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ABSTRACT:

A morphological orientation spectra is proposed. This spectrum describes basic directions of shape parts. Fast discrete-continuous
algorithm for computing orientation spectrum is presented. It is based on usage of continuous skeleton that is constructed from
polygonal shape contour. A definition for disc orientation map is given. Comparison experiments for binary shapes with the usage
of orientation spectra are carried out. Cyclic shift and EMD-L1 distance are used for spectra comparison. The obtained results indicate
that the aggregation of the thickness spectra with orientation spectra increases the quality of inter-class recognition.

1. INTRODUCTION

In the field of computer vision, many approaches exist to the
problem of description and analysis of the 2D shapes. Among
them, pure analytical method or methods based on analytical so-
lutions have an advantage. Such analytical methods are often
very fast and allow to build more precise and compact descrip-
tors then fully discrete methods. For example, in paper (Mestet-
skiy, 2009) and (Masalovitch, 2009) computational effective al-
gorithms were proposed for constructing continuous skeletons
of 2D (flat) polygonal shapes. Continuous skeletons are infor-
mative, but unstable descriptors. That is why, it is reasonable
to use morphological pattern spectrum (Maragos, 1989) that is
more stable (Sidyakin, 2013). Connection between various skele-
tal representation (Mestetskiy, 2009) and a morphological pattern
spectrum (Maragos, 1989) is also well-known. Morphological
discrete-continuous morphological pattern spectrum (Sidyakin,
2013) with a disc structuring element (SE) can be calculated us-
ing continuous skeleton and radial function (Mestetskiy, 2009)
and (Masalovitch, 2009). This spectrum allows us to characterize
the local thickness of shape parts, but tells us nothing about the
”orientation” of these parts. To solve this ”orientation” problem,
we could use elliptical SE and existing efficient algorithm (Serra,
1982), but real accounting of all possible ellipse parameters com-
binations reduces efficiency of elliptical discrete-continuous mor-
phological pattern spectrum algorithm (Serra, 1982).

In this paper, we propose more simple and effective solution then
the elliptic one in (Serra, 1982), which allows us to extract the in-
formation about orientation of shape parts. Its core idea is to use
the orientation of continuous skeleton bones and build one addi-
tional discrete orientation accumulator a la algorithm (Sidyakin,
2013). Thus, the presented approach utilize the robustness and
efficiency of continuous skeleton to build the orientation pattern
spectra.

The remaining part of the paper is organized as follows. In sec-
tion 2, theoretical concepts of morphological pattern spectrum
and thickness map is given. In Section 3, the review of the re-
lated pattern spectrum algorithms that are based on continuous
skeletons are brought down. The proposed approach is presented
in section 4. In section 5, we present the experimental results
conducted on standard shape datasets. The comparative analysis
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with the existing similar disc spectrum approach is also presented
in this section. The conclusion is given in section 6.

2. MORPHOLOGICAL PATTERN SPECTRUM

Figure 1: The morphological pattern spectrum of objects in the
image X with disc SE and the stages of its morphological pro-
cessing.

The original idea of pattern spectrum proposed by Maragos (Mara-
gos, 1989) is based on Serra’s Mathematical morphology filters
(opening/closing). More formally, let X be the given binary im-
age (pattern). Let B be the structuring element with (0, 0) as
the origin on the 2D object plane P . The parametrically scal-
able structuring element B(r) cab be defined as B(r) = {rb|b ∈
B}, r ≥ 0, b = (xb, yb) ∈ P . Let X ⊆ P and B ⊆ P , the
morphological pattern spectrum (PS) of X is defined as

PS(r) = −∂S(X ◦B(r))

∂r
, r ≥ 0 (1)

PS(−r) =
∂S(X •B(r))

∂r
, r > 0 (2)

where S(X)=‖ X ‖L1 , is the area of X , PS(r) - the spec-
trum for positive part of the axis r (spectrum of image objects),
PS(−r) - the spectrum for negative part of the axis r (spectrum
of image background). This means that S(X ◦B(r)) is a quanti-
tative measure of rB inX . Hence, the pattern spectrum is defined
as a morphological tool that gives the quantitative information
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about the shape and sizes of the objects in the image. The size
distribution is represented in the form of histogram for further
processing (fig. 1).

