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ABSTRACTS: In this paper, we present a computationally efficient technique for edge preserving in medical image smoothing, 
which is developed on the basis of dynamic programming multi-quadratic procedure. Additionally, we propose a new non-convex 
type of pair-wise potential functions, allow more flexibility to set a priori preferences, using different penalties for various ranges of 
differences between the values of adjacent image elements. The procedure of image analysis, based on the new data models, 
significantly expands the class of applied problems, and can take into account the presence of heterogeneities and discontinuities in 
the source data, while retaining high computational efficiency of the dynamic programming procedure and Kalman filter-
interpolator. Comparative study shows, that our algorithm has high accuracy to speed ratio, especially in the case of high-resolution 
medical images. 
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1. INTRODUCTION 

Low–level image processing is a functional step in almost every 
medical image analysis system. It is a prerequisite for proper 
data interpretation, diagnosis and suggestion the corresponding 
treatments. Medical images (example: Magnetic Resonance, 
Ultrasound, Computed Tomography, X–Ray), may be corrupted 
by a disruptive noise during acquisition and transmission 
process and the essential requirement for every noise reduction 
procedure is to preserve local image features for an accurate 
and effective diagnosis. 
Many edge-preserving denoising methods for medical images 
have been proposed in the literature. For example, Perona and 
Malik introduced nonlinear anisotropic diffusion (Perona and 
Malik, 1990; Gerig et al., 1992), which is an efficient method 
for noise reduction in MR images with local features 
preserving. Portilla (Portilla et al., 2003) have suggested 
alternative approach based on Wavelet transform. Furthermore, 
some other methods have good results of edge-preserving 
denoising: Wiener filter (Brown and Hwang, 1996), bilateral 
filter (Tomasi and Manduchi, 1998; Chaudhury et al., 2011), 
non – linear total variation (Rudin et al., 1992; Drapaca, 2009). 
Nevertheless, the monitoring of dynamic processes needs to 
improve performance of the low-level processing stage in both 
speed and accuracy.  
In this paper, we develop new non–iterative parametric 
procedure for edge preserving in image smoothing. This 
procedure can effectively remove Gaussian noise as well as 
Rician noise (Dekker and Sijbers, 2014), typical for MR 
images, with high quality. We use here Bayesian framework as 
one of the most popular approaches to image processing. Under 
this approach, the problem of image analysis can be expressed 
as the problem of estimation of a hidden Markov component of 
a two-component random field, where the analyzed image plays 
the role of the observed component. An equivalent 
representation of Markov random fields in the form of Gibbs 

random fields, according to Hammersley-Clifford Theorem 
(Hammersley and Clifford, 1971), can be used to define prior 
probability properties of a hidden Markov field by means of so-
called Gibbs potentials for cliques. In the case of a singular loss 
function, the Bayesian estimation of the hidden component can 
be found as a maximum a posteriori probability (MAP) 
estimation by the minimization of the objective function often 
called the Gibbs energy function. The quadratic form of the 
Gibbs potentials corresponds to the assumption of a normal 
priori distribution. In the paper (Kopylov, 2010), the more 
general case is considered, when pair-wise Gibbs potentials are 
selected as a minimum of a finite set of quadratic functions, and 
an efficient optimization procedure is proposed for the Blake 
and Zisserman function (Blake and Zisserman, 1987), which is 
often used in edge-preserving procedures. This highly effective 
global optimization procedure, is based on a recurrent 
decomposition of the initial problem of minimizing function of 
many variables into a succession of partial problems, each of 
which consists in minimizing a function of only one variable. 
Such a procedure is nothing else than the enhanced version of 
the famous dynamic programming procedure (Kalman and 
Bucy, 1961). In the case of a minimum of a finite set of 
quadratic functions pair-wise Gibbs potentials, the procedure 
breaks down at each step into several parallel procedures, 
according to the number of quadratic functions forming the 
intermediate optimization problems of one variable. The 
corresponding intermediate objective functions are called 
Bellman functions and the procedure itself - a multi quadratic 
dynamic programming procedure. It was proven, that in the 
case of signal processing the number of quadratic functions that 
are required for representation of a Bellman function, generally, 
does not increase by more than one at each step (Kopylov, 
2010).  
However, using this approach for processing the two-
dimensional data on the basis of tree-like approximation of the 
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lattice neighborhood graph (Mottl, 1998), the number of 
quadratic functions in the Bellman functions may be too large 
and leads to a lack of effective implementation of the 
procedure. The basic idea of the proposed procedure is to find 
the groups of closest, in the appropriate sense, quadratic 
functions using k-means clustering algorithm (MacQueen, 
1967), and to replace each of these groups by one quadratic 
function having the smallest minimun value.  
During the experimental study, we compare the performance of 
MR images denoising algorithms by using the Mean Structure 
Similarity Index-MSSIM (Zhou Wang, 2004 ), Signal to Noise 
Ratio - SNR, and Peak to Signal Noise Ratio-PSNR in the 
presence of Gaussian and Rician noise. Wiener filtering (WF), 
non – linear Total Variation (TV), Anisotropic Diffusion Filter 
(ADF), Fast Bilateral Filter (FBF), the Bayesian least squares 
with Gaussians Scale Mixture (BLS-GSM) and proposed 
algorithms were tested. Results show, that our algorithm has the 
best accuracy to speed ratio, especially in the case of high-
resolution images. 
 

