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ABSTRACT: 

 

Renovation of plant equipment of petroleum refineries or chemical factories have recently been frequent, and the demand for 3D as-

built modelling of piping systems is increasing rapidly. Terrestrial laser scanners are used very often in the measurement for as-built 

modelling. However, the tangled structures of the piping systems results in complex occluded areas, and these areas must be captured 

from different scanner positions. For efficient and exhaustive measurement of the piping system, the scanner should be placed at 

optimum positions where the occluded parts of the piping system are captured as much as possible in less scans. However, this “next-

best” scanner positions are usually determined by experienced operators, and there is no guarantee that these positions fulfil the 

optimum condition. Therefore, this paper proposes a computer-aided method of the optimal sequential view planning for object 

recognition in plant piping systems using a terrestrial laser scanner. In the method, a sequence of next-best positions of a terrestrial 

laser scanner specialized for as-built modelling of piping systems can be found without any a priori information of piping objects. 

Different from the conventional approaches for the next-best-view (NBV) problem, in the proposed method, piping objects in the 

measured point clouds are recognized right after an every scan, local occluded spaces occupied by the unseen piping systems are then 

estimated, and the best scanner position can be found so as to minimize these local occluded spaces. The simulation results show that 

our proposed method outperforms a conventional approach in recognition accuracy, efficiency and computational time. 

 

 

1. INTRODUCTION 

Renovations in plant equipment of petroleum refineries or 

chemical factories have recently been frequent, and 3D as-built 

modelling of piping systems of the plants based on terrestrial 

laser scanning is strongly expected to make renovation process 

more efficient. To this end, many researches have been 

intensively studies to recognize piping objects such as straight 

pipes, elbows,  junctions and valves from point clouds captured 

from terrestrial laser scanners (Vosselman et al., 2004), (Rabbani 

et al., 2004), (Rabbani et al., 2006), (Belton et al., 2006), (Bey et 

al., 2011), (Masuda et al., 2012), (Kawashima et al, 2013).  

When capturing the plant objects using a terrestrial laser scanner, 

several scans must be taken from different scanner positions to 

ensure a full coverage of the object surfaces and to avoid the 

occlusions. As shown in Figure1(a), piping systems of plants are 

complex and tangled in structure, and this results in many 

occluded space where background piping objects are hidden by 

the front-side objects in a scan, and the objects contained in the 

occluded space cannot be measured and modelled. To solve the 

occlusion, as shown in Figure 1(b), the scanner has to be 

repositioned at the different place from the former one where the 

occluded space can be captured as large as possible while keeping 

the number of scans small. However, this “next-best” scanner 

position is usually determined by experienced scanner operator 

in practice, and there is no guarantee that the sequence of scanner 

positions is the best one for capturing the unseen piping objects 

as much as possible in less scans.  

                                                                 

*  Corresponding author:  Satoshi Kanai (kanai@ssi.ist.hokudai.ac.jp) 

The problem to find an optimum sequence of sensor 

arrangements for measuring a given object is known as “next best 

view”(NBV) problem, and many solutions have been proposed 

mainly in robotics so far, for example  (Dornhege and Kleiner, 

2013) and (Potthast and Sukhatme 2014). An excellent review of 

the NBV solutions is already presented (Scott and Roth, 2003).  

On the other hand, in photogrammetry community, little study 

tacked this problem where the terrestrial laser scanner should be 

placed sequentially in large indoor/outdoor environment. A few 

exceptions include (Munkelt et al., 2006) and (Soudarissanane et 

al., 2011). In these conventional studies, the best scanner position 

can be found where the volume of the occluded unseen space is 

minimized. However, this strategy is not necessarily effective 

and efficient to solve the NBV problem in the measurement of 

piping objects of plants.   

To solve the issue, the purpose of this study is to propose a new 

computer-aided method to find a sequence of next-best scanner 

positions specialized for as-built modelling of piping systems 

without any a priori information of the piping objects. Different 

from the former approaches, in this study, as shown in Figure 1(c), 

the best scanner position is found in the way that the method tries 

to minimize the spaces which are occluded and unseen but any 

piping object is likely to exist. To this end, part of the piping 

objects are sequentially recognized from its point clouds right 

after each scan using our object recognition method (Kawashima, 

Kanai and Date, 2014), and this recognition result is used as a 

clue to estimate the potential spaces which are likely to contain 

piping objects in the occluded spaces. And finally, a best scanner 
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position is found so as to minimize only the potential spaces 

where the piping objects is likely to exist.  