Since it is inconvenient to carry out computations with deriva-
tives, in practice a discrete morphological spectrum of continuous
image is used:

PS(ri) =− S (X ◦B (ri))− S (X ◦B (ri+1))

(ri − ri+1)
,

ri ≥ 0

(3)

PS(ri) =
S (X •B (−ri))− S (X •B (−ri+1))

(ri+1 − ri)
,

ri < 0

(4)

where ri = i∆r, i ∈ Z, ∆r - the scale step.

In the paper (Sidyakin, 2013), the new definition for pattern spec-
trum with disc SE was given based on disc thickness maps.

Let F be a binary figure which fully fits on the frame K : F ⊆
K. Denote FC(K) = K \ F , the background of figure F on the
frameK. Then the binary image, that correspond to the figure F ,
is defined as:

fF (x, y) =

{
1, if p = (x, y) ∈ F ;

0, if p = (x, y) ∈ FC(K).
(5)

Figure 2: Left: thickness map for foreground; Right: thickness
map for background.

Let B(q, r) be a translatable flat disc with the center at the point
q=(x, y)=B(q, 0) and the scale parameter r. Definition 1. Thick-
ness map TB(fF ) of a binary image fF (x, y) with disc struc-
turing element B(q, r) is real-valued image defined on the frame
K, with each point representing the maximum size of its cover-
ing disc structuring element fully inscribed in the figure shape F .
For the background of figure F , the value of the scale parameter
is negative, as shown in fig. 2.

TB(fF ) =

=


−maxr∈R{(x, y) ∈ B(q, r) ⊆ FC(K)} : (x, y) ∈ FC(K);

0 : (x, y) ∈ ∂F = ∂FC(K);

maxr∈R{(x, y) ∈ B(q, r) ⊆ F} : (x, y) ∈ F.
(6)

In particular, it was also proven in (Sidyakin, 2013) that discrete
Maragos pattern spectrum with disc structuring element is a his-
togram of discrete disc thickness map. The proposed disc thick-
ness map made possible the creation of precise fast disc pattern
spectrum computation algorithm. This algorithm is briefly de-
scribed in the next section.

Figure 3: Discrete-continuous morphological pattern spectrum
algorithm for disc SE. Steps from 1 to 6 shown. 1. 2D Shape;
2. Polygon; 3. Continuous skeleton; 4. Continuous skeleton and
skeleton radial function; 5. Thickness map (as gray scale image).
6. Disc Spectrum as 1D histogram.

2.1 Fast Disc Algorithm For Pattern Spectra Construction

Fast Discrete-continuous disc spectrum algorithm (Sidyakin, 2013)
sequentially goes through points of rasterized representation of
continuous skeleton bones and accumulate (collect) point’s votes
in cells (pixels) of the thickness accumulator. Vote value at the
point is equal to the radial function value (radius of maximum
inscribed empty circle with the center at this point) at the current
skeleton bone’s point. Accumulation process of vote’s values in
one cell is to choose maximum value between new vote value
and vote value recorded before in this cell. Thickness map is a
thickness accumulator filled with votes. As a result, values of the
maximum inscribed empty discs are recorded in the cells (pix-
els) of the thickness map and there is a connection link between
points (pixels) of the shape and skeleton points, which are the
centers of the maximum inscribed empty discs. The histogram of
thickness map represents discrete disc spectrum. Fig. 3 shows
the main steps of the described approach. Further the described
technic was generalized for elliptical spectra (section 2.2.).

