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ABSTRACT: 

 

Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily 

tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important 

information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an 

efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we 

present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-

axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the 

geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They 

can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing 

techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds 

captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 

2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular 

cone model. The overall result suggests that the proposed model is appropriate and rigorous. 

 

1. INTRODUCTION 

Roadside pole-like objects such as lamp poles are of interest for 

many applications such as three-dimensional (3D) city 

modelling and for geographic information systems (GIS). 

Therefore they are often the segmentation targets from large 

point clouds (Cabo et al., 2014; Halawany and Lichti, 2013; Pu 

et al., 2011; Yokoyama et al. 2011; Lehtomäki et al., 2010). 

However, the geometric properties of pole-like objects such as 

lamp poles are not modelled and estimated preciously in most 

cases.  

 

If pole-like objects, particularly octagonal lamp poles, are 

accurately modelled geometrically, they could be treated as 

calibration references for terrestrial LiDAR and mobile mapping 

systems (Chan and Lichti, 2012, 2013; Chan et al., 2013) due to 

their abundance in most road scenes. In fact, developing an 

accurate geometric model for such pole-like objects can also be 

beneficial to many real-life problems such as pole 

reconstruction for 3D city modelling (Buhur et al., 2009), pole 

deformation monitoring (Chang et al., 2009) and quality control 

of pole manufacturing (Lindskog et al., 2012). Since most tall 

lamp poles usually have octagonal base and can be modelled as 

octagonal cones/pyramids, a rigorous geometric model of an 

octagonal cone is proposed in this paper. 

 

For in situ calibration of mobile LiDAR, a rigorous 3D 

geometric model which equates all the x, y and z coordinates for 

the octagonal cone is essential and is therefore of this paper. 

Some research (e.g., Milenkovic, 1993) has addressed the 

problem of polygon modelling but the models are mostly in 

two-dimensional (2D) and the models and their associated 

constraints often consist of inequalities. Chicurel-Uziel (2004) 

proposed a generalized 3D model for polygonal prisms without 

inequality but the x and y coordinates are modelled and 

estimated separately using two equations and they cannot be 

readily expressed in terms of the other. Also, no inclinations of 

the prism were considered in its model. 

2. THE PROPOSED MODEL FOR OCTAGONAL CONE 

2.1 The Proposed Model 

The fundamental concept of the proposed model is that by 

breaking the cone into many horizontal 2D octagonal layers, all 

eight sides of the octagon can be treated as the same one side by 

applying the transformation as a regular octagon is rotational 

symmetric. The side is then constrained with a simple 

trigonometric equation augmented with a half of the fixed 

interior angle of the octagon. The proposed model is consists of 

seven parameters: the cone centre (Xc, Yc), the rotations about 

the X-axis (Ω), Y-axis (Φ) and Z-axis (Ψ ), the octagonal radius 

(R0) at Z = 0 and also the cone gradient factor (k) as depicted in 

Figure 1. Some of the parameters are inherited from the 

conventional cylindrical model which has five degrees of 

freedom (Rabbani et al., 2007). The octagonal cone has one 

additional rotation parameter (Ψ ) about the Z-axis on the top of 

the cylindrical model because an octagon is not isotropic about 

the Z-axis. 

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The parameters of the proposed octagonal cone model 
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After the cone is reduced to the origin by subtracting the cone 

centre (Xc, Yc), it is rotated about the X- and Y- axes by Ω and Φ 

respectively. It is followed by further rotating the cone about the 

Z-axis by Ψ  (-22.5˚≤ Ψ ≤ 22.5˚) as illustrated in Figure 2a 

(only showing the cross section at Z = 0) to its nominal position 

(Figure 2b).  

 

 
Figure 2. Rotation about the Z-axis with Ψ (2a, left); The nominal 

position and the trigonometric constraint in the first octant (2b, right) 

 

With the octagonal cone transformed to the nominal position, 

points lying on the octagonal side of the first octant (red in 

Figure 2b) satisfy the following trigonometric constraint 

 

                                                                                                 (1) 

 

where R0 is defined as the octagonal radius which is the 

distance between the centre and a vertex of the octagon on the 

XY-plane after the cone is transformed to be perpendicular to 

the XY-plane. 
 

Every point lying on the cone can be classified as belonging to 

one of the eight octants (Figure 3) depending on the point’s 

position and q is defined as the octant number. 

