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ABSTRACT: 

 

3D models of indoor environments are important in many applications, but they usually exist only for newly constructed buildings. 

Automated approaches to modelling indoor environments from imagery and/or point clouds can make the process easier, faster and 

cheaper. We present an approach to 3D indoor modelling based on a shape grammar. We demonstrate that interior spaces can be 

modelled by iteratively placing, connecting and merging cuboid shapes. We also show that the parameters and sequence of grammar 

rules can be learned automatically from a point cloud. Experiments with simulated and real point clouds show promising results, and 

indicate the potential of the method in 3D modelling of large indoor environments.   

 

 

                                                                 
 Corresponding author 

1. INTRODUCTION 

Spatial data of indoor environments, where we spend a 

considerable amount of our time, are important for a variety of 

applications. For most buildings the available spatial data are 

either 2D floor plans or design building information models 

(BIM), which do not represent the current state of the building. 

However, many applications such as crisis management, routing 

and navigation, energy efficiency analysis, structural health 

monitoring and maintenance planning require up-to-date 3D 

indoor models with rich semantics.  

 

Currently, 3D indoor modelling is mostly a manual procedure, 

which is time consuming and labour intensive. Several methods 

have been developed to automatically generate indoor models 

based on imagery and/or point cloud data. These methods can 

be divided into two main categories: surface-based and 

volumetric reconstruction methods. Surface-based methods 

recognize the structural elements of the indoor environment, i.e. 

walls, floors and ceilings, to generate a boundary representation 

(B-rep) model (Budroni and Boehm, 2010; Sanchez and 

Zakhor, 2012; Valero et al., 2012; Díaz-Vilariño et al., 2013; 

Xiong et al., 2013). While B-rep models are more suitable for 

visualization, they are less useful in applications that require 

knowledge of the interior spaces and their topological relations, 

e.g. routing and navigation. Volumetric approaches model the 

indoor environment as a combination of volumetric spaces 

(Jenke et al., 2009; Xiao and Furukawa, 2012; Oesau et al., 

2014), which are more suitable for performing complex spatial 

analysis. However, methods for fitting volumetric primitives to 

the data are usually restricted to simple indoor architectures, 

and are susceptible to inaccuracy and incompleteness of the 

data.  

 

The challenge in recognizing interior spaces is to understand the 

principles of indoor architectural design and translate them into 

a modelling algorithm. Indoor architecture is characterized with 

three elements: repetition, regularity and creativity. Regular 

structures like cuboid spaces repeatedly appear in indoor 

environments but in very many different configurations 

reflecting the creativity of the architect. A design principle that 

combines these elements and explains their working in 

architecture is the shape grammar (Stiny, 2008). It establishes 

that different designs can be made by iteratively combining 

simple shapes according to some rules, the same way a language 

is defined by words constructing sentences according to 

grammar rules. 

 

In this paper we present a method for the modelling of indoor 

environments based on a simple shape grammar. Other types of 

grammar have been used for modelling interior spaces by 

Becker et al. (2013). In our approach, we derive our shape 

grammar from an architectural indoor design concept known as 

the Palladian grammar (Stiny and Mitchell, 1978). We also 

present methods for learning the grammar rules and their 

parameters from a point cloud. 

 

The rest of the paper is organized as follows. Section 2 

introduces the shape grammar for modelling indoor spaces.  

