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ABSTRACT: 
 
Mobile sensor devices offer great opportunities for automatic scene analysis and object recognition. Nowadays a new generation of 
ranging devices is available, like laser scanners which are small and light weighted. Concerning these improvements specific 
applications can be tackled. In this contribution we focus on vineyard monitoring for detecting and counting grape berries with a 
small, lightweight and low cost multi-echo laser scanner. Therefore a Hokuyo UTM-30LX-EW laser range finder is utilized for 
capturing the data in close range up to 1m. In order to process the data the following methodology is proposed: after smoothing and 
morphological techniques are applied on the laserscanning intensity and range images the number of visible grape berries is 
determined from the resulting segments. The approach performs with a detection accuracy of above 84%. The results reveal the high 
potential of such close range ranging devices for locating and counting grape berries. Thus, the methodology provides practical 
support for viticulture applications.   
 

1. INTRODUCTION 

The knowledge about the grape quantity is an important topic 
for vineyard management. The still dominating strategy to 
provide vineyard managers information for making decisions 
involves manpower and is thus labour-intensive as well as too 
sparse for capturing the spatial variability within a vineyard. In 
order to provide the respective information in digital form, it is 
possible to use vehicles which are equipped with cameras 
and/or laser scanners and move through the vineyard rows. 
Such a dense, non-destructive vineyard monitoring allows 
frequent pre-harvesting analyses and significantly alleviates 
decisions for different viticulture applications and harvesting 
activities. 
 
Using camera images for making dense observations of grape 
quantity has been addressed in recent years. Once image 
information is available, standard methods from computer 
vision can be applied to automatically detect and count grape 
berries. The gained information can then be exploited to 
forecast yield with both precision and accuracy. However, it has 
to be taken into account that the extraction of grape berries from 
images is often limited due to shadows and occlusions caused 
by leaves within the grape canopy. Furthermore, there might be 
a varying appearance under different lighting conditions during 
daytime and a weak color contrast between grape berries and 
leaves. 
 
The increasing availability of laser scanners has changed this 
situation during the last years. Such active optical sensors are 
capable to capture dense and accurate 3D information about 
surfaces of objects in the local area around the scanner with 
respect to a local coordinate frame. The new generation of laser 
scanners additionally provides radiometric information in form 
of intensity measurements representing the respective energy of 
the backscattered laser light. Some laser scanners meanwhile 
even provide the capability to measure multiple echoes for each 

single emitted laser pulse which are likely to correspond to 
different 3D structures in the respective direction. Multiple 
echoes offer the possibility to efficiently detect edges of objects. 
All these information together are promising data sources to 
detect the berries of a grape bunch surrounded by leaves.  
 
For the example of monitoring grape canopy at the early stage 
of grape ripening (Figure 1), the data acquired with a 
lightweight and low-cost multi-echo line laser scanner (Hokuyo 
UTM-30LX-EW) rotating on a tripod is visualized in Figure 2 
as 3D point cloud, where the distance between the grape canopy 
and the laser scanner was approximately 30 cm. The respective 
2D representations in form of intensity image and range image 
are depicted in Figure 3 and Figure 4, and highlighted areas 
indicate the occurrence of multiple echoes at edges. It becomes 
visible that grape berries are hardly visible in the 3D point 
cloud at this early stage of grape ripening and a large amount of 
noise may be expected (Figure 2). In contrast, the image 
representations provide more interpretable structures (Figure 3 
and Figure 4). 
 

 

    
Figure 1: Photos showing the early stage of grape ripening. 
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Figure 2: Visualized 3D point cloud of the grape canopy at the 
early stage of grape ripening. 

 

 
Figure 3: Intensity image with highlighted areas arising from 
multiple echoes at edges. 

 

 
Figure 4: Range image with highlighted areas arising from 
multiple echoes at edges. 

