 

 

3.2 Skeleton Representation of Gesture 

In this research, the idea of compact and informative description 

of dynamic gesture is conducted. For this purpose, a skeleton 

representation of hand including elbow, wrist, palm, and fingers 

is built. The normalized skeleton representation is invariant to 

shape but do not invariant to position in 3D space. However, in 

skeleton representation a “central” point as a centre point of 

circle, which is inscribed in a palm image region, can be defined 

in the most cases very fast. 

 

A binary hand gesture image is an object with multi-linked 

polygonal shape. In this case, a skeleton representation is built 

using a term “maximum empty circle” (Mekhedov and 

Mestetskiy, 2010). For polygonal shape F, a maximum empty 

circle is any circle B, which is fully inscribed into a shape F 

such that other circle B inscribing into a shape F does not 

include a circle B. Thus, a skeleton of polygonal shape F is a set 

of centres of maximum empty circles. A radial function R(x, y) 

defining a radius value in any skeleton point (x, y) is determined 

on a skeleton of an object. 

 

Geometrically, a skeleton of polygonal shape is a graph 

including nodes (points in the XOY plane) and edges (lines 

joining some nodes pairs). A straight line or a parabolic arc will 

be the edges of such graph. A degree of any edge is equal 1, 2, 

or 3. The existing effective algorithms build a skeleton by time 

O (n log n), where n is a number of nodes in a polygon shape. A 

skeleton building of 2D shape is described in details by 

Mekhedov and Mestetskiy (Mekhedov and Mestetskiy, 2010). 

An execution time of a skeleton building depends directly from 

a number of nodes in a polygon binary shape. The procedure of 

shape approximation based on Douglas-Peucker algorithm is 

represented and implemented in our previous research 

(Favorskaya and Nosov, 2014) with good speed/accuracy 

numerical results. After skeleton building, an additional 

procedure called pruning is implemented in order to remove 

noisy lines. Then a central point in palm image can be easily 

defined. 

 

3.3 Trajectory Classifiers Based on Motion History 

Let DG = {DG1, DG2, ..., DGn} be a set of available dynamic 

gestures represented by skeleton vectors. Each dynamic gesture 

DG is composed from sub-gestures differing by directions and 

acceleration values from other sub-gestures. A set of sub-

gestures generates a vocabulary, which helps to describe a 

realistic dynamic gesture by its model representation. A 

sequence of sub-gesture forms a gesture model. Due to a hand 

image is a compact set of mass points, a trajectory can be 

described by a single unique point, which can be a centroid of 

mass of a palm or a central point in skeleton representation 

(Section 3.2). A sub-gesture description SG is a set of vectors 

SG = {SG1, SG2, ..., SGm}. The beginning of each following 

vector SGj+1 is the ending of the previous vector SGj; thus, a 

connected set of directions performs a total direction of a sub-

gesture. Each vector SGj includes two components: a length Lj 

and an angle j (between vector direction and the axis OX) in 

relative coordinates (Equation 4): 
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where  xj, yj = coordinates of current branch point 

 xj+1, yj+1 = coordinates of following branch point 

 

Then a sub-gesture SG is recalculated by compression and 

normalization procedures in order to provide invariance to 

affine transform. The compression procedure rejects non-

essential vectors with small value Lj according to a 

predetermined threshold value. The normalization procedure 

provides a normalization of vectors lengths (total sum of vectors 

lengths is equal 1) by Equation 5: 
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and a normalization of vectors directions, when a current vector 

direction is replaced by one of normalized directions from a unit 

vectors set. Such unit vector Uj has a view of Equation 6: 
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j

nr
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where  Z = a number of directions (Z = 8 or Z = 16) 

 

Let the temporal representation of all gesture samples be Gc,k, 

c = 1, 2, ..., where C is a number of temporal classes of hand 

gestures and k = 1, 2, ..., K is a number of samples into a 

temporal class. The reference temporal template TTc estimates 

dissimilarity D() by min-max criterion in the temporal 

dimension by Equation 7: 

 

  mckc
mk

c DTT ,, ,maxargminarg GG     (7) 

 

Template-based classification technique is announced as 

follows. The extracted and processed temporal representation is 

compared with reference temporal template for each class c 
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(Equation 7). Afterward, distances to all classes are computed. 

If a minimal distance is below a predetermined threshold value, 

then a gesture belongs to some class, otherwise it is concerned 

to a non-gesture class. 

 

During the testing stage, the extracted sub-gestures help to 

predict a type of gesture. Several candidates may be determined. 

The posture classifiers of palm and fingers provide the final 

decision. 