 

 
Figure 3. The octant number (q) for the model 

 

By computing q, points lying on other octants (the 2nd, 3rd, …, 

8th octant) can also be constrained by Equation (1) after  

rotating the points about Z-axis by the following angle 

 

                                                                                                (2) 

 

and q can be calculated as follows 

 

                                                                                                (3) 

 

 

where Θ (0˚< Θ ≤ 360˚) is the angle from the X-axis on the XY-

plane. The angle Θ can be readily computed from X̂ and Ŷ  

coordinates of the point after the cone is transformed to the 

nominal position by  

 

             ( ) ( ) ( )
















−

−

=
















Z

YY

XX

ΩΦΨ

Z

Y

X

c

c

12

ˆ

ˆ

ˆ

RRR3
            (4) 

 

On the other hand, the octagonal radius decreases with 

increasing height (Z). The gradient factor, k, governs the radius 

decrement by subtracting a small portion of Z from R0. 

Therefore, the overall geometric model for the octagonal cone is 

 

                                                                                                (5) 

 

where 

 

 

                                                                                                (6) 

 

Note that Equations (5) and (6) can be generalized for other 

polygonal cones such as hexagonal cone, which is given by 
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and n is the number of sides for the corresponding polygon. 

 

2.2 Initial Parameter Estimation 

The initial values of all the parameters (except Ψ ) of the 

proposed model can be estimated using least-squares fitting 

with the circular cone model 
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The initial values for the above model can be all set to zero 

except for R0, for which only a rough estimate is required (e.g. 

based on empirical knowledge).  

 

After obtaining the six initial values, the cone can be reduced to 

the origin and rotated to be perpendicular to the XY-plane. Then 

the initial value of Ψ  can be found by first isolating a thin 

octagonal layer around Z = 0 (~ 1 cm thick). This is followed by 

projection of the points on the layer onto a 2D image (Figure 

4a). Therefore, the octagonal sides can be readily detected using 

region growing or the Hough Transform, and the vertices of the 
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octagon are thus found. Ψ  is the smallest angle between the X-

axis and the vertex which is the closest to the X-axis. Figure 4b 

shows the projected 2D image of cone in the nominal position 

after rotating by Ψ for 12˚. 

 
Figure 4. Projected 2D image from the point cloud for calculating 

approximate value of Ψ  (4a, left): before rotating by Ψ ; (4b, right): 

after rotating by Ψ   

 

3. EXPERIMENT 

A full errorless vertical octagonal lamp pole was simulated with 

the realistic parameters shown in Table 1. The height of the 

simulated octagonal pole is 11 m and it consists of 140864 

points.  Figure 5 shows the simulated pole and its projected 

cross-section on the XY-plane Least-squares fitting of the data 

to the proposed model (Equation 5) was performed. 

 

 

 

 

 

 

 

Figure 5. The simulated octagonal lamp pole (5a, left) and its projected 

cross section on the XY-plane (5b, right) 

Table 1. The parameter values for the simulated octagonal pole 

 Simulated Value 

Xc (m) 4.2340 

Yc (m) 3.5670 

Ω (rad) -0.0050 

Φ (rad) 0.0060 

Ψ (rad) -0.0349 

k 0.0050 

R0 (m) 0.1200 

 

Five real octagonal lamp poles of two different sizes were 

captured with the Faro Focus 3D (Figure 6) and the Velodyne 

HDL-32E (Figure 7) on the University of Calgary campus. The 

scanner was placed approximately 4 m in average away from the 

poles. Least-squares fitting using the octagonal cone model 

(Equation 5) was performed with the lamp pole point clouds 

(the vertical part) captured by Faro Focus 3D (Lamp Poles 1 - 

3) and the HDL-32E (Lamp Poles 4 and 5). Only 4 sides of the 

pole were captured for each scanner position. The Velodyne 

point clouds contain time varying errors (Glennie and Lichti, 

2011; Chan et al., 2013) and thus the least-squares convergence 

thresholds have to be tuned based on the severity of the noise. 

The details of the poles and fitting input are summarized in 

Table 2. The point clouds of Poles 1 and 4 are plotted in 

Figures 8 and 9 respectively. 

