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ABSTRACT: 

 

Building indoors reconstruction is an active research topic due to the importance of the wide range of applications to which they can 

be subjected, from architecture and furniture design, to movies and video games editing, or even crime scene investigation. Among 

the constructive elements defining the inside of a building, doors are important entities in applications like routing and navigation, 

and their automated recognition is advantageous e.g. in case of large multi-storey buildings with many office rooms. The inherent 

complexity of the automation of the recognition process is increased by the presence of clutter and occlusions, difficult to avoid in 

indoor scenes. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors 

using information acquired in the form of point clouds and images. The methodology goes in depth with door detection and labelling 

as either opened, closed or furniture (false positive).  

 

 

                                                                 

*  Corresponding author. 

1. INTRODUCTION 

In the last decade, 3D building reconstruction has been a 

research of interest due to the increasing demand of realistic and 

accurate building models, which are requested as an input 

source for a variety of purposes.  

 

The representation of building interiors can support a wide 

range of applications in many fields, from architectural 

planning, to lighting analysis, crime scene investigation or 

indoor navigation. Specifically, openings of the building 

(windows and door) are of primary interest due to their 

unchanging nature within the building, especially when 

compared to furniture, as well as their influence of natural 

illumination and emergency route planning, among others. The 

geometric detail and the semantic content of existing indoor 

models strongly depend on the application area for which 

models are created. In this way, Building Information 

Modelling (BIM) provide highly detailed 3D indoor models that 

support a large amount of semantic data; while the 

representation of building interiors in GIS is limited in both 

geometry and semantic contents. This is due to the fact that, 3D 

GIS models are aimed at urban, global and large-scale purposes. 

 

Manual generation of a building model is a time-consuming 

process that requires expert knowledge (Tang, et al, 2010; 

Gonzalez-Aguilera et al, 2012). Reconstruction tools based on 

the interpretation of measured data such as LiDAR Data and 

Images are frequently used for the automatic interpretation and 

reconstruction of building geometry.  

 

One of the key challenges to the automation of the 

reconstruction of building interiors is the presence of clutter and 

occlusions, caused by furniture and other objects.  To be useful, 

modelling algorithms should be functional in unmodified 

environments since it is not practical to remove the furniture 

and objects of an indoor scene prior data acquisition. Their 

specific challenges are, on the one hand, occluding objects that 

can block the visibility of the structural building surfaces (i.e. 

walls, ceilings or floors) causing absence of measured data; on 

the other hand, they can be erroneously interpreted as parts of 

the model itself.  For example, a large bookshelf or cupboard 

can be confused with a door because their size and shape can be 

similar; or the frame of a picture can also be not clearly 

distinguishable from a window.   

 

Despite the presence of clutter and occlusions in building 

interiors, some approaches have dealt successfully with the 

reconstruction of structural elements of indoor scenes from 

imagery and/or point cloud data. Some methods based on data-

driven approaches are presented by (Valero et al, 2012; Díaz-

Vilariño et al 2014) and prior knowledge is used by (Budroni 

and Boehm, 2010; Becker et al, 2003). 

 

Regarding openings, as windows can be modelled also from 

outside, most literature about windows reconstruction is 

focused on facades because they present lower occlusion levels 

and repetitive patterns. Nevertheless, several methods have been 

developed to extract windows from indoor environments. Adán 

et al, (2011) and Previtali et al. (2014) detect openings in 

indoor scenes by analysing data density and classifying low-

density areas as openings, thus limiting the scope to low-density 

windows and doorways. Demisse et al, (2013) use thermally 

coloured point clouds for detecting windows and labelling them 

as closed or open according to the temperature difference 

between walls and windows. 
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In contrast to windows, there is not much literature on door 

reconstruction. From point clouds, if the doors are open, they 

can be easily detected as a hole in the wall. If they are closed, 

detection becomes more difficult because their descriptive 

features are highly dependent on the quality of input data. From 

imagery, similar size and shape objects can be erroneously 

understood as doors.  

 

In this work, we propose a simple but effective methodology 

based on automatic data-driven approach for the reconstruction 

of building indoor scenes using both 3D point clouds and RGB 

images, going in depth with door detection and classification. 

The methodology is tested through a case study, acquired under 

unmodified-furniture conditions.  

 

Specifically, an image-based algorithm using the Generalized 

Hough Transform (GHT) is developed for the detection of door 

candidates in orthoimages. Then, the point cloud is used as a 

ground-truth for the distinction of doors from other objects with 

similar size and shape and the classification of all of them into 

three categories: open doors, closed doors and furniture.    