 

4. GESTURE POSTURE CLASSIFIERS 

Each sub-gesture ought to include the detailed information 

about palm and fingers position. Consider that this analysis will 

be accomplished at the end of sub-gesture. Such information 

clarifies the class of dynamic hand gesture. Posture classifiers 

are discussed in Section 4.1. A procedure of rule-based 

recognition is situated in Section 4.2. A set of rules is applied to 

select the best candidate. 

 

4.1 Posture Classifiers 

The posture classifiers are constructed based on skeleton 

representation of hand. As one can see from Figure 1, the 

fingertips can be detected as endpoints. Then the relative 

locations of skeleton segments of each finger are analyzed, in 

particular lengths of fingers S = {s1, s2, s3, s4, s5} and angles 

 = {1, 2, 3, 4} between the neighbouring fingers. A length 

value and a view of skeleton line of finger determine a position 

of finger. A set of angles may be restricted to one or two values. 

These values are graduated by threshold: if TH < 3, then the 

fingers are grouped. Notice that not all gestures may have full 

description, some fingers may be invisible. 

 

 

Figure 1. Original image (left), image with keypoints (right) 

 

Figure 1 illustrates a skeleton building based on a binary image. 

Use of gray-scale image of hand permits to detect a skeleton for 

fingers overlapping a palm. Therefore, a posture classifier 

includes relative location of a centre point of a palm (a centre of 

inscribed circle), coordinates of fingertips, based on which it is 

possible to determine the fingers stretched, half-bend, half-

closed, or closed and group, separate, cross, or loop. In the 

same manner, two hands can be analyzed, if a gesture is 

presented using both hands. 

 

4.2 Rule-based Recognition 

In spite of variety of 3D hand position, a hand model includes a 

fixed number of components, and each finger configuration is 

associated with a finger pose. Each hand posture is described by 

a rule capturing a hand configuration and involving the 

following parameters with available values: 

 

1. The coordinates of centre point of a palm. 

2. A set of lengths S = {s1, s2, s3, s4, s5}. If (si > THs) and 

(si is a straight line), then a finger is stretched. If (si > THs) 

and (si is a curve), then a finger is half-bend or half-closed. 

If (si > THs) and (si, sj are closed curves), then two fingers 

form a loop. If (si  THs) and (si is a straight line), then a 

finger is closed. 

3. A set of angles  = {1, 2, 3, 4}. If i > TH, then a 

two fingers are separated. If (i  TH) and (a thickness of 

two fingers is less than the double thicknesses of one 

finger), then two fingers are crossed. 

4. Relative coordinates of visible fingertips. 

5. Detection a finger group based on a convexity 

analysis of a hand contour. For example, one can detect the 

groups from two, three, or four closed fingers estimating a 

thickness of group. 

 

Items 1–5 mentioned above describe each sub-gesture as a set 

of finger orientations in the XOY plane (up, down, towards, or 

side), a set of finger inter-relations (grouped, separated, looped, 

or crossed), and a set of basic finger poses (stretched, half-bend, 

half-closed, or closed). The main positions of fingers based on 

depth performances and depicted in Table 1 were proposed by 

Mo and Neumann (Mo and Neumann, 2006). 

 

Category Position 

Basic fingers 

orientation 
    

Up Down Towards Side 

Basic finger 

inter-

relations     
Group Separate Cross Loop 

Basic finger 

poses     
Half-bend Bend Half-closed Closed 

Table 1. Main positions of fingers 

 

As a result, a sequence of sub-gesture descriptors can be 

received. If dominant singularity/singularities of a gesture are 

determined during the training stage, then the testing stage is 

simplified. The decision trees based on the proposed rules are 

used for recognition. A hierarchy description of sub-gestures 

including trajectory analysis finds a good mapping in decision 

trees. Due to rejection of non-suitable branches, the recognition 

is a fast procedure. When a dynamic gesture is finished, the 

descriptions of sub-gestures are finally analyzed in the temporal 

dimension, and the final decision is concluded. In spite of 

difficult analysis, a continuous sequence provides high data 

volume that objectively leads to better recognition results. 

 

5. EXPERIMENTAL RESULTS 

For experiments, a part of the dataset “Multi-modal Gesture 

Recognition Challenge 2013: Dataset and Results”1 containing 

dynamic gestures was used. This large video dataset includes 

13, 858 gestures from a lexicon of 20 Italian gesture categories 

recorded with a KinectTM camera, providing the audio, skeletal 

model, user mask, RGB and depth images (Escalera et al., 

2013). For better visibility in Figures 2–9, fragments of images 

with sizes 140  105 pixels were cut from the test video files. 