2. BAYESIAN FRAMEWORK FOR IMAGE 
DENOISING 

Under this approach, the problem of image analysis can be 
expressed as the problem of estimating a hidden Markov 
component ( , )X x T t t  1 2( { , },T t t t  1 11.. ,t N  

2 21.. )t N  of a two-component random field ( , )X Y  , where 

the analyzed image ( , )Y y T t t  plays the role of the 

observed component. An equivalent representation of Markov 
random fields in the form of Gibbs random fields, according to 
Hammersley Clifford Theorem (Hammersley JM, Clifford PE, 
1971), can be used to define a priori probability properties of a 
hidden Markov field by means of so-called Gibbs potentials for 
cliques (Geman S., German D. 1984). In the case of a singular 
loss function, the Bayesian estimation of the hidden 
components can be found as Maximum a Posteriori Probability 
(MAP) by performing the minimization of the objective 
function, often called the Gibbs energy function (Mottl, 1998; 
Kopylov, 2010): 
 

 
( )

( | ) ( | ) ( , )
T G

J X Y x Y x x     
  

  t t t ,t t t

t t ,t

 (1) 

 
The structure of the objective function (1) reflects the ordering 
property of analyzed data and determined by means of an 
undirected graph neighborhood G T T  . In image analysis 
objective function can often be represented as the sum of the 
two types of potential functions for cliques, called node 
functions and edge functions. In image smoothing node 
functions ( | )x Y t t t  play the role of a penalty on the difference 

between the values of input data Y and the seeking function 
X , and are usually chosen in quadratic form 

2( | ) ( )x Y x y  t t t t t . Each edge function ( , )x x    t ,t t t  

imposes penalty upon the difference of values in the 
corresponding pair of adjacent elements of the edge ( , ) t t of 

neighborhood graph G , and can have various forms. The 
quadratic form of Gibbs potentials corresponds to the 
assumption of normal priori distribution Х . In a Bayesian 
framework, the edge functions are usually called a pair-wise 
potential functions. 
There are different pair-wise potentials in the literature. A 
variety of non-convex pair-wise potential functions were 

considered for preserving large differences of values in the 
corresponding pairs of adjacent elements of the edges and 
smoothing the other differences (Nikolova, 2010). Convex 
edge-preserving pair-wise potential functions were proposed to 
avoid the numerical involutions arising with non-convex 
regularization (Xiaoju and Li, 2009). However, non-convex 
regularization offer the best possible quality of image 
reconstruction with neat and exact edges (Nikolova, 2010). One 
of the main problems in these approaches is high computational 
complexity of corresponding minimization procedures which 
can hardly be applied to high-resolution images. 
In the paper (Kopylov, 2010), the different case is considered, 
when pair-wise Gibbs potentials are selected as a minimum of a 
finite set of quadratic functions, and an efficient optimization 
procedure for signal processing is proposed for the Blake and 