Section 3 describes the methods for learning the grammar rules 

from a point cloud. In Section 4 experiments with a number of 

simulated and real point clouds of indoor environments are 

described and the results are discussed. A short discussion on 

the representation of semantics in 3D indoor models 

reconstructed by shape grammar is presented in Section 5. 
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2. A SIMPLE SHAPE GRAMMAR FOR INDOOR 

MODELLING 

We define a parametric shape grammar similar to the Palladian 

grammar which has been used to describe Palladian style indoor 

designs (Stiny and Mitchell, 1978). Figure 1 shows examples of 

Palladian architectural designs generated by a simplified shape 

grammar, consisting of a starting symbol (a grid of rectangular 

spaces - Figure 1a), and two production rules (first merging 

spaces by collapsing intermediate walls, and then inserting 

aligned windows and doors). This method can be easily 

extended to 3D. For 3D modelling of interior spaces, we use a 

unit cube as the starting symbol (as it represents a 3D 

subspace), and three production rules that generate non-terminal 

symbols (intermediate cuboid spaces) and terminal symbols 

(final interior spaces). The following are the rules: 

- R1
place_cuboid: S  H·S 

Applies a transformation H to the unit cube S and places 

the transformed cuboid. Currently, H consists of a 

translation vector with tx, ty, tz and three scale parameters 

sx, sy, sz. This would restrict the modelling to indoor 

environments with Manhattan-World structure. For non-

Manhattan-World buildings H can be easily extended to 

include also a rotation around the z axis.  

- R2
connect_cuboids: {N1, N2}  N3 

Connects two neighbouring non-terminal cuboids, N1 and 

N2, which are not separated with a wall by making a new 

non-terminal cuboid N3 in between them.  

- R3
merge_cuboids: {N1, N2}  N3 (T) 

 Merges two adjacent non-terminal cuboids, N1 and N2, by 

calculating the Boolean union of the two cuboids. The 

resulting solid can be a non-terminal (N3) or a terminal 

(T) depending on whether or not it can be merged further.  

 

These rules produce a 3D model of the interior spaces in the 

form of volumetric solids. To add further details like doors and 

windows the rule set can be extended with additional rules. 

 

3. LEARNING GRAMMAR RULES AND THEIR 

PARAMATERS 

The grammar rules already facilitate interactive modelling of 

interior spaces. Placing a cuboid by the first rule can be easily 

done manually, or to generate a 3D grid of cuboids the user 

only needs to specify the location of the floors and the walls. To 

apply the other two rules the user only needs to select two 

cuboids. 

 

Given a point cloud of the interior spaces, however, it is 

possible to learn the parameters and sequence of the rules 

automatically. In an indoor environment which does not deviate 

too much from the Manhattan-World assumptions, the 

distribution of the points in the point cloud provides 

information on the position of the main structural elements, and 

can be used to estimate the parameters of the grammar rules.  

 

To enable reasoning based on the point distribution the point 

cloud should be first rotated such that the main walls are 

parallel to the x- and y axes and the floor and ceiling are parallel 

to the x-y plane. The rotation parameters can be estimated from 

the distribution of the normal vectors. As shown in Figure 2, the 

normals form three clusters corresponding to the orientation of 

the main walls and the floors/ceilings. We use a simple k-means 

clustering method to find the three cluster centres, and use these 

to estimate the three rotation parameters that align the point 

cloud. 

Figure 1. By applying grammar rules to a grid of rectangular 

spaces (a) various Palladian indoor designs can be generated (b 

to h). 

 

Once the point cloud is aligned, the distribution of the z-

coordinate of the points provides information on the number of 

storeys of the building. The peaks in the histogram of z-

coordinates correspond to the floors and ceilings in the point 

cloud. Each pair of adjacent peaks with a difference larger than 

3 to 4 meters in z corresponds to a building storey. By 

automatic extraction of the histogram peaks the locations of the 

floors and ceilings are identified, and the point cloud can be 

divided into subclouds corresponding to the individual storeys 

of the building. Each storey is then modelled separately by 

applying the grammar rules. 

 

The first rule contains transformation parameters that determine 

the location and size of a cuboid such that it corresponds to an 

actual subspace of the interior. In an aligned point cloud, the 

histograms of the point coordinates in x, y and z are 

characterized with peaks that correspond to the location and 

size of the subspaces. Each pair of adjacent histogram peaks 

that have a distance larger than the normal thickness of the 

walls determines the location and size of a subspace, whereas 

closer peaks correspond to walls and non-navigable spaces.  