The effectiveness of the proposed method was verified by the 

computer simulation. And the results showed that our proposed 

estimation method of the scanner positions outperforms one of 

the recent solutions for NBV problems (Potthast and Sukhatme 

2014) which has similar problem settings to ours in the 

recognition accuracy, efficiency and the computation turnaround 

time.  

 

2. RELATED WORK AND THE ISSUES 

2.1 Functional Requirements 

In our study, the next-best position of the terrestrial laser scanner 

specialized for as-built modelling of large-scale complex piping 

systems of the plant which contain straight pipes, junctions and 

elbows needs to be estimated. Therefore, the estimation method 

should fulfil the following functional requirements;  

 

-  The scanner positions can be estimated without any a priori 

knowledge of the geometry of the piping system to be 

measured, because as-built or even as-planned CAD models 

of the plants are generally unable to use.   

-  The scanner positions are not limited to the outer peripheral  

space of the piping system but to the inside of it, because the 

visibility of the piping objects from the interior of the system 

sometimes becomes richer than that from the outer peripheral 

space and it enables effective reduction of the occlusion.   

- A scanner must be positioned so that it can measure the 

potential space where the occluded part of the piping objects 

is most likely to exist as much as possible.  

-  A scanner device itself must be stably-positioned without any 

collision with the piping objects.   

 

2.2 Related Work and the Issues 

Many algorithms for the next-best view (NBV) or view planning 

problems have been proposed mainly in robotics and image 

processing fields so far. And most of them concern with the user 

of range sensors.  

 (Scott and Roth, 2003) presents an informative and exhaustive 

review of the existing algorithms to solve the NBV problems. 

These algorithms are classified into model-based and non-model-

based ones. However, the model-based algorithms such as (Scott, 

2009) require an a priori object model at some level of fidelity 

and does not agree with our requirements.   

Studies of non-model-based algorithms for NBV have been 

intensively proposed for reverse engineering using range sensors 

with multi-DOF positioning platforms. For examples, in 

(Karaszwwski et al., 2012), the range sensor is fixed at the 6DOF 

robot hand and can be moved on the outer periphery around a 

small object. The next best sensor position is selected as the one 

among the periphery from which the sparse point density area on 

the object can be maximally captured. Similar studies are done 

by (Papadopoulos-Orfanos et al., 1997), (Reed et al., 1999), 

(Khalfaoui et al., 2012) where the completion of the 3D 

reconstruction of a small object is focused in NBV. (Pito, 1999) 

takes into account the scan overlap identification and tolerance 

constraints of the choice of the NBV in the similar context. 

(Munkelt et al., 2006) also proposes a voxel-space-based NBV 

algorithm where the point clouds with better quality are achieved 

using rough a-priori information of the object and better chosen 

viewpoints with respect to object surface normals.  

However, in these studies, the object to be measured is a single 

one with simple geometry and its size is comparable to the 

scanner’s measuring area. In this sense, the setting of the scanners 

and their purposes of the optimization in NBV are different from 

the ones of the large-scale measurement using terrestrial laser 

scanners.  

The NBV problem for the large-scale complex indoor objects 

using the range sensors have also been studied in (Klein et al., 

2001), (Dornhege and Kleiner, 2013), (Potthast and Sukhatme 

2014). The mobile robots with manipulators which can control 

the position and orientations of the range sensor go driving inside 

or outside of the indoor objects, and the NBV problems are 

solved so as to maximize the visible space by resolving unseen 

occluded volumes. Their strategy for the NBV is to find the best 

scanner position where the volume of the occluded unseen space 

is minimized. However, this strategy is not necessarily effective 

and efficient to solve NBV problem for the environment of plant 

piping system. 

(Soudarissanane et al., 2011) recently proposes an algorithm to 

determine optimum viewpoints in a large scale indoor scene 

based on terrestrial laser scanner capabilities. An optimum 

scanner arrangements for a large room with complex walls is 

obtained under an incidence and range constrains of the scanner 

device. Unfortunately, their method can work only on a 2-

dimensional map of the large scene, and the 2D map must be 

provided as a priori knowledge of the environment. This 

assumption is not practical for the view planning of 3-

dimensional plant piping system without any a-priori information. 