Zisserman function 2 2
' '' ' ''( , ) [( ) , ]x x u x x   t t t t , which is 

often used in edge-preserving procedures. This highly effective 
global optimization procedure, is based on a recurrent 
decomposition of the initial problem of minimizing function of 
many variables into a succession of partial problems, each of 
which consists in minimizing a function of only one variable. 
Such a procedure is nothing else than one of versions of the 
famous dynamic programming procedure. In the case of a 
minimum of a finite set of quadratic functions pair-wise Gibbs 
potentials, the procedure breaks down at each step into several 
parallel procedures, according to the number of quadratic 
functions forming the intermediate optimization problems of 
one variable. The corresponding intermediate objective 
functions are called Bellman functions and the procedure itself - 
a multi quadratic dynamic programming procedure. 
According to the central idea of the variation approach to the 

analysis of ordered data sets, the result of analysis ˆ ( )X Y  is 

defined by the condition: 
 

 ˆ ( ) arg min ( | )
x

X Y J X Y



t X

 (2) 

 
The procedure of dynamic programming will search for 
optimization of the objective function (1) in the forward and 
backward recurrent relation. In the forward recurrent with 
upward recurrent relation defined by the Bellman function 
(Mottl, 1998): 
 

 
1

1 1 1( ) ( ) min ( , ) ( )
x

J x x x x J x 


      
t

t t t t t t t t t
   (3) 

 
The global minimum of the Bellman function from the last 
variable min ( )x J x

N N N
  coincides with the global minimum of 

the total objective function in all variables, so the optimal value 
of the last variable minimize its function Bellman (Mottl, 
1998): 

 
 ˆ arg min ( )xx J x

NN N N
  (4) 

 
The other variables can be found by applying backward 
recurrent relation ( 1,..,2,1 t N ): 
 

 
1

1 1 1 1ˆ ( ) arg min ( , ) ( )
x

x x x x J x


      
t

t t t t t t t
  (5) 
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3. MULTI-QUADRATIC DYNAMIC PROGRAMMING 
PROCEDURE FOR IMAGE PROCESSING 

In this paper, we propose a new non-convex type of pair-wise 
potential functions, allows more flexibility to set a priori 
preferences, using different coefficients of penalty for various 
ranges of differences between the values of adjacent image 
elements: 
 

 1
1 1 1( , ) min ( , ), , ( , )Lx x x x x x       t t t t t t t t t   (6) 

 
The developed image analysis procedure can significantly 
extend the class to solve applied problems, to take into account 
the presence of heterogeneities and discontinuities in the 
original data, while retaining the high computational efficiency 
of procedures of dynamic programming and Kalman filter-
interpolator (Kalman and Bucy, 1961). 
It can be proven, that if the pair-wise Gibbs potentials are 
selected as a minimum of a finite set of quadratic functions, and 
node functions are in quadratic form, the procedure breaks 
down at each step into several parallel procedures, according to 
the number of quadratic functions forming the intermediate 
optimization problems of one variable. The Bellman function at 
each step of the dynamic programming will has a minimum of a 
finite set of quadratic functions: 
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  1 2( ) min ( ), ( ), , ( )KF x F x F x F xt t t t t t t t
     (10) 

 

 2( ) ( ) , 0, 1,..,j j j jjF x q x x d q j K    t t tt t t t
     (11) 

 
The backward recurrent relation 1ˆ ( )x xt t  has the following 

form: 
  1 1

1

ˆ ( ) arg min ( ) 


t t t
t

x x F x
x

 (12) 

 1 1 1 1 11( ) min ( , ) ( ) ( )    
    t t t t t t tt

 jiF x x x x F x  (13) 

 
It is easy to see that if the values , ,..,x x x1 2  N are the minimum 

points of criteria (1), then  ,x a bt for every 1,..,t N , where 

min( )a Y  and min( )a Y . It can be noted that not all of the 
quadratic function will participate in forming of the final 
function, because their values are not minimum for any point. 
Such functions can be dropped using enough simple procedure 

that takes into account the position of the minimum point and 
the points of intersection of quadratic functions with each other. 