 

Figure 2. The normal vectors of an indoor point cloud (a) form 

three clusters corresponding to the direction of the walls and 

floors/ceilings (b). The cluster centres are used to estimate the 

rotation parameters that align the point cloud (c). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(a) 

 
(b) 

 
(c) 
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To place each cuboid based on the parameters automatically 

derived from the histograms a points-on-ceiling constraint must 

be satisfied. This means that the cuboid should have points on 

its top face (the cuboid’s ceiling); otherwise, it is inconsistent 

with the definition of an interior space. To decide whether or 

not a cuboid has points on its ceiling we define a points-on-

ceiling index:  

 

ceiling

PoC
A

n
I

2
  (1) 

 

where n is the number of points that fall within a small buffer 

around the cuboid’s ceiling, Aceiling is the area of the cuboid’s 

ceiling and δ is the average point spacing in the point cloud. 

When the cuboid’s ceiling touches an actual surface in the point 

cloud the point-on-ceiling index will be close to one; otherwise, 

it will be close to zero.  

 

When placing the cuboids, each cuboid is given a pair of grid 

coordinates according to the location of its corresponding peaks  

in the histograms of the point coordinates in x and y. From the 

grid coordinates neighbourhood relations between cuboids can 

be derived, which is used by the second rule. 

 

The second rule connects neighbouring cuboids that are not 

separated by an interior wall. The location and size of the 

connecting cuboid is derived from the coordinates of the 

vertices of the two cuboids that are closest to each other. To 

determine whether the connecting cuboid is on empty space or 

on an interior wall we define a points-on-walls index: 

 

wall

PoW
A

n
I

2
  (2) 

 

which is similar to equation (1), except here n is calculated as 

the number of points that fall within a small buffer around the 

cuboid’s lateral faces (cuboid’s walls), and Awall is the total area 

of the cuboid’s walls.  

 

The second rule is applied iteratively until no more two 

neighbouring cuboids can be connected. In some cases all 

cuboids are already adjacent from the beginning, for example 

when modelling a single space without interior walls, or when 

the cuboids are placed manually such that there is no empty 

space between them. In such a case the connecting cuboid will 

have one scale parameter of zero, which indicates that the rule 

will have no effect. 

 

The third rule merges adjacent cuboids. This would simply 

require finding non-terminal cuboids that have a common face, 

and calculating their Boolean union. This rule is also applied 

iteratively until no more two adjacent cuboids are found.  At the 

end of the iterations, all remaining cuboids are designated as 

terminal spaces.  

 

4. EXPERIMENTS AND RESULTS 

The grammar and the methods for learning it from a point cloud 

was implemented in Matlab® environment. While for spaces 

with a Manhattan-World structure we perform the entire 

reconstruction process in Matlab, for more complex interiors we 

export the grammar rules as a Python script to FreeCAD 

software (www.freecadweb.org), which is better suited for 

operations on solids, particularly the Boolean union operation. 

Preliminary experiments were carried out using a simulated 

point cloud of a two-storey building and a real point cloud 

acquired by terrestrial laser scanning of a large interior space. 

For the generation of the rules a number of parameters should 

be predefined. Table 1 lists the settings used in the two 

experiments. The average point spacing and the buffer size are 

set respectively based on the density and noise level of the point 

cloud. The maximum wall thickness is based on prior 

knowledge of the building. The choice of histogram bin size 

does not have a significant effect on the performance of the 

method, and a value between 5 and 20 cm is usually suitable. 

 

Table 1. Parameter settings used in the experiments. 

Parameter 

 

Dataset 

Histogram 

bin size 

(m) 

Max wall 

thickness 

(m) 

Ceiling/wall 

buffer  

(m) 

Average 

point 

spacing 

(m) 

Simulated  0.05 0.50 0.05 0.05 

Real data 0.05 0.10 0.05 0.10 

 

4.1 Results for the simulated point cloud 

The simulated point cloud of an imaginary two-storey building 

was created with an average point spacing of 5 cm and a noise 

level of 5 cm. Figure 3 shows the simulated point cloud. 