 
In this paper, we present an automatic methodology for 
detecting grape berries from laser scanning data. We explicitly 
focus on the use of small, lightweight and low cost multi-echo 
laser scanners as these can easily be mounted on a mobile 
platform and still cope with data acquisition. In summary, we 
investigate 

• the capability and performance of a small, lightweight 
and low cost multi-echo laser scanner to capture small 
objects such as grape berries, and 

• the automatic detection of single grape berries as well 
as counting their number from the captured data. 

The derived experimental results demonstrate that small, 
lightweight and low cost multi-echo laser scanners offer a high 
potential for detecting grape berries. 
 
The paper is organized as follows. In Section 2, we briefly 
describe the related work. Subsequently, in Section 3, we 
present our methodology for detecting grape berries. The sensor 
used for data acquisition and the test scenario are introduced in 

Section 4. Experimental results are provided in Section 5 and 
demonstrate the performance of the proposed methodology. 
Finally, in Section 6, concluding remarks are provided and 
suggestions for future work are outlined. 

 
2. RELATED WORK 

There have already been various attempts to detect grape berries 
from different data sources. The detection of grape berries from 
image data has been a topic of research for more than ten years, 
and approaches for detecting other types of fruits can easily be 
transferred. 
 
Recent investigations address the localization of fruit on trees 
(Jimenez et al., 2000), quality control and the respective sorting 
of cherries (Rosenberger et al., 2004), the automatic selection of 
‘fruit’ pixels by thresholding color values and tolerances (Dunn 
and Martin, 2004), the detection of peel defects on citrus fruits 
(Blasco et al., 2007), and olive classification with respect to 
quality constraints (Diaz et al., 2004; Riquelme et al., 2008). 
Furthermore, detecting the curved surfaces of grapes by 
terahertz imaging has been proposed (Federici et al., 2009) as 
well as a method for the automatic extraction of grape berries by 
using a smartphone (Grossetête et al., 2012). In the latter case, 
the integrated flash of the smartphone is used, and the reflection 
of light on the berry surface is more or less a specular reflection. 
The maximum of reflection is on the center of the berry, and 
this light reflection significantly decreases from the center of a 
grape berry to the boundary. Consequently, the extraction 
strategy exploits the locations with maximum reflection for 
counting the berries. 
 
As alternative, a method to detect and count grape berries by 
exploiting shape and visual texture in images has been proposed 
(Nuske et al., 2011; Nuske et al., 2012). The selection of these 
visual features directly addresses the crucial issues of different 
lighting and lack of color contrast. More specifically, potential 
berry locations are detected with a radial symmetry transform. 
Locations that have similar appearance to grape berries are then 
identified by considering a respective local image patch for each 
potential berry location and deriving a feature vector which 
consists of generic low-level features in terms of color features 
and Gabor features. 
 
Furthermore, the use of 3D reconstructions generated from 
uncalibrated image sequences has been proposed for classifying 
plant structures such as leaves, branches and fruit (Dey et al., 
2012). The respective plant structures are identified using both 
color and local 3D shape features. Basic 3D shape features have 
been investigated analytically for describing object structures 
(Jutzi and Gross, 2009), and a detailed analysis of the relevance 
of a variety of local 3D shape features for the semantic 
interpretation of 3D point cloud data has recently been 
presented (Weinmann et al., 2013). 
 
Further investigations also involve the combination of different 
sensors. Attaching cameras and laser scanners to vineyard 
machinery has for instance been proposed for estimating crop 
weight and canopy volume (Grocholsky et al., 2011). The 
applied laser scanners cover a field-of-view of 180° and 
generate 75 scans per second while the vehicle is moved 
through the vineyard. 
 
Beside the detection of grape berries, a further challenge 
consists of extracting stem skeletons, i.e. bunches of grapes 
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where the berries have been removed. Recent investigations 
involve Relational Growth Grammars (Schöler and Steinhage, 
2012) to derive semantically annotated 3D reconstruction 
hypotheses of plant architectures from 3D sensor data, i.e. laser 
range measurements. 
 