(Dan et al., 2013) proposes a practical algorithm for scan 

planning of outdoor buildings using a terrestrial laser scanner. 

The algorithm is reduced to a kind of mixed linear integer 

programming problem, and efficiently works in 3D. 

(a) 1st scan and 

its occluded space

Laser
Scanner

Occluded 
Space

Piping System

(b) The 2nd scanner 

position minimizing 
the occluded space

(c) The 2nd scanner 

position only minimizing 
the occlude portions of 

the piping objects

Figure 1.   The strategy for the best 2nd scanner position  

for the measurement of piping systems 
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Unfortunately, their algorithm requires a priori rough knowledge 

of the buildings, and the small limited number of candidates for 

the best scanner position need to be pre-specified inside the 

buildings.     

On the other hand, in conventional photogrammetry, the imaging 

network design using passive sensors and the optimum sequential 

view planning using multiple images from a single camera have 

been investigated. The typical examples include (Farashidi, et al., 

2009), (Hosseininaveh A. et al., 2014). The view planning 

algorithms using multiple images provide promising results of 

the reliable 3D acquisitions, and they substantially solve the 

similar problems to NBV. Some of them tackled the view 

planning for large-scale buildings or statues (Alsadik et al., 2012) 

(Won et al., 2013). However, the main focus of their view 

planning algorithms is to improve the image coverage and 

reconstruction accuracy, and they cannot be directly applied to 

solve the NBV problem of the measurement of complex piping 

objects using a terrestrial laser scanner.       

To wrap up, to the best of our knowledge, there is no research 

which meets the requirements of section 2.1 and which gives a 

solution of next-best-view problem for terrestrial laser scanning 

of 3-dimenntional, complex and large-scale plant environments. 

 

3. PLANNING SCANNER POSITIONS 

3.1 Overview 

Figure 2 shows the overview processing flow of the proposed 

estimation method for next-best scanner position. In this study, 

the laser scanning operation is simulated in the computer instead 

of the real scan, and the scanned point clouds are generated 

directly from a reference CAD model so as to make the validation 

easy. We assumed that the approximated maximum size of the 

piping system to be measured (width, depth and height) is known.  

The outline of the scanner position estimation consists of the 

following steps: 

(1) Voxel attribute assignment:   Right after the laser scan of 

the environment, the spatial occupancy of each voxel is 

classified based on the ray-tracing between a given scanner 

position and every point in the scanned point clouds. 

(2) Estimation of scanner position candidates: The candidates 

for the next place to put a laser scanner device are estimated 

in the voxel space. 

(3) Recognition of piping objects:  From the aggregated 

scanned point clouds, the piping objects are recognized using 

our automatic recognition algorithm. 

(4) Estimation of the voxels to be measured and their priority 

scores: A limited number of the unseen voxels which are 

likely to exist on some piping objects are picked up based on 

the recognition results of (3), and their priority scores for the 

next measurement are evaluated. 

(5) Estimation of the optimum next scanner position:  By 

estimating the observation probability between the scanner 

position candidates and the priority scores, the optimum next 

scanner position is determined.      

   

 The details of them are described in the following subsections. 

 

3.2 Voxel Space Decomposition and Space Classification 

In our method, the best scanner position is determined based on 

the voxelization to encode the special occupancy in the measured 

space. As shown in Figure 2, a space which is all-enclosing the 

piping system is initially decomposed into a set of small voxels. 

Every voxel  𝑣 has its spatial attribute 𝑎(𝑣) to encode the space 

occupancy which means; 

 

- 𝑎(𝑣) = unknown :  the voxel 𝑣 has not been measured by 

the scanner yet, 

- 𝑎(𝑣) = free :  the voxel 𝑣 has been measured already, but 

there is no scanned point and no object in 𝑣, and 

- 𝑎(𝑣) =  occupied:  the voxel 𝑣  has been measured, and 

there is at least one scanned point in 𝑣. 