 

2. METHODOLOGY 

The approach developed for modelling building interiors allows 

the automatic reconstruction of envelope and doors, starting 

from point clouds and imagery. 

 

The workflow of the proposed methodology is shown in figure 

1. The initial step (section 2.2.) involves the segmentation of the 

point cloud and the recognition and reconstruction of the 

building elements that compose the indoor-scene envelope 

(walls, floor and ceiling). The walls obtained are used as the 

basis for the generation of orthoimages (section 2.3.) which will 

be the input data for the following step, the detection of door 

candidates (section 2.4). The final step consists of the 

classification and pruning of door candidates (section 2.5.).   

 

 
 

Figure 1. Workflow of the proposed methodology. 

 

 

2.1 Data acquisition 

The data set includes point clouds and images obtained from a 

single hybrid acquisition system formed by a Terrestrial Laser 

Scanner (TLS), model Riegl LMS Z-390i, and a high-resolution 

camera firmly mounted on its top (Nikon D200 with a 20 mm 

lens).  

 

On the one hand, the Internal Calibration Parameters of the 

camera are calculated following the photogrammetric 

calibration process of self-calibration bundle adjustment based 

on flat check pattern images (Brown, 1971). On the other hand, 

the External Orientation Parameters (EOPs) are obtained 

through a point matching process using reflective targets. 

Therefore, the geometric relation between each laser point and 

the camera is known.   

 

The laser scanner presents a field of view of 360º horizontally 

and 80º vertically, which implies missing information from the 

immediate ceiling and floor on top and under it. The choice of 

number of scanner positions and their location is made by the 

user depending on the shape complexity of the indoor scene, 

trying to maximize the area of interest acquirable from each of 

them. 

 

2.2 Envelope segmentation and reconstruction 

The acquired point cloud is rotated for its alignment with the 

main building axis and submitted to a curvature study based on 

the Principal Component Analysis (PCA) by using the 

covariance method (Jolliffe, 2002). PCA involves the 

computation of the eigenvalues (λi) and eigenvectors (ei) of the 

covariance matrix (COV) of a neighbourhood (k) of each point 

(i). The points, part of these neighbourhoods, are searched 

according to the minimum Euclidean distance by applying a K 

Nearest Neighbour (KNN) procedure.  
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Where, E(x) is the expected value for an axis ( ( )   ̅ ), and 

  
  and     denote the variance and covariance values, 

respectively.  

Eigenvalues are used afterwards to derive a curvature feature, 

which can act as an indicator of the planarity of each point 

neighbourhood: the eigenvector associated to the smallest 

eigenvalue is considered as the normal vector to the surface of 

each point, since it is the direction vector of the plane with the 

lowest probability of being the fitting plane. Therefore, if the 

point was on a planar surface, the variance should be nominally 

zero.  

 

Then a normal vector smoothing is performed by averaging 

each point normal vector with the normal vectors of the points 

in its neighbourhood, k. 
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 The averaging is carried out with a weighting factor     which 

depends on the distance between points    , where,   
  denotes 

the averaged normal of point  . 
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Then, a seeded region-growing algorithm (Rabbani et al, 2006) 

is developed for the detection of planar surfaces. For each 

iteration of the algorithm, the point with lowest curvature value 

is chosen as a region seed candidate. Following, a region-

growing step in the algorithm includes in the region all those 

points satisfying the following conditions: 

 

1. The difference between the direction of its normal 

vector (i.e. the eigenvector associated to the smallest 

eigenvalue   ) and the region normal vector is below 

a certain threshold (    ). 

2. The distance between the point and the planar region 

is below a certain threshold (   ). 

 

The algorithm is computed until all points are assigned to a 

region, even though only regions with the highest number of 

points are used in successive steps. 

 

After segmentation, horizontal regions are automatically 

classified into “ceiling” and “floor” according to the Z 

component of their coordinates, while vertical regions are 

submitted to a visual inspection for their identification and 

labelling into: “walls” or “furniture”.  

 

Finally, RANSAC (Fischler and Bolles, 1981) is applied for 

achieving the best fitting plane to each region and the 3D 

building envelope is reconstructed by intersecting these planes 

assigned to walls, floor and ceiling in order to obtain the 

boundary points that define each element.  

 

2.3 Orthoimages generation 

Assuming that building interiors are composed of vertical walls 

with rectangular shapes, the 3D boundary points that define 

each wall are used to determine the 2D coordinate system of the 

orthoimage plane of each wall. The origin of the coordinate 

system is established in the lower-left boundary point from an 

interior-scene point of view.  