2.2 Elliptical Algorithm For Pattern Spectra Construction

In paper (Sidyakin, 2014) approach to construction of morpho-
logical spectra with the fixed and arbitrary elliptical SE was pro-
posed. An application of elliptical SE allows to describe both
thickness and orientation information. An elliptical spectrum al-
gorithm with a fixed elliptic SE is based on a continuous skeleton
constructed with disc SE for equi-affine transformed contour of
the original shape. Ellipse to disk equi-affine transformation ma-
trix is used. Next, a disc thickness map is constructed using ras-
terization of maximum inscribed discs by fast and precise gener-
alized Bresenham algorithm (Zingl, 2012). Elliptical thicknesses
map is created with the help of disc to ellipse equi-affine trans-
form. Elliptical spectrum is a histogram of elliptical thicknesses
map. This approach is illustrated in fig. 4. Further, this approach
has been generalized to arbitrary rotating elliptical SE. In prac-
tice, the effective construction of the spectrum with an arbitrary
elliptical SE is only available for a limited set of orientations of
the ellipse principal axes and for a limited set of the relations be-
tween the axes of the ellipse. Proposed in section 3 orientation
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Figure 4: Basic ideas for pattern spectrum algorithm construction
with fixed elliptical SE. The most important steps are shown. 1.
Equi-affine transformation elliptical SE to disc SE; 2. Original
2D Shape; 3. Disc skeleton of equi-affine transformed polygonal
shape; 4. Disc thickness map of transformed shape; 5. Elliptical
thickness map obtained from disc thickness map by equi-affine
transformation of disc SE to elliptical SE.

spectrum algorithm is deprived of this drawback and allows to
take into account all the orientations presented in the figure.

3. ORIENTATION SPECTRUM ALGORITHM

To get started with orientation spectrum of 2D shapes, let’s de-
fine the orientation property for all skeleton points. One possible
definition of the orientation of the point is the tangent angle at
this point to the skeleton. If the skeleton point is the node point
(fig. 6) - this is a special case, and we assume that the orientation
of the point is the tangent angle at this point to the skeleton bone
with the maximum average thickness. If there are several bones
of equal average thickness, we assume that there is no orientation
at this node point.

Thus, 2D function (radial function, orientation) is given at all
points of the skeleton. Therefore, maximum inscribed circles de-
scribe the local thickness of shape that is elongated in a certain
direction (have certain orientation). This orientation is assigned
to the skeleton points.

Definition 2. Orientation map - 2D function, that is defined on
the image. This 2D function has the value at each point, that is
equal to the orientation of the bone to which the maximum empty
disk of the maximum area, covering this point, belongs.
So, Definition 2 is very similar to Definition 1.

Definition 3. Orientations spectrum is a histogram of orientation
map.

Overall, the algorithm to obtain a morphological orientation pat-
tern spectrum is presented below.

(a) Compute continuous polygonal representation (fig. 8.2) of
binary figure (fig. 8.1) F (Mestetskiy, 2009).

Figure 5: Elliptical thickness maps for arbitrary (not fixed) ellip-
tical SE. It is possible to build them based on discrete-continuous
morphological pattern spectrum algorithm for fixed elliptical SE,
but to do it fairly effectively we need to use a finite set of allowed
ellipse parameters.

Figure 6: Continuous Skeleton of the polygonal figure. Site-
points, site-segments, node-points are shown.

(b) Analytically calculate the continuous skeleton representation
SR(F ) (fig. 8.3) of the continuous polygonal figure F (all
skeleton bones and radial function for these bones)(Masalovitch,
2007).

(c) Create a two-dimensional thickness accumulator and initial-
ize all his elements with zeros. Create a two-dimensional
orientation accumulator and initialize all his elements with
zeros.

(d) Select a continuous bone (parabolical or line bone) from a
list of skeleton bones. If the list is empty, go to (h).