 

In the beginning of the estimation, all of the voxels are initialized 

as 𝑎(𝑣) = unknown.  
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Figure 2.   Overview of the proposed estimation of next-best scanner position for the measurement of piping systems 
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3.3 Executing a Laser Scan and Voxel Attribute Assignment   

One scanning operation using a terrestrial laser scanner is 

executed in a specified scanner position.  Only in the first scan, 

the scanner position is determined manually, but after the second 

scan, the best scanner position can be determined in fully-

automatic way by using the proposed method.  In this paper, we 

assume that the next scan is done by fully respecting this next-

best scanner position.  

Right after the point clouds are captured from a scan, using the 

combination of a given scanner position  𝑃𝑠𝑐𝑎𝑛  and every 

measured point 𝑃𝑚𝑒𝑠  in the point clouds of this scan, a set of 

scanned voxels 𝑉𝑠𝑐𝑎𝑛  each of which is pierced by the line 

𝑃𝑠𝑐𝑎𝑛 𝑃𝑚𝑒𝑠  is extracted using the ray tracing operation in the 

voxel space. And, for every voxel  𝑣 ∈ 𝑉𝑠𝑐𝑎𝑛  on the line  

𝑃𝑠𝑐𝑎𝑛 𝑃𝑚𝑒𝑠, the spatial attribute of 𝑣 is changed to 𝑎(𝑣) = free if 

 any measured point 𝑃𝑚𝑒𝑠 is not included in 𝑣.  On the contrary, 

the attribute is changed to 𝑎(𝑣) = occupied when 𝑣  includes 

𝑃𝑚𝑒𝑠. By repeating this operation for all measured point 𝑃𝑚𝑒𝑠 in 

the point clouds, the spatial attributes of all voxels 𝑎(𝑣)  are 

updated for this scan.  

To simplify the validation of the proposed system, in this paper, 

instead of executing the real scanning operations, the scanning 

operation of the terrestrial laser scanner is simulated in the 

computer, and the measured point clouds are given directly by 

sampling the points on surfaces in a 3D CAD model of a given 

plant piping system.  

 

3.4 Estimation of Scanner Position Candidates 

From the (simulated) measured point clouds and the current 

space attributes of the voxels, the possible candidates for the 

scanner position for the next scan are estimated in the voxel space.  

The candidates fulfil the functional requirement that the scanner 

must be stably-positioned without any interference with the 

piping system.  Therefore, the height and radius (ℎ𝑠𝑐𝑎𝑛, 𝑟𝑠𝑐𝑎𝑛) of 

a bounding cylinder 𝐶𝑠𝑐𝑎𝑛 enclosing an assumed terrestrial 

scanner device shape is specified by the user in advance.  

As shown in Figure 3, first, the normal vector of each measured 

point in the point cloud is estimated using PCA, and the set of 

points whose normal orient vertically-upward is extracted. Then, 

the points close to each other among them are aggregated into 

one horizontal point cluster using Euclidian clustering. This point 

cluster can be considered as a “floor point cluster”, and the space 

attribute of the voxel 𝑣 including the floor point is changed to 

𝑎(𝑣) =  floor .   

Then, a set of scanned voxels 𝑉𝑠𝑐𝑎𝑛 is picked up which place on 

the voxels on the floor (𝑎(𝑣) =  floor), enclose the bounding 

cylinder of the scanner 𝐶𝑠𝑐𝑎𝑛 and do not include any occupied 

voxel (𝑎(𝑣) =  occupied).  And a voxel 𝑣𝑐  in 𝑉𝑠𝑐𝑎𝑛  which is 

located at the horizontal level of ℎ𝑠𝑐𝑎𝑛 and satisfies 𝑎(𝑣𝑐) =   
free is finally selected as a possible candidate scanner position 

for the next scan.  By collecting all of the voxel 𝑣𝑐    among the 

voxel space, a set of scanner position candidate voxels 𝑉𝑐𝑎𝑛𝑑 can 

be generated. 

     

3.5 Recognition of Piping Objects from Point Clouds 

The portions of straight pipes, elbows and junctions are 

recognized in a fully automatic way from the union of the 

measured point clouds from the aggregation of the previous scans 

using the object recognition method proposed by the authors 

(Kawashima, Kanai and Date, 2014).  Figure 4 shows an example 

of the recognition of the piping objects of an oil rig. Based on the 

recognition results, the appropriate cylinders and torus surfaces 

are fit to the measured point clouds placed on the piping system.  