 

 

 
Figure 6. A lamp pole was captured 

with the Faro Focus 3D on the 

University of Calgary Campus 

 
Figure 7. A lamp pole was 

captured with the Velodyne 

HDL-32E on the University 

of Calgary Campus 

 

 

Figure 8. The point cloud of Pole 1captured by Faro Focus 3D (8a, left) 

and its projected cross section on the XY-plane (8b, right) 

 

 

 

 

 

 

 

 

Figure 9. The point cloud of Pole 1captured by Velodyne HDL-32E (9a, 

left) and its projected cross section on the XY-plane (9b, right) 
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Table 2. Summary of the real data fitting 

Pole Scanner       No of 

points 

Approx.  

Length 

(m) 

Approx 

R0 (m) 

Observation 

σx/ σy/ σz 

(m) 
 

1 Faro  

Focus 3D 

30867 7 0.12 

0.003 2 75386 7 0.12 

3 60146 12 0.13 

4 Velodyne 
HDL-32E  

3327 7 0.12 
0.010 

5 4059 7 0.12 

 

4. RESULTS 

4.1 Model Fitting Results with the Simulated Data 

Table 3 shows the estimated parameter values and their 

precision from the least-squares fitting of the simulated pole. 

All the parameters were accurately recovered with high 

precision as seen in Tables 1 and 3. Also, no high parameter 

correlation was found from the correlation matrix (absolute 

value) tabulated in Table 4. 

 
Table 3. Estimates of octagonal cone model fitting with  

the simulated data 

 Est. Value Std. Dev. 

Xc (m) 4.2340 1.05E-04 

Yc (m) 3.5670 1.05E-04 

Ω (rad) -0.0050 2.18E-05 

Φ (rad) 0.0060 2.18E-05 

Ψ (rad) -0.0349 1.82E-03 

k 0.0050 1.70E-05 

R0 (m) 0.1200 8.66E-05 

 

Table 4. Correlation matrix of octagonal cone model fitting  

with the simulated data 

 Xc Yc Ω Φ Ψ k R0 

Xc 1.00 0.00 0.00 0.76 0.00 0.00 0.00 

Yc 

 

1.00 0.76 0.00 0.01 0.00 0.00 

Ω 

 

1.00 0.00 0.00 0.00 0.00 

Φ 

 

1.00 0.00 0.00 0.00 

Ψ 

 

1.00 0.17 0.38 

k 
 

1.00 0.76 

R0  1.00 

 

4.2 Model Fitting Results with the Real Data 

4.2.1 Faro Focus 3D 

 

The mean estimated results from the least-squares fitting using 

the octagonal cone model for Poles 1-3 captured by the Faro 

Focus 3D are shown in Table 5. It is shown that the precisions 

of the parameters are all high and a reasonable estimated 

variance factor ( 2
0σ̂ ) is obtained (the observation standard 

deviations for the adjustment are listed in Table 2).  

 

Unlike the eight-sided simulated pole, some high correlations 

between the parameters were found from the correlation matrix 

(Table 6) which shows the mean absolute values of the 

correlation coefficients for Poles 1 - 3. Only 4 sides (half of the 

pole) for each pole were observed from a scanner position and 

this leads to rather poor geometry for the adjustment so that R0 

becomes more coupled to either Xc or Yc, or both depending the 

relative position between the pole and the scanner. Similarly, k 

is more coupled with the inclinations of the pole due to lack of 

observations of the complete pole. Fitting the same data to a 

circular cone also incurs these high correlation problems. 
 

Table 5. Mean estimates of octagonal cone model fitting with 

the real data (Pole 1 - 3) captured by the Faro Focus 3D 

 Est. Value Std. Dev. 

Xc (m) -0.5057 6.29E-05 

Yc (m) 3.9494 5.47E-05 

Ω (rad.) 0.0030 1.73E-05 

Φ (rad.) -0.0022 1.99E-05 

Ψ (rad.) -0.0391 6.00E-04 

k 0.0062 2.11E-05 

R0 (m) 0.1160 6.71E-05 
2
0σ̂  0.82 

 
Table 6. Mean correlation matrix of octagonal cone model fitting  

with the real data (Pole 1 - 3) captured by the Faro Focus 3D 

 Xc Yc Ω Φ Ψ k R0 

Xc 1.00 0.66 0.49 0.74 0.04 0.67 0.90 

Yc 

 

1.00 0.73 0.50 0.05 0.62 0.83 

Ω 

 

1.00 0.67 0.01 0.83 0.61 

Φ 

 

1.00 0.00 0.90 0.67 

Ψ 

 

1.00 0.01 0.02 

k 
 

1.00 0.75 

R0  1.00 

 

On the other hand, the mean precision of Poles 1 – 3 from the 

lamp-pole fitting of the octagonal and circular cone models is 

compared (Table 7). It can be seen that the octagonal model 

delivered higher precision for all the parameters. Furthermore, 

the root mean square (RMS) values of the octagonal model 

fitting residuals are also lower in all the three dimensions. Up to 

2.9 mm mean RMS discrepancy between two models’ residuals 

was realized as shown in Table 8. As a result, the proposed 

model is a more accurate and thus more appropriate for 

modelling the octagonal lamp pole point clouds.   