(e) Compute discrete representation of the continuous bone with
the help of Bresenham algorithm (Zingl, 2012) and form a set
of points {pi(xi, yi, ri)}, defined by the coordinates (xi, yi)
of the center and the radius ri of relevant maximum empty
circles computed with the following equations (Mestetskiy,
2010):
- in the case of two site-segments we have a corresponding
linear bone, that is described by the 1-st order Bezier curve:

V (t) = V0(1− t) + V1t

r(t) = r0(1− t) + r1t
(7)
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Figure 7: Orientation map construction for ”common red point”.
Orientation map is build based on thickness map. b(rb, ob) - big
maximum disc with center in point b, radius rb and orientation
ob. s(rs, os) - small maximum disc with center in point s, radius
rs and orientation os.

where V0, V1 - end points of linear bone, r0, r1 - maximum
inscribed discs’ radii that correspond to end points, t - curve
parameter, t ∈ [0 . . . 1];
- in the case of site-segments and site-point, we have a cor-
responding parabolical bone, that is described by the 2-nd
order Bezier curve:

V (t) = V0(1− t)2 + V12t(1− t) + V2t
2

r(t) = r0(1− t)2 + r12t(1− t) + r2t
2

r1 =

−−−→
B1B2 ×

−−−→
B1V1

|
−−−→
B1B2|

(8)

where V0, V2 - end points of parabolical bone, r0, r2 - max-
imum inscribed discs’ radii that correspond to end points,
B1, B2 - end points of site-segment, t - curve parameter,
t ∈ [0 . . . 1];
- in the case of two site-points we have a corresponding lin-
ear bone, that is described by the 2-nd order rational Bezier
curve:

V (t) =
V0(1− t)2 + V12t(1− t)ω1 + V2t

2

(1− t)2 + 2t(1− t)ω1 + t2

V1 = V0(1− µ) + V2µ, µ = (x1 − x0)/(x2 − x0)

r(t) =
r0(1− t)2 + r12t(1− t)ω1 + r2t

2

(1− t)2 + 2t(1− t)ω1 + t2

(9)

where V0, V2 - end points of linear bone, r0, r2 - maximum
inscribed discs’ radii that correspond to end points, t - curve
parameter, t ∈ [0 . . . 1], ω1 - weight coefficient, r1 - control
disk radius, x1 - control vertex on the abscissa axis. The
system of equations (10) is solved To determine r1 and x1:{

r0r1 − x0x1 = c2

r2r1 − x2x1 = c2
(10)

Figure 8: Creation of orientation pattern spectrum for disc SE.
Steps from 1 to 6 shown. 1. 2D Shape; 2. Polygon; 3. Continuous
skeleton; 4. Continuous skeleton and skeleton radial function;
5. Orientation map (orientation coded in color). 6. Orientation
Spectrum as 1D histogram.

where c - half of the distance between site-points. The system
of equations (11) is solved to determine ω1:

ω1 =
λ1

2
√
λ0λ1

x0λ0 + x1λ1 + x2λ2 = 0.5(x0 + x2)

r0λ0 + r1λ1 + r2λ2 =
√
c2 − (0.5(x0 + x2))2

λ0 + λ1 + λ2 = 1

(11)

(f) Construct discrete thickness map and orientation map in ac-
cumulators. The following logic is applied: bigger maxi-
mum circles cover smaller maximum circles. So, for current
bone point pi construct a filled maximum circle of the radius
ri in the accumulator with the help of Bresenham algorithm
for discrete circle representation (fig. 8.4). When filling the
circle with the value of radius ri in the corresponding accu-
mulator elements, the following condition is checked: if ri is
bigger than the current accumulator element value, store ri to
the current thickness accumulator element and orientation oi
of the current disc to the current orientation accumulator el-
ement, otherwise leave accumulators’ elements without any
changes. If ri is equal to rj , choose o based on average bone
thickness. Return to step (d).

(g) Collect one-dimensional histogram (orientation spectrum)(fig.
8.6) or two-dimensional histogram (2D thickness and orien-
tation spectrum) (fig. 7). Both ”orientation” based spectra
can be used for shape comparison.

(h) Calculate the morphological orientation pattern spectrum as
the histogram of the two-dimensional accumulator. Zero el-
ements of accumulator correspond to the background part of
the spectrum. Positive values of accumulator correspond to
the object part.
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Figure 9: Polygonal contour of the shape: 1. Original polygonal
contour; 2. Regularized contour with small regularization coeffi-
cient; 3. Regularized contour with big regularization coefficient;
4. Orientation map (orientation coded in color); 5. Orientation
spectrum of regularized shape.