The further analysis of grape berries has for instance been 
addressed in a lab. Destemming, positioning on a special 
construction and taking images are the basic requirements for an 
image interpretation tool referred to as Berry Analysis Tool 
(BAT) (Kicherer et al., 2013) which was recently introduced for 
acquiring the number, diameter, and volume of grape berries 
from from RGB color images. The tool is based on active 
learning to distinguish between the labels berry and background 
as well as morphological techniques to remove noise. Once 
grape berries are detected, their number and their diameter are 
estimated. Subsequently, their volume is calculated for which 
the grape berries are supposed to be ellipsoids. 
 

3. METHODOLOGY 

The proposed methodology consists of two major steps. Firstly, 
a segmentation of the image is derived and it is taken into 
account that many approaches for image segmentation tend to 
oversegmentation. In order to avoid such an oversegmentation, 
a smoothing and morphological techniques are involved 
(Najman and Schmitt, 1996). In the second step, the number of 
visible grape berries is determined from the resulting 
information on the segments. 
 
3.1 Image Segmentation 

Firstly, the intensity information is transformed into grayscale 
images by histogram normalization. In the next step, the 
gradient magnitude is derived which is high at the borders of 
objects and lower inside the objects. For this purpose, the image 
is convolved with the Sobel operators in horizontal and vertical 
direction which yields the partial derivatives Ix and Iy of the 
image function I at each pixel (x,y) in form of gradient images. 
From these partial derivatives Ix and Iy, the corresponding 
gradient magnitude is derived for each pixel. 
 
Subsequently, foreground objects are extracted by assuming 
that there are connected blobs of pixels inside each of the 
foreground objects. For this purpose, morphological techniques 
are applied in form of (i) morphological opening (i.e. erosion 
followed by dilation) which removes smaller objects and (ii) 
morphological closing (i.e. dilation followed by erosion) which 
removes small holes in the remaining foreground areas. As 
result, flat regional maxima are derived inside each object 
which represent foreground markers. Furthermore, it is 
beneficial if background objects can be marked as well. This 
can easily be achieved by considering the image after applying 
the morphological techniques and assigning all the pixels which 
are darker than a certain threshold to the background. The 
regional minima represent background markers. All the derived 
regional maxima and minima are then used to modify the 
gradient magnitude image. 
 
Finally, a watershed segmentation (Vincent and Soille, 1991) 
which represents a region-based segmentation approach is 
applied on the modified gradient magnitude image. In general, 
the watershed transform is based on the idea of interpreting a 
grayscale image as topographic relief where the value of a pixel 
represents its altitude, i.e. bright pixels represent high altitudes 
and dark pixels represent low altitudes. A drop of water falling 

on the relief flows along the steepest descent towards a local 
minimum. All points on the relief from which a drop of water 
reaches the same local minimum form a catchment basin, and 
watersheds separate adjacent catchment basins. Since the 
structure of an image can be quite complex, the watershed 
segmentation typically tends to a strong oversegmentation. In 
order to avoid such an oversegmentation, the modified gradient 
magnitude images are considered here.  
 
3.2 Detection of Grape Berries 

Considering the locations of the derived regional maxima inside 
each object, i.e. the foreground markers, a connected 
component analysis can be applied in order to connect pixels to 
local regions and thus obtain distinct components. For detecting 
grape berries, the ratio between the lengths of major and minor 
axes of each connected component is determined. From these, 
the respective eccentricity e is derived. Components whose 
eccentricity equals 0 represent circular regions, and components 
with 0 < e < 1 represent elliptical regions. Consequently, for 
detecting almost circular regions, a simple thresholding based 
on eccentricity can be applied to discard irrelevant components 
and thus only obtain components arising from visible grape 
berries. The number of visible grape berries may be used as 
objective information to support decisions in vineyard 
management. Later on, for the experiments, the counting is also 
performed manually in order to get ground truth data for 
evaluating the obtained results.  

   
4. SENSOR AND DATASET 

In this section, we introduce the utilized sensor and provide an 
impression of the captured dataset. 
 