 

3.6 Estimation of the Voxels to be measured and their 

Priority Scores 

The feature of the proposed method is that the object recognition 

results are used as a clue to estimate the space of remaining 

piping system in the currently occluded area among the unknown 

voxel space (𝑎(𝑣) = unknown).  In our estimation, only a limited 

set of unknown voxels which are likely to exist on the surface of 

i i i i i

i i

i i

i i

i

i

i i

i i i

i i i

i

x

z

y

i

i

i

i

i

i

i

i

i

i

ym

y

xz

i i

i i i i iii

A voxel of candidate 
scanner position vc

The bounding cylinder 
of the scanner Cscan

occupied voxel

free voxel

unknown voxel

i

A voxel including Cscan

A voxel of the floor

(i, j : # of cluster）

Scanner

Figure 4.  Automatic recognition results of piping objects from 

point clouds of an oil rig (Kawashima et al., 2014) 

Point clouds of a 

chemical plant scanned 
from several scanner 
positions 

(# of points: 4,524,324)

Recognition results of 

the piping objects

Straight pipe axis

Elbow axis
Junction axis

Junction 

points

Figure 3.   Estimation of scanner position candidates 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-313-2014 316



 

the remaining piping system is selected for the target of the next 

scan.  

Moreover, the priority score for the next scan which represents 

the existence probability of the occluded piping system is given 

to each unknown voxels to be measured. The score is designed 

so as to become high in a voxel where the remaining part of the 

piping system is most likely to exist.  

As shown in Figure 5, the occlusion of the pipe in the laser scan 

is roughly classified into two typical types. In the first type, the 

back side of the cylindrical pipe is hidden by the scanned front 

side, and the remaining part is most likely to exist on the back 

side of the cylindrical pipe. While in the second type, a portion 

of a pipe is hidden with the other pipes, and remaining part is 

most likely to exist on the cylinders placed on the extended 

portion of the recognized pipe.  Therefore, only the unknown 

voxels which locate on this back side or on the cylinders placed 

on the extended portion of the recognized pipe are selected as the 

spaces to be measured in the next scan.  

According to the consideration above, the priority score 𝑆(𝑣) for 

an unknown voxel 𝑎(𝑣) is evaluated as follows. As shown in 

Figure 5(a), in the first type of occlusion, if a circular section of 

the pipe has been partially measured and the covering angle 𝜂 on 

the circle of the current measured point cloud is still small, the 

remaining cylindrical part must be captured in the next scan to 

ensure the stable cylinder fitting in the piping system recognition.  

However, if the covering angle 𝜂 is large enough, the remaining 

part does not need to be measured anymore in the next scan.  

By reflecting the observations, the priority score in the first type 

𝑆𝛼(𝑣) ∈ [0,1] is given as Eq.(1).  

 

 

     𝑆𝛼(𝑣) = {
 
𝛼(𝜏𝜃𝑚𝑎𝑥 − 𝜂)

𝜏𝜃𝑚𝑎𝑥 − 𝜏𝜃𝑚𝑖𝑛
       (𝜏𝜃𝑚𝑖𝑛 ≤ 𝜂 ≤ 𝜏𝜃𝑚𝑎𝑥)

0                          (𝜏𝜃𝑚𝑎𝑥 ≤ 𝜂 ≤ 2𝜋)

        (1) 

 

where, 𝜏𝜃𝑚𝑎𝑥  is a critical covering angle enabling the stable 

cylinder fit to the scanned points on pipes. If the angle exceeds 

𝜏𝜃𝑚𝑎𝑥, the measured points already covers on the pipe surface 

large enough for the stable and accurate cylinder fit, and the 

remaining backside part does not need to be measured anymore 

in the next scan. 𝜏𝜃𝑚𝑖𝑛  denotes the minimum critical covering 

angle enabling the cylinder fit. 𝛼 ∈ [0,1]  is a weight for 

prioritizing the score 𝑆𝛼(𝑣) when determining a final score of the 

voxel  𝑆(𝑣). And even if the angle exceeds𝜏𝜃𝑚𝑖𝑛, the remaining 

backside still need to be measured for the stable cylinder 

recognition in the next scan.  