(i) Normalize morphological orientation pattern spectrum: the
sum of all spectrum bins should be equal to one.

To increase stability of the proposed descriptor it is recommended
to regularize polygonal contour of the shape (fig. 9)(Sidyakin,
2013).

Adjustable parameter of this algorithm is the orientation sampling
step. This parameter determines the sensitivity of the spectrum to
the variety of orientations presented in the shape. 10 degrees step
was chosen for the experiments.

4. EXPERIMENTS

In this section, we present the experimental results conducted
on the standard shape dataset Kimia-216. The Kimia-216 shape
dataset consists of 18 classes with 12 samples in each class. Ex-
amples of objects of different classes are shown (fig. 10). All
shapes (presented in images) in this dataset were transformed to
the same shape-area-based scale (i.e, the scale is estimated such
that the area of all shapes became equal 215140 pixels) and then
all the images were bounded to the same image size (height =
507 pixels and width = 467 pixels). The comparison of shapes
through the comparison of orientation spectra is performed by

Figure 10: Examples of classes dataset Kimia-216.

Figure 11: Average precision when comparing spectra with
EMD-L1.

sequential cyclic shift. EMD-L1 comparison of the shifted orien-
tation spectra is applied on each shift step. The minimum EMD-
L1 value between all shift steps is taken. The performance of the
proposed approach is demonstrated through top-r average class
precision for the r closest matching shapes (r = 11 for Kimia-
216). Below comparative results are shown for disc thickness
spectra, for the proposed orientation spectra and for combination
of 2D thickness/orientation spectra. The average time of compar-
ison of two shapes by orientation spectra in Kimia-216 takes 18
ms.

Fig. 11 shows average class precision that was obtained by using
thickness spectra and orientation spectra respectively. It is clear
to see that in some cases orientation spectrum performs better
than thickness spectrum. The thickness spectrum shows better
results than orientation spectrum for the first three request images
(fig. 12). For the last three request images, we have the opposite
situation (fig. 13).

The experiment, when thickness spectra and orientation spectra
were applied consequentially, was conducted. Orientation spectra
was built for the reduced set of figures (24 images), these figure
shapes were selected by thickness spectra. Average precision is
shown on fig. 14.

From the above experiments, we have shown that the compari-
son of the thickness/orientation spectra with the help of EMD-L1

metric is an adequate way to compare shapes in the case if the
compared figures have a rich thickness distribution. The EMD-
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Figure 12: Top closest shapes for the requested shape. Thickness
spectrum was used.

Figure 13: Top closest shapes for the requested shape. Orienta-
tion spectrum was used.

L1 comparison is stable to small deformations of flexible objects,
to rotation and to slight noise effects at the borders of the shapes.

5. CONCLUSION

A morphological orientation spectra is proposed. This orienta-
tion spectrum describes basic directions of shape parts in contrast
to thickness spectrum. Orientation spectrum can be calculated
much faster than elliptical spectrum with arbitrary elliptical SE.
This descriptor is invariant to shift of a figure in the frame and
can be also applied to the analysis of almost non flexible figures,
parts of which can slightly change their directions. Fast discrete-
continuous algorithm for computing orientation spectrum is pre-
sented. It is based on usage of continuous skeleton that is con-
structed from polygonal shape contour. A definition for disc ori-
entation map is given. Comparison experiments for binary shapes
with the usage of orientation spectra are carried out. Cyclic shift
and EMD-L1 distance are used for spectra comparison. Cyclic
shift helps to make comparison rotation invariant. The obtained
results indicate that the aggregation of the thickness spectra with
orientation spectra increases the quality of inter-class recognition.
Proposed spectrum can also be used for shape segmentation into
regions of different orientation and/or thickness.

Figure 14: Average precision for thickness spectra and thick-
ness/orientation spectra.
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