 
Table 7. Comparison of the mean estimated standard deviations of the 

octagonal and circular cone models fitting with the real data (Poles 1 - 

3) captured by the Faro Focus 3D 

 Octagonal Cone 

Model Fitting 

Circular Cone 

Model Fitting 

 Mean Std. Dev. Mean Std. Dev. 

Xc (m) 6.29E-05 8.44E-05 

Yc (m) 5.47E-05 7.32E-05 

Ω (rad) 1.74E-05 2.30E-05 

Φ (rad) 1.98E-05 2.65E-05 

Ψ (rad) 6.00E-04 - 

k 2.11E-05 2.60E-05 

R0 (m) 6.71E-05 8.31E-05 

 
 

Table 8. Comparison of the mean RMS of the residuals of the octagonal 

and circular cone models fitting with the real data (Poles 1 - 3) captured 

by the Faro Focus 3D 

 Mean RMS of Residuals 

RMSx (mm) RMSy (mm) RMSz (mm) 
Octagonal Cone 

Model Fitting 
1.71 1.65 0.02 

Circular Cone 

Model Fitting 
4.60 4.30 0.05 

 

 

4.2.2 Velodyne HDL-32E 

 

For the Velodyne point cloud for Poles 4 - 5, the fitting with the 

octagonal cone model also gives realistic estimates (except k) 

with high precision and also a small estimated variance factor as 

shown in Table 9. The estimated k is large because the 

differences between systematic errors adherent to the points 

captured by different laser heads are high and this causes the 
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whole point cloud deviated extensively from the conic structure 

in which the radius is reduced by a small fixed ratio (k) when 

the vertical position increase. Furthermore, the parameter 

correlations are fairly low except the Ω-k and Yc-R0 correlations 

as seen in Table 10. A similar conclusion from Section 4.2.1 

can be drawn for explaining that.  

 
Table 9. Mean estimates of octagonal cone model fitting with  

the real data (Pole 4 - 5) captured by the Velodyne HDL-32E 

 Est. Value Std. Dev. 

Xc (m) 2.1412 4.51E-04 

Yc (m) -1.5914 5.52E-04 

Ω (rad) 0.0029 7.91E-04 

Φ (rad) 0.0155 6.49E-04 

Ψ (rad) -0.0466 7.47E-03 

k 0.0158 8.20E-04 

R0 (m) 0.1059 5.70E-04 
2
0σ̂  0.85 

 

Table 10. Mean correlation matrix of octagonal cone model fitting  

with the real data (Pole 4 -5) captured by the Velodyne HDL-32E 

 Xc Yc Ω Φ Ψ k R0 

Xc 1.00 0.49 0.17 0.39 0.13 0.25 0.69 

Yc 

 

1.00 0.28 0.18 0.09 0.22 0.84 

Ω 

 

1.00 0.47 0.03 0.85 0.21 

Φ 

 

1.00 0.03 0.66 0.27 

Ψ 

 

1.00 0.02 0.01 

k 
 

1.00 0.29 

R0  1.00 

 

Both the simulated and real data fitting results suggest that the 

proposed model is appropriate and rigorous. In addition, the 

results also show that the proposed model more accurately 

models octagonal lamp poles as compared to the conventional 

circular cone model. 

 

5. CONCLUSIONS 

This paper presents a novel octagonal cone model for lamp pole 

point clouds. The model is in implicit form and can be readily 

implemented with the least-squares fitting. The model was 

verified with simulated data and also real data of several lamp 

pole point clouds captured by a panoramic terrestrial LiDAR 

(the Faro Focus 3D) and a spinning beam LiDAR (the Velodyne 

HDL-32E). The results suggest that the proposed model is 

appropriate and rigorous. In addition, the modelling concept 

developed in this paper can also be readily transferred and 

applied to other 3D polygonal cone such as hexagonal cone. 

Future research work is to apply the propose models to 

sensor/system calibration problems. 
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