On the other hand, as shown in Figure 5(b), in the second type of 

occlusion, if all of the section of the pipe has not been measured 

yet, the pipes are most likely to exist in the coaxially extended 

portions of the pipes which have been already scanned and 

recognized. We assume that this possibility gradually decreases 

as the distance 𝑙 from the end face of the pipe increases. So the 

priority score in the second type 𝑆𝛽(𝑣) ∈ [0,1] is given as Eq.(2). 

 

 

      𝑆𝛽(𝑣) = {
 
𝛽(𝑙𝑚𝑎𝑥 − 𝑙)

𝑙𝑚𝑎𝑥
       (0 ≤ 𝑙 ≤ 𝑙𝑚𝑎𝑥)

           0                          (𝑙 ≥ 𝑙𝑚𝑎𝑥)

                         (2) 

 

  

where,  𝑙𝑚𝑎𝑥 denotes the user-specified critical extension length, 

and 𝛽 ∈ [0,1] is a weight for prioritizing the score 𝑆𝛽(𝑣). 

Finally, all unknown voxel 𝑣 to be measured is inserted to the set 

𝑉𝑜𝑏𝑗 , and a priority score 𝑆(𝑣) is finally assigned to 𝑣 as 𝑆(𝑣) =

𝑚𝑎𝑥{ 𝑆𝛼(𝑣) , 𝑆𝛽(𝑣)}.   

  

Figure 5.  The voxels to be measured  

and their priority score evaluation  
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3.7 Estimation of the Optimum Scanner Position   

Using the set of unknown voxels to be measured 𝑉𝑜𝑏𝑗 , the priority 

score 𝑆(𝑣) (𝑣 ∈ 𝑉𝑜𝑏𝑗) and a set of scanner position candidate 

voxels 𝑉𝑐𝑎𝑛𝑑, the optimum scanner position for the next scan is  

determined. The estimation process is our original extended 

version of the conventional solution for the next-best view 

problem (Potthast and Sukhatme 2014). We evaluate how many 

voxels to be measured can be observed from a scanner position 

candidate as an expectation value of their priority scores. The 

detail evaluation process is described in the following.  

As shown in Figure 6, first, the observation probability 

𝑓(𝑣𝑜| 𝑙 ) of a voxel to be measured  𝑣𝑜(∈ 𝑉𝑜𝑏𝑗) from a voxel of 

the scanner position candidate 𝑣𝑐(∈ 𝑉𝑐𝑎𝑛𝑑) is evaluated as Eq.(3). 

 

 

            𝑓(𝑣𝑜| 𝑙 ) = ∏ 𝑝(𝑣𝑙)

𝑣𝑙∈𝑉𝑙

                                                        (3) 

 

where  𝑙 is a straight line connecting the centroids of the voxels 

𝑣𝑜 and 𝑣𝑐, and 𝑉𝑙 is a set of voxels which intersects with 𝑙.  𝑝(𝑣𝑙) 
gives a probability whether a laser beam of the scanner can pass 

through the intermediate voxel 𝑣𝑙(∈ 𝑉𝑙)  of the line  𝑙 , and is 

defined as Eq.(4).  

 

 

              𝑝(𝑣𝑙) = {   

1.0 (𝑎(𝑣𝑙) = 𝑓𝑟𝑒𝑒)

0.0 (𝑎(𝑣𝑙) = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)

1 − 𝑞 (𝑎(𝑣𝑙) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛)
                   (4) 

 

 

where q gives a decrement parameter indicating how much the 

observation probability of a laser beam degrades in an unknown 

voxel depending on the average density of  the occupied voxel  in 

the space.  

By summarizing the values of 𝑓(𝑣𝑜| 𝑙 ) among all voxels to be 

measured, the expectation of the priority score  of the voxels to 

be measured 𝐸(𝑣𝑐)  from a scanner position voxel 𝑣𝑐  can be 

estimated as Eq.(5) 

 

 

           𝐸(𝑣𝑐) = ∑  𝑓(𝑣𝑜| 𝑙 )

𝑣𝑜∈𝑉𝑜𝑏𝑗

  𝑆(𝑣𝑜)                                       (5) 

 

 

Finally, by evaluating the expectation  𝐸(𝑣𝑐) , the optimum 

scanner position for the next scan 𝑃𝑛𝑒𝑥𝑡 is determined as Eq.(6). 