 

According to the theory of optical projection, the rays 

corresponding to each object can intersect on the projective 

plane by adjusting the External Orientation Parameters of each 

image. Therefore, after defining the orthoimage plane and the 

resolution of the image to be generated, object 3D points are 

transformed from the laser scanner coordinate system to the 

camera coordinate system through an exterior rotation (R) and 

translation (T). 
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Both rotation and translation matrices are obtained from the 

geometric relation between the laser scanner and the camera, 

given by the acquisition device, and the rotation matrix obtained 

from the point cloud alignment with the main building axis. 

 

Then, resulting points are projected to the image plane and RGB 

values are obtained through the perspective projection of the 3D 

points using a pinhole camera model, 
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where (x,y,z) represent a point projected onto the image plane, f 

is the focal length of the camera and (x’,y’) refer to the 

coordinates of the image pixel.    

 

Lens distortion is calculated and corrected to make possible the 

correction of the difference between the actual camera 

projection and the camera model, which is introduced by the 

lens. The Interior Orientation Parameters consist of three radial 

distortion coefficients (K1, K2, K3) and two decentring distortion 

coefficients (P1, P2) are respectively applied to the computation 

of the radial (drad) and decentring (dxdec, dydec) corrections, 

which are undone to obtain the distorted pixel coordinates. 
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Where,   √         . 
 

As the image acquisition is carried out for the complete 

horizontal angle of view (0º-360º), the azimuth (regarding the 

Camera Coordinate System) of the ray formed between each 

pixel and the camera projection centre is calculated and 

compared with the orientation of each image. If the azimuth of 

the ray is within the field of view of the image, the RGB value 

is adopted. If this condition is not verified, the point is not in the 

image frame. 

 

Finally, as the image acquisition is performed with 10% overlap 

between consecutive images, a linear transition (Lui et al, 2009) 

is implemented in order to smooth transition areas and eliminate 

edge seams caused by a direct average fusing.   

                          

 

2.4 GHT for doors detection 

The Generalized Hough Transform (GHT) (Ballard, 1981) is 

applied for detecting door candidates in the orthoimages 

previously generated.  

 

In the original Hough Transform (Hough, 1962), a straight line 

is represented by the Hesse form, where ρ is the distance from 

the application point of the normal vector to the origin of XY 

image space and θ is its angle with the X-axis.  

 

                    (10) 
 

The method is based on the transformation of the image space 

(XY) into a 2D parameter space (ρ θ). Each pixel in the image 

corresponds to a curve representing all the parameters of the 

lines of a bundle of straight lines that have this pixel as 

intersection point. Therefore, the objective of this line detection 

process is to find this intersection point. The parameter space is 

discretized through an accumulator array consisting of bins 

where votes from edge pixels in the image space are stored. The 

bin that receives the maximum number of votes determines the 

solution.  

 

While the Hough Transform is used to detect objects defined 

with few parameters such as lines or planes, the GHT 

transforms the shape detection problem into a maximum 

analysis problem, so that arbitrary shapes can be detected, even 
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being robust to partial occlusion and clutter (Khoshelham, 

2007).  

 

The algorithm uses edge information to define a mapping from 

the orientation of an edge point to a reference point of the 

shape. Doors can be assumed as rectangles with vertical 

orientation. For the performance of edge detection, true colour 

orthoimages are converted to grayscale images, where edges are 

found by the Canny operator. Then, the resulting edges are 

submitted to an orientation filter through which 90° and 180° 

oriented edge pixels are selected for computation.  

 

The shape of the door (rectangle), defined by length (r) and 

direction (β), is previously stored in a table, called R-Table, 

where the gradient direction (φ) serves as an index. 

 

The process starts by selecting an arbitrary reference point for 

the door (XC, YC). For every resulting edge pixel on the shape 

edge, the gradient direction (φ) as well as the length (r) and the 

direction (β) of a vector connecting the boundary pixel to the 

reference point are computed. For each couple (r, β) found in 

the R-Table, the accumulator array bin is increased in one vote. 

At the end of this voting process, the bin with the maximum 

number of votes indicates the reference point and the edge 

pixels of the most probable candidate. In order to refine the 

results, neighbour candidates are supressed.  

 

 
Figure 2. Parameters involved in the GHT for door-candidate 

detection.  

As doors are assumed as rectangles with vertical orientation, 

four parameters are considered for their definition: two 

coordinates of the centre, width and height. They are used as 

constraints to enforce the detection of door candidates.  