                                                                 
1 http://gesture.chalearn.org/2013-multi-modal-challenge 
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Figure 2. Sample00827, frames 1175-1231 

 

 

Figure 3. Sample00824, frames 164-211 

 

 

Figure 4. Sample00825, frames 189-232 

 

 

Figure 5. Sample00831, frames 921-1015 

 

 

Figure 6. Sample00804, frames 216-251 

 

 

Figure 7. Sample00802, frames 913-970 

 

 

Figure 8. Sample00816, frames 1368-1408 

 

 

Figure 9. Sample00803, frames 432-475 
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The software tool “DynGesture”, v. 1.52 was developed using 

C# language in environment “Visual Studio 2012”. The 

software includes two main algorithms. The segmentation 

algorithm contains a hand/hands localization based on skin 

classifiers, a topological skeleton building, a skeleton 

representation of palm and fingers with keypoints, a building of 

trajectory classifiers, and a vector description of sub-gestures. 

The recognition algorithm calculates the posture classifiers 

based on five proposed rules (Section 4.2) providing a 

recognition of main positions of fingers at the end of each sub-

gesture. Then a sequence of sub-gesture descriptors is analyzed 

by decision tree procedure. Samples from each category 

involving 20–40 dynamic gestures were divided into the 

training and the testing sets in relation 20% and 80%, 

respectively. The results of gesture segmentation and gesture 

recognition are located in Tables 2 and 3, respectively. These 

estimations include True Recognition (TR), False Rejection 

Rate (FRR), False Acceptance Rate (FAR), and time costs of 

algorithms as average estimators for processing of a single 

frame. Experiments were executed using computer with the 

processor Intel(R) Core(TM) i5 750 2.67 GHz. The TR, FRR, 

and FAR estimators were received based on frames segmented 

manually and recognized by expert. 

 

Video file TR (%) FRR (%) FAR (%) Time (ms) 

Sample00827 92.9 3.3 8.5 9.2 

Sample00824 86.7 3.1 6.7 8.6 

Sample00825 93.2 7.7 9.1 10.4 

Sample00831 90.4 2.3 4.6 7.7 

Sample00804 93.5 3.9 6.4 8.0 

Sample00802 83.3 6.6 10.2 9.3 

Sample00816 84.3 8.3 4.5 4.2 

Sample00803 90.8 5.2 9.1 8.5 

Table 2. Gesture segmentation results and temporal estimators 

 

As one can see from Table 2, all true and false segmentation 

results have close values in ranges of 84-93% and 3-10%, 

respectively. The deviation is explained by some blurred frames 

in video files, for example, “Sample00802” and 

“Sample00816”. The temporal values of frame processing have 

the same order. 

 

Video file TR (%) FRR (%) FAR (%) Time (ms) 

Sample00827 84.9 8.3 8.9 4.4 

Sample00824 78.6 7.1 5.2 5.6 

Sample00825 91.1 8.8 6.7 5.7 

Sample00831 81.6 5.3 4.5 4.2 

Sample00804 83.6 7.5 9.1 4.8 

Sample00802 93.4 5.8 5.1 5.3 

Sample00816 85.4 7.3 4.6 4.0 

Sample00803 89.4 8.7 5.2 6.1 

Table 3. Gesture recognition results and temporal estimators 

 

Gesture recognition results representing in Table 3 demonstrate 

the dependence from more simple or complex trajectory of 

dynamic gesture and visible shape of a hand. In spite of all 

difficulties, the final results are promising due to the analysis of 

a sequence of sub-gesture descriptors, which represent a single 

dynamic gesture. The temporal estimators show a possibility of 

real-time implementation of the designed software tool. 

 

6. CONCLUSION 

The proposed method for localization and recognition of 

dynamic gestures is based on two-level classifiers including the 

trajectory classifiers in any time instants and the posture 

classifiers for sub-gesture extraction in selected time instants. 

Our efforts were directed on building of such classifiers, which 

are invariant to scale, rotation, and shift in the XOY plane. 

Skeleton representation of wrist, palm, and fingers provides a 

description of special points (e.g., fingertips or centre point of a 

palm), based on which some rules were formulated. Motion 

history of trajectory and a set of posture descriptions of sub-

gestures are the input information for decision trees. A dataset 

“Multi-modal Gesture Recognition Challenge 2013: Dataset and 

Results” was used for experiments. The numerical results were 

obtained for 393 dynamic gestures applicable in learning 

systems of sign languages as well as in human-computer 

interaction systems. The proposed approach yielded 84–91% 

recognition accuracy for restricted set of dynamic gestures. 
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