 

 

            𝑃𝑛𝑒𝑥𝑡 = 𝑐𝑒𝑛𝑡 [ 𝑎𝑟𝑔 { max
𝑣𝑐∈𝑉𝑐𝑎𝑛𝑑

𝐸(𝑣𝑐)} ]                             (6) 

 

where 𝑐𝑒𝑛𝑡[𝑣]  gives a centroid position of a voxel 𝑣.  

 

4. SIMULATION RESULTS 

In this study, the scanning operation was simulated by sampling 

the point on the surfaces in a reference CAD model of a piping 

system shown in Figure 7 which consists of many straight pipes, 

elbows, junctions and some tanks. And we assumed a standard 

scan condition (pitch angle increment, etc.) and the scanner 

dimension of FARO-Focus3D in the sampling. The scanning 

condition in the simulation is summarized in Table 1.  And the 

parameters used in the next-best scanner position estimations are 

summarized in Table 2.  

As a baseline for comparison in recognition efficiency and 

accuracy with our proposed method, we also implemented a 

previous optimum scanner position estimation method proposed 

by (Potthast and Sukhatme, 2014) where the best scanner position 

can be found so that the volume of all unknown voxels (e.g. 

𝑎(𝑣) = unknown) is tried to be minimized as a whole. Their 

method can be easily implemented in the way that 𝑉𝑜𝑏𝑗  is 

composed of all unknown voxels, 𝑆(𝑣𝑜) = 1.0 ( ∀𝑣𝑜 ∈ 𝑉𝑜𝑏𝑗  ) 

and Eq.(4) is rewritten to Eq.(7).  

 

 

𝑝(𝑣𝑙) = 

  

{
 
 

 
 

   

1.0 (𝑎(𝑣𝑙) = 𝑓𝑟𝑒𝑒)

0.0 (𝑎(𝑣𝑙) = 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑)

𝑝0 (
𝑎(𝑣𝑙) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 ∧

 𝑣𝑙 exists within 𝑑𝑏 of an 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 voxel
)

1 − 𝑞 (𝑎(𝑣𝑙) = 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

     (7) 

 

 

where we specified 𝑝0 = 0.4 and 𝑑𝑏 = 0.1[𝑚] in the simulation. 

An identical scanner position of the first scan is specified at the 

center of the measuring space and is given to the both methods.   

Figure 8 shows the aggregated scanned point clouds, 𝐸(𝑣𝑐) 
distributions and the next best scanner positions after every scan 

using our proposed method and the previous method (Potthast et 

al., 2014). As shown in this figure, in the previous method, the 

9.0[m]

8.5 [m]

4.5 [m]

Scanning condition Value

Scanner height (hscan) 1.0 [m]

Scanner base radius (rscan) 0.5 [m]

Minimum / Maximum scan range 10.0 ~ 0.6 [m]

Elevation scan range -60 ~ +60 [deg]

Azimuth scan range 0 ~ 360[deg]

Elevation scan pitch 0.05[deg]

Azimuth scan pitch 0.05[deg]

Table 1.  The scanning condition in the simulation 

Table 2.  The parameter settings in the estimation 

Figure 7.  The CAD model of a piping system for the simulation 

Parameter for estimation Value

𝜏𝜃𝑚𝑖𝑛 / 𝜏𝜃𝑚𝑎𝑥 in Eq.(1) 90.0 / 180.0 [deg]

𝑙𝑚𝑎𝑥 in Eq.(2) 1.0[m]

𝛼, 𝛽 in Eq.(1) and Eq.(2) 𝛼=1.0,  𝛽=1.0 

𝑞 in Eq.(4) 0.01

𝑝0 in Eq.(7) 0.4

𝑑𝑏 in Eq.(7) 0.1[m]
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scanner tends to be placed as far away from the pipes to be 

measured as possible so as to capture the unknown voxels as 

much as possible in the next scan. Because the observation 

probability of a voxel close to the tangled pipes significantly 

drops in this method, some positions were concentrated to a 

similar location (lowest right corner), and it eventually caused the 

inefficient scan operations for recognizing the piping objects.  

On the other hand, shown in Figure 8, in the proposed method, 

the scanner positions relatively diverged into different locations 

in the measuring space so that the occluded space occupied by 

the remaining unseen piping objects is minimized.  