 

2.5 Candidate classification and pruning 

Due to the detection process, objects with size and shape similar 

to doors can be detected as false positives. In order to reduce the 

false positive rate, a candidate pruning method based on the 

analysis of the segmented planar regions and the original 3D 

point cloud is implemented. 

 

After segmentation, points on closed doors can be labelled as 

wall points depending on the distance thresholds in the region 

growing (   ) and the RANSAC (  ) steps. Lowering these 

thresholds can be a solution for contiguous planes, but it could 

result in over-segmentation of large walls. Therefore, enhancing 

the pruning method with classification capabilities results in a 

more robust methodology.  

 

In a first step, points that are projected orthogonally onto the 

rectangular candidate are taken into account. The points that are 

at higher distance than the threshold distance from the wall 

plane are discarded. This threshold distance is coincident with 

the candidate width, in order to consider enough space to open 

and pass through a door opening.  

 

Following, a histogram of the point-to-plane distance is 

computed and inspected. Theoretically, a zero-valued histogram 

describes an open door, whereas closed doors are modelled with 

a Dirac delta function. The same function describes an office 

cupboard, but in this case, the delta appears displaced to a 

position coincident with the cupboard depth with respect to its 

contiguous wall. In figure 3, a graphical drawing of this 

classification is shown. For real-world histograms, similar 

functions are expected, but taking into account the precision of 

the TLS, the computation of the candidate boundaries, and the 

as-built condition of the building. The classification of the 

candidate is achieved looking for maxima in the histogram and 

comparing the maxima value with the mean value of the 

histogram. Maxima points that are three times higher than the 

mean value are detected as peak values in the histogram. 

 
Figure 3. Theoretical normalized density of points. For open-

doors, there are not any points in front or behind the wall. For 

closed-doors and cupboards, all points are on the plane, near to 

the wall for doors and away from it for cupboards. 

To summarize, depending on the number of peaks in the 

histogram and their values, candidates are classified as follows; 

Candidates with constant histograms are labelled as “open 

doors”. Candidates with a single peak value are labelled as 

“closed door” or “office cupboard” depending on the position of 

the maximum. Finally, candidates with a histogram with two or 

more peaks are labelled as “non-door” objects.  

 

 

3. RESULTS AND DISCUSSION 

The methodology is tested with a case study: an indoor scene in 

an academic building. Data is acquired from one Scan Position 

placed in the centre of the scene, under two different contexts: 

closed and open doors respectively.  

 

The geometric acquisition is carried out with an angular 

resolution of 0.08° and point clouds are submitted to a filtering 

process performed by using an octree filter (size of the cube 

equal to 0.02m).  Regarding images, the complete scene is 

captured with 10 images, with a 10% overlap between 

consecutive images. The device used (section 2.1) presents a 

field of view of 360° horizontally and 80° vertically, which 

implies missing information from the immediate ceiling and 
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floor on top and under it. However, this lack of data does not 

affect the next steps in the proposed workflow. 

 

With regard to segmentation, a curvature analysis is performed 

by analysing each point supported by a neighbourhood of its 50 

closest points (Díaz-Vilariño et al, 2013). The region-growing 

step is carried out taking into account, on one side, a high 

angular threshold (    ) of 75° and on the other side, a small 

connectivity threshold (   ) of 0,05m. As this step aims to 

segment just envelope elements such as walls, ceilings and 

floors, these parameters are chosen to avoid over-segmentation. 

In this way, breakings of smooth areas are ensured to appear 

only on the edges between consecutive elements. Finally, as 

building interiors are usually highly cluttered and the point 

cloud is processed without cleaning pre-processing, small size 

regions (minimum size of 350 points) are rejected for further 

processing.   

 

As a result of the segmentation procedure, 36 planar regions are 

detected (figure 4). They are submitted to a visual recognition 

process, and 7 planar regions are classified as “walls”, 1 as 

“floor” and 1 as “ceiling”, while remaining regions are labelled 

as “furniture”.  

 

 
Figure 4. The segmented planar regions are shown in different 

colours. 

 

After the geometric segmentation and classification, RANSAC 

is applied with a 0.015m distance threshold (  ) for achieving 

the best fitting plane of those regions classified as envelope 

components, which are used for the 3D building reconstruction 

through their intersection.  

 

The four 3D boundary points that define each wall are used for 

orthoimage generation in both contexts (closed and open door), 

considering a 2cm resolution. Figure 5 shows the 3D building 

envelope texturized with the orthoimages in the closed-door 

context.  

 

 
Figure 5: The 3D building interior is textured with the 

orthoimages. 