At the beginning, sort by ascending values jdt of array jFt
 . At 

each step, looking for the minimum constant and discard all 
others constant. Discard all functions than have minimum 
greater than or equal to this constant.  
After that, we find necessary and sufficient condition of 
intersection of quadratic function by following equations: 

 

 2 2( ) ( )i i i j j jq x x d q x x d    t t t t t t t t
      (14) 

 
where , 1.. ;i j K i j   
The coordinates of the intersection points on the real axis 
defined by the following relations: 

 

 ( ) ( )
( ) ( ) ( ) ( ) ( )1_ 1 ( )i j
ij i i j j

q q
x c q x q x


   

t t
t t t t t 

     (15) 

 

 ( ) ( )
( ) ( ) ( ) ( ) ( )1_ 2 ( )i j
ij i i j j

q q
x c q x q x


   

t t
t t t t t 

     (16) 

 

The points of intersection ( )_ 1 ijx c t and ( )_ 1 ijx c t  have real 

coordinates, if expression  under the square root is greater 
than or equal to zero: 

 
( ) ( ) ( ) ( 2 ( ) ( ) ( ) ( )( ) ( )( ) 0i j j i j i i jq q x x d d q q      t t t t t t t t

       (17) 

 
After that, select functions that have points of intersection with 
satisfying ( ) ( )_ 1 , _ 2ij ija x c x c b t t . Discard all the functions 

for which there is no intersection. Among the tested functions, 
select the function with the smallest minimum and leave it. 
Check its intersection with other functions. Discard all 
functions for which there is no intersection. Repeat as long as 
there will be functions for which have no decision on 
acceptance or discarding. Then the reduction of the amount 
Bellman functions at each step is determined by the formula: 

 

  1 2( ) min ( ), ( ), , ( ) ,HF x F x F x F x H K t t t t t t t t
     (18) 

 
The number of Bellman functions can be reduced according to 
the expression (17). It was proven, that in the case of signal 
processing the number of quadratic functions that are required 
for representation of a Bellman function, generally, does not 
increase by more than one at each step. Nevertheless, using this 
approach for processing data based on the two-dimensional the 
tree approximation of lattice graph neighborhood (Mottl et.al, 
1998), the number of quadratic functions on the Bellman 
functions may be too large and leads to a lack of effective 
implementation of the procedure.  
The basic idea of the proposed procedure is to find the groups 
of closest, in the appropriate sense, quadratic functions using k-
means clustering algorithm, and to replace each of these groups 
by one quadratic function having the smallest minimun value. 
We consider quadratic functions in (17) as a points in three-

dimensional space with coordinates  , , , 1,...,i i iq x d i Ht t t
  . 

Using k-means clustering algorithm, the distance between 
quadratic functions can be calculated as the sum of the squares 
of the difference on the definitive range [a, b]: 
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3
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2 2
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i i j js q x q x t t t t    ; 2

i js q q t t  ;

2 2
3 ( ) ( )i i j j i js q x q x d d   t t t t t t

     ; ; , 1,...,i j i j H   

 
Assume that the number k  is a predetermined number of 
groups for k-means clustering algorithm. To preserve the 
quality of image processing, we do not use directly the final 
cluster centers which derived by the k-means algorithm. For 
each of the derived final groups we choose a point that have the 
lowest third coordinate. 
Using the algorithm for reduction in the number of quadratic 
functions allows you to get the effective implementation of 
image processing procedure on the basis multi quadratic 
dynamic programming procedure. Experimental studies show 
that the vast majority of the original data sets of two or three 
square functions that are quite fully reflect each function in the 
Bellman criteria (7). 
 

4. EXPERIMENTAL RESULTS 

In this paper, all the experiments are run on MATLAB 7.14. 
The test images are 8-bit grayscale brain MR images from 
Simulated Brain Database (SBD)1. In our experiments we 
compare proposed approaches with the other filters for MR 
images as Wiener filtering (WF), non – linear total variation 
(TV), anisotropic diffusion filter (ADF), fast bilateral filter 
(FBF), the Bayesian least squares with Gaussians Scale Mixture 
(BLS-GSM). Results are quantified by the Mean Structure 
Similarity Index (MSSIM), peak-to-signal ratio (PSNR), Signal 
to Noise Ratio (SNR), and Peak to Signal Noise Ratio (PSNR). 
MSSIM is defined by the mean of values SSIM: 
 

 1 , 2
2 2 2 2

2

(2 )(2 )
( , )

( 1)( )