Figure 9 compares the change in the recognition rate of the piping 

objects in our recognition system (Kawashima et al., 2014) when 

using the scanner positions derived from both methods. It was 

clear that our method achieved the better recognition rate than 

that of the previous one at the same number of scans. While the 

recognition rates of all elements reached around 100% even at 6 

or 7th scan in our method, they did not improve efficiently even 

after 10th scan in the previous method.   

Figure 10 compares the recognition results of piping objects after 

the 7-th scan. It is obvious that many portions of pipes are still 

not yet scanned and recognized in the previous method. On the 

contrary, in our proposed method, almost all objects of the piping 

system are already recognized and modelled.  

Finally, table 3 compares the averaged computational time for 

estimating the next-best scanner position. In the proposed method, 

the estimation of the optimum scanner position in each scan 

finished within 5min. On the contrary, because a larger number 

of unknown voxels must be the checked for evaluating the 

expectation of the observation probability, the conventional 

method approximately took 1.4 hours for finding the optimum 

Figure 9.  The change in the recognition rate of piping objects 

(a) By previous method 

[Potthast et al., 2014] (b) By the proposed  method 

Figure 10.  The difference in the recognized piping objects 

respecting the estimated scanner positions after 7th scan 

Figure 8.  Aggregated scanned point clouds, 𝐸(𝑣𝑐) distributions and the next best scanner positions after every scan 

Aft 1st scan Aft 2nd scan Aft 3rd scan Aft 4th scan Aft 5th scan Aft 6th scan Aft 7th scan

P
ro

p
o

s
e

d
 M

e
th

o
d

S
c
a

n
n
e

d

p
o

in
t 

c
lo

u
d

s
S

c
a

n
n
e

d

p
o

in
t 

c
lo

u
d

s
𝐸
𝑣
𝑐

&
 

N
e

xt
 b

e
s
t 

p
o

s
.

[P
o

tt
h
a

s
t

e
t 
a

l.,
 2

0
1

4
]

𝐸
𝑣
𝑐

&
 

N
e

xt
 b

e
s
t 

p
o

s
.

𝐸 𝑣𝑐

 a  e

 mall

Table 3.  Computational time for estimating 

one next-best scanner position 0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

# of Scans

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

# of Scans

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 2 3 4 5 6 7 8 9 10

# of Scans

Potthast

本提案手法

(a) Straight pipe (b) Elbow

(c) Junction

[Potthast et al., 2014]

Proposed method

R
e

c
o

g
n
it
io

n
 R

a
te

By previous method 

[Potthast et al., 2014]

By the proposed 

method

Averaged estimation time 

for one next-best scanner 

position [min] 
85.1 4.0

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-313-2014 319



 

scanner position in each scan. Therefore, it is difficult to use the 

previous optimum scanner position estimation method in the 

practical scanning operations for large-scale environment.  

The above simulation results clearly show that our proposed 

method outperforms conventional approaches in the recognition 

accuracy, efficiency and the computational time. 

 

5. CONCLUSION AND FUTURE WORK 

A new computer-aided method to find an optimum sequence of 

next-best positions of a terrestrial laser scanner specialized for 

as-built modelling of piping systems was proposed. Different 

from the conventional approaches, in the proposed method, 

piping objects in the measured point clouds are recognized right 

after an every scan, local occluded spaces occupied by the 

unmeasured piping systems are then predicted, and a best scanner 

position for the next scan is selected so as to minimize these local 

occluded spaces. From the comparison of the simulation result 

with that of the previous similar method, it was shown that the 

proposed scanner position estimation method outperforms the 

conventional one in the recognition efficiency, accuracy and the 

computation turnaround time. To our knowledge, our method is 

the first study which gives a solution of next-best-view problem 

for terrestrial laser scanning of 3-dimenntional, complex and 

large-scale plant environments. 

As the further work, the proposed method should be applied to 

the real scanning operations for the validation. The scanner 

position estimation which ensures some amount of overlap 

between the scanned point clouds should be considered. The 

constraints of the incidence angle and measuring range similar to 

(Soudarissanane, S. et al., 2011) should also be considered as 

well as the spatial coverage. The efficient spatial management 

using octree should be used instead of voxels for the 

measurement of larger-scale plant environments. The 

dependency of the performance on the initial scanner position 

selection should also be investigated experimentally.   
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