 

Orthoimages are submitted to the door detection approach based 

on the GHT. All of them are processed together, so that the 

parameters used are common for all the orthoimages of the case 

of study.  

 

The 4D accumulator is constructed taking into account as initial 

parameters a minimum and maximum door width (0.8 m and 

1.2 m, respectively) and a minimum and maximum door height 

(1.8 m and 2.4 m ).   

 

As the case of study is an academic building interior, the 

presence of furniture with similar shape and size as doors is 

frequent. Given that the number of doors in each wall is not 

known, 25 bins are searched in each orthoimage, resulting in an 

over-detection of door candidates. Moreover, neighbours of 

selected bin are supressed within a 30 cm threshold.   

 

Finally, a final candidate selection is carried out for all the bins. 

First, all the orthoimages are considered together, and the bins 

with a voting rate inferior to the global 95th percentile are 

deselected. Next, each image is considered individually, and the 

most voted candidates are selected by rejecting the values below 

the individual 95th percentile. In this way, the results of this step 

are the most voted door candidates for each wall, considering 

the whole indoor building.   

 

In this door detection approach, the door (in both open and 

closed context) and 3 bookshelves are detected as door 

candidates due to their similar size and shape (figure 6).  

 

 
Figure 6. A closed-door (upper-left), a bookshelf (upper-right) 

and a cupboard (down) are detected as door candidates. 

 

Next, candidate classification is applied, rejecting false-

positives and labelling doors if applicable. Figures 7 to 10 

describe the different cases analysed in the case study, the three 

first figures belong to the first context where the door was open, 

whereas the last figure belongs to the second context with 

closed-door. In this second context, the same candidates were 

detected as non-door objects.  

 

In figure 7 an open door is classified because there is no peak 

value in the histogram.  

 

 
Figure 7. Histogram of point-to-plane distances: Open door 

case.  
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A single peak value is detected 56.5 cm away from the wall 

plane in figure 8, resulting in the classification of an office 

cupboard. The depth of the cupboard is 43 cm. but it is 

displaced from the wall a total distance of 55.2 cm.  

 

 
Figure 8. Histogram of point-to-plane distances: cupboard case. 

Three peak values are detected in the histogram of figure 9 at 2 

cm., 32 cm. and 34 cm. from the plane resulting in the 

classification of a non-door object. This object corresponds to a 

bookshelf that has a total depth of 33.5 cm. whereas the shelves 

have a depth of 32 cm. The peak value at 2cm corresponds to 

the inner surface of the bookshelf.  

 

 
Figure 9. Histogram of point-to-plane distances: a bookshelf is 

detected as false-positive door and labeled as NON-DOOR  

object. 

Finally, figure 10 shows the histogram of a closed door. The 

only peak value is positioned at -5 cm from the wall plane, 

because the door is aligned to the outer face of the wall. In this 

picture, some points of those closer to the wall are 

distinguishable. These points correspond to the doorjambs and 

lintel. 

 

 
Figure 10: Histogram of point-to-plane distances: closed door 

segmentation in the second context. 

As a result of this step, three false positive candidates were 

easily checked and removed and one true positive was verified 

as a door. Moreover, false negatives were not obtained.  

 

Finally, the boundary points of the detected doors are projected 

onto the correspondent wall planes for the reconstruction of the 

complete 3D building interior (Figure 11).   

 

 
Figure 11. Building indoor model before (left) and after door-

candidate pruning (right).  

 

 

4. CONCLUSIONS 

In this paper, we present a pipeline of techniques used for the 

reconstruction and interpretation of building interiors. While the 

point cloud is the basis for modelling the envelope of the scene, 

door candidates are detected in the orthoimages. The point 

cloud is also used for the distinction of doors from other objects 

with similar size and shape, and for the classification of doors as 

closed or open. The proposed methodology optimizes the result 

of the 3D model by maximizing the information acquired 

without increasing acquisition time, given that both the point 

cloud and the corresponding images are captured at the same 

time. What is more, the combined use of images and point 

clouds increases the capabilities for door detection, making 

possible its distinction from similar furniture such as 

bookshelves, as well as their detection with independence of 

their condition of closed or open door. 

 

As the input of the GHT are grey level images of edges, the 

door candidates detection is intensity-dependent and its 

accuracy can be influenced by lightness effect.  

 

Future work will deal with the assessment and improvement of 

the methods presented here. First, this includes a thorough 

evaluation of the performance in different cases of study, 

towards error analysis. Second, the aim is at extending this 

methodology to windows.  
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