4.1 Sensor 

The data are captured with a Hokuyo UTM-30LX-EW laser 
range finder (210 g without cable) which represents a small, 
lightweight and low-cost laser scanner well-suited for robotic 
applications. This laser scanner takes measurements in a single 
plane and provides 2D scans covering a scan angle of 270° with 
an angular resolution of 0.25°. According to the specifications 
(Hokuyo Specifications, 2013), the range measurement 
resolution is 1 mm, and the accuracy is specified with ±30 mm 
within a range of 0.1-10 m and ±50 mm within a range of 10-30 
m. The emitted laser pulses have a wavelength of λ = 905 nm, 
the laser safety is class 1 and the pulse repetition rate is 
specified with 43 kHz. For each reflected laser pulse, data in 
terms of range and intensity information are measured. 
 
Additionally, it has to be considered that up to three echoes can 
be measured for each single emitted laser pulse. In general, the 
number of echoes depends on the surface properties (i.e. shape 
and reflectivity) of the respective objects. Often, the second 
echo results from a partially occluded structure in the original 
pulse direction and can thus be treated as an additional range 
measurement. The capability to measure multiple echoes even 
makes the device suitable for use under heavy conditions like 
rain, smoke, mist or dust (Djuricic and Jutzi, 2013). Thus, 
adequate measurements can even be expected if there are dew 
drops present on the grape berries. 
 
4.2 Dataset 

The proposed approach is applied on a small test dataset 
captured within an indoor environment. The main intention of 
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our test scenario is to preserve the main characteristics of 
visible berries in a vineyard. Consequently, the scene contains 
visible berries, leaves, stems and some gaps. In order to 
estimate the adequate distance for future outdoor measurements 
with the available sensor, the scanner was placed approximately 
25 cm, 50 cm and 1 m from our observed objects - two bunches 
of grape berries positioned along the horizontal and vertical 
direction. The resulting intensity images and range images are 
depicted in Figure 5 and Figure 6. The bunches of grape berries 
(highlighted by red boxes in Figure 5) can easily be seen in the 
intensity images. A visualization of the respective 3D point 
cloud is depicted in Figure 7 at two different scales. 
 
 

   
Figure 5: Intensity images for object distances of approximately 
25 cm, 50 cm and 1 m (from left to right). The red boxes 
highlight the regions of interest, i.e. the regions with bunches of 
grape berries. 

 

   
Figure 6: Range images for object distances of approximately 
25 cm, 50 cm and 1 m (from left to right). Smaller distances are 
encoded with darker pixel values, whereas larger distances are 
encoded with brighter pixel values.  

 

 
 

 
Figure 7: Visualization of the 3D point cloud acquired for the 
test scenario (top) and zoom on the upper region of interest 
(bottom).  

5. EXPERIMENTAL RESULTS AND DISCUSSION 

For comparison, we first apply a standard region growing 
algorithm on the intensity image of a bunch of grape berries. 
First, an initialization is conducted by selecting seed points 
which themselves form regions of minimum size. Subsequently, 
in an iterative process, each region is grown by comparing all 
unallocated neighbouring pixels to the region. For this purpose, 
the difference between a pixel's intensity value and the region's 
mean intensity value is used as a measure of similarity. The 
pixel with the smallest difference is allocated to the region. The 
process stops when the intensity difference between region 
mean and new pixel becomes larger than a specified threshold. 
The derived results for our dataset are depicted in Figure 8 and 
show that single berries can hardly be counted. 
 
  

  
Figure 8: Results of a standard region growing at the two 
regions of interest in the intensity images. 

 
In contrast, the proposed methodology based on morphological 
operations followed by watershed segmentation allows to derive 
interpretable results by means of detecting and counting the 
touching objects from regional maxima representing foreground 
markers (Figure 9). As the edges are also marked, the respective 
regional maxima have to be excluded. By applying connected 
component analysis and filtering with respect to eccentricity, 
the presented extraction strategy is able to locate and count 
grape berries (Figure 10). Similar to using digital cameras and 
flash (Grossetête et al., 2012), the remaining regional maxima 
correspond to the maxima of reflection on the center of the 
berries, and the light reflection decreases from the center of a 
grape berry to the boundary. 
 