P Q P Q

P Q P Q

c c
SSIM P Q

c c

  

   

 


   
 (21) 

 
PSNR (dB) is defined as: 
 

 
2

10
255

10logPSNR
MSE

 
   

 
 (22) 

 
SNR (dB) is defined as:  
 

 2
10

1 1

1
10log ( ( , ) )

M N

i j

SNR P i j
MSE M N

 


   (23) 

 

where 2

1 1

1
( ( , ) ( , ))

M N

i j

MSE P i j Q i j
M N

 

 
  ; ,P Q  -

means of images; ,P Q  - standard deviations (the square root 

of variance) of images; ,P Q - covariance of images ( , )P i j  

                                                                 
1 Available at http://brainweb.bic.mni.mcgill.ca/brainweb/ 

and ( , )Q i j ; c1=6.5025, c2=58.5225; ( , )P i j and ( , )Q i j denote 
pixel values of the original image and the reconstructed or noisy 
image accordingly. 
In the experiments, the node functions selected quadratic form 

1 2 1 2 1 2 1 2

2( ) ( )t t t t t t t tx x y   , and edge functions are at least a set 

of quadratic functions instead of a single quadratic function. 

Node functions 
1 2 1 2 1 2 1 2

2( ) ( )t t t t t t t tx x y   are the same for both 

horizontal
1 2 1 2, 1 ,( , )h t t t tx x   and vertical 

1 2 1 21, ,( , )v t t t tx x   

adjacency. For edge functions, we chose values 2, 3L L  . 

With 2L  , if the second function is a constant function, we 
have forms of function Blake and Zisserman: 
 

 
1 2 1 2

2 2
, 1 ,min[( ) , ]h h t t t tu x x     (24) 

 

 
1 2 1 2

2 2
1, ,[( ) , ]v v t t t tu x x     (25) 

 
and with 3L  we have following forms of edge functions: 
 

1 2 1 2 1 2 1 2

2 2 2
, 1 , , 1 ,min[( ) , ( ) , ]h h t t t t t t t tu x x x x d        (26) 

 

 
1 2 1 2 1 2 1 2

2 2 2
1, , 1, ,[( ) , ( ) , ]v v t t t t t t t tu x x x x d        (27) 

 
On figure 1 show example results of reducing noise MRI with 
Racian noise level 10  . On figure 2 show example results of 
reducing noise MRI with Gaussian noise level 15  .  

 

 
Figure 1. Original image (a); Racian noise image (b) with 
noise level 10  ; denoising results with  TV (c), BLS-
GSM (d), FBF (e), ADF (f), WF (g) , L=2 (h), L=3 (i) 
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Figure 2. Original image (a); Gaussian noise image (b) 
with noise level 15  ; denoising results with TV (c), 

BLS-GSM (d), FBF (e), ADF (f), WF (g) , L=2 (h), L=3 (i) 
 

 

 
 

Figure 3. Comparison of measurements SNR of methods 
with different Rician noise levels  

 

 
Figure 4. Comparison of measurements PSNR of methods 

with different Rician noise levels 
 

 
Figure 5. Comparison of measurements MSSIM of method 

with different Rician noise levels 
 

 
 

Figure 6. Comparison of measurements SNR of method 
with different Gaussian noise levels  

 
Figure 7. Comparison of measurements PSNR of methods 

with diffrent Gaussian noise levels 
 

Results of measurements in figure 3-8 are has been averaged 
over ten tests. Results show, that our algorithm has the best 
accuracy to speed ratio, especially in the case of high-resolution 
images. Details of quantified measurements are showed on 
figure 3-8 with different Gaussian and Racian noise levels 
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Figure 8. Comparison of measurements MSSIM of method 

with diffrent gaussian noise levels 
 

5. CONCLUSION 

Edge preserving MR denoising has become an urgent step in 
medical imaging to remove noise and to preserve local image 
features for an accurate and effective diagnosis. In this paper, 
we proposed a new approach to achieve these aims. The 
experimental results show that muti-quadratic dynamic 
programming procedure with the application of the algorithm k-
means for reduction of the number of executed quadratic 
functions, allows get the high computational efficiency of 
dynamic programming for image processing, especially in the 
case of high-resolution images. 
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