 

   
Figure 9: Original range image with highlighted areas arising 
from multiple echoes (left) and regional maxima overlapped on 
original image (right). 

 

   
Figure 10: Example showing regional maxima (left) and the 
detected grape berries after filtering with respect to eccentricity 
(right). 
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Furthermore, we assess the detection results for the two bunches 
of grape berries by comparison to a manually determined 
ground truth data as reference. For both scenarios, we obtain 
detection accuracies of 84.21% and 86.21% (Table 1) which 
reveals the feasibility of the proposed methodology. 
 
 

Scenario 
Counted 

grape berries 
Detected 

grape berries 
Accuracy 

1 19 16 84.21% 

2 29 25 86.21% 

Table 1: Detection results for two different scenarios. 
 
 

Finally, a comparison is performed by applying the proposed 
methodology on an intensity image and the respective range 
image. The results of the single steps in the processing chain are 
depicted in Figure 11 and Figure 12. It becomes visible that 
range images are not suitable for detecting and counting single 
grape berries with the presented methodology, and that further 
effort is required in this case.  
 
 

     
Figure 11: Watershed segmentation results based on the 
intensity image: Original intensity image, gradient magnitude, 
regional maxima, regional maxima superimposed on original 
intensity image and colored watershed label matrix (from left to 
right). 

 

     
Figure 12: Watershed segmentation results based on the range 
image: Original range image, gradient magnitude, regional 
maxima, regional maxima superimposed on original range 
image and colored watershed label matrix (from left to right). 

 
6. CONCLUSIONS AND FUTURE WORK 

In this paper, we present a methodology for automatically 
detecting grape berries from data acquired with small, 
lightweight and low cost multi-echo laser scanners. The 
selection of such devices is motivated by the fact that these can 
easily be mounted on a mobile platform for vineyard 
monitoring. In the first step, potential berry locations are 
detected by exploiting morphological techniques and watershed 
segmentation. In the second step, connected component analysis 
and filtering with respect to eccentricity are applied to refine the 
detection results and finally count the detected berries. The 
derived experimental results reveal the high potential of small, 
lightweight and low cost multi-echo laser scanners for detecting 
grape berries. Thus, the methodology provides practical support 
for viticulture applications. 

The fully automatic monitoring of properties such as growth, 
yield, quantity, color, ripeness and their development over time 
is not only of great interest for vineyard management, but also 
for food industry in general. Once automatic, frequent and 
dense monitoring is possible in agriculture, it is possible to 
forecast yield with both precision and accuracy. A further 
automation could lead to a fully automatic process consisting of 
pre-harvesting analyses, informed decisions and harvesting 
activities which would substantially increase efficiency, 
significantly reduce the required manpower and save a lot of 
money over a long time.  
 
Hence, for future work, the methodology could be extended to 
also account for specific properties such as the precise size of 
each detected berry or the number of berries in a bunch of grape 
berries in order to estimate and predict the volume of the 
income for the actual year of harvest. Additionally, an automatic 
detection of bunches of grape berries would be desirable. 
 
Furthermore, the combined use of the different types of data 
should be taken into account. For this purpose, it would be 
desirable to perform a dense scanning in order to obtain dense 
3D point cloud data. Once the point density is sufficiently high, 
a variety of local 3D features can be extracted for each 
measured 3D point from the spatial arrangement of other 3D 
points in its local neighborhood (Weinmann et al., 2013; 
Otepka et al., 2013). These features could be utilized for better 
detecting and localizing small objects such as single grape 
berries in the 3D point cloud data. For special objects such as 
grape berries which provide a spherical 3D structure, a fitting of 
respective 3D primitives could also be introduced. It would 
further be interesting to fuse data captured with a suitable laser 
scanner and data captured with a digital camera (Jutzi et al., 
2014) as the additional data would possibly contribute to 
improve an automatic interpretation of the observed scene.  
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