 

Figure 4 shows the histogram of z coordinates of the simulated 

point cloud, which contains four distinct peaks. To extract the 

peaks we simply find the bins that have a greater count than 

their neighbours, with the constraint that if two peaks are found 

less than 5 bins apart the lower peak is eliminated. More 

elaborate techniques such as the mean shift (Comaniciu and 

Meer, 2002) or fitting a spline curve to local maxima (Li et al., 

2004) can also be used, but we found that this simple technique 

yields satisfactory results. 

 

The distance between the first two peaks and that between the 

last two peaks determine the heights of the two storeys of the 

building. These are used as an estimate of sz for the cuboid 

placement in each storey. The bin between the two close peaks, 

which has the lowest count is used to divide the point cloud to 

two subclouds. The grammar rules are then applied to the 

subclouds corresponding to each storey separately.  

 

Figure 5 shows the histograms of the x- and y coordinates of 

each storey, from which the location and size of the cuboids are 

derived. In essence, the peaks in these histograms define a 

partitioning of the point cloud into a set of 3D cuboids. 

However, those peaks that are closer than the predefined wall 

thickness (see Table 1) represent points on the two sides of a 

wall, and are therefore not used to instantiate the cuboid 

placement rule. 

 

 
(a) 

 
(b) 

Figure 3. Simulated point cloud of the first floor (a) and the 

second floor (b) of a two-storey building. The ceiling is 

removed for better visualization. 
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Figure 4. The histogram of z coordinates showing distinct peaks 

corresponding to the two storeys of the building. 

 

Figure 6 shows the cuboids generated by iteratively applying 

the cuboid placement rule parameterized based on the peaks in 

the histograms of x-, y- and z coordinates. 

 

In addition to the cuboid parameters, the neighbourhood 

relation between the cuboids is also derived from the peaks in 

the histograms. This facilitates the application of the second 

rule. Every pair of neighbouring cuboids are connected 

provided that the connecting cuboid is not on a wall. Figure 7 

shows the distribution of points-on-wall indices calculated for 

cuboids placed in empty spaces and for those placed on walls. 

Clearly, the indices for the two types of spaces are quite 

distinct, even though most empty spaces are adjacent to a wall 

from one or two sides. Based on Figure 7, a threshold of 0.5 

was chosen to distinguish between empty spaces and walls.  

 

Figure 8 shows the result of iteratively applying the second rule 

to connect the cuboids that are not separated with a wall. The 

final spaces produced by iteratively applying the merge rule are 

shown in Figure 9. Overall, the final model of the first floor was 

created by 42 times application of the first rule (place cuboid), 

52 times application of the second rule (connect cuboids) and 

102 times application of the third rule (merge cuboids). For the 

model of the second floor, which has a simpler design, the 

number of rule applications were 16, 12 and 25, respectively for 

the first, second and the third rule. All rules were generated, 

parameterized and applied fully automatically. 

Figure 5. The histograms of x- and y coordinates for each floor 

showing distinct peaks corresponding to the location of walls 

and size of subspaces. 

 

 
(a) 

 
(b) 

Figure 6. Top view of the cuboids generated by iteratively 

applying the first rule to subclouds of the first floor (a) and the 

second floor (b). 

 
Figure 7. Distribution of point-on-wall indices for cuboids 

placed in empty spaces and on the walls. 

 

 
(a) 

 
(b) 

Figure 8. Connecting cuboids of the first floor (a) and the 

second floor (b) by iteratively applying the second rule. 

 

 
(a) 

 
(b) 

Figure 9. Final spaces of first floor (a) and second floor (b). 

 

4.2 Results for the real point cloud 

A point cloud of an interior space with a long corridor of a 

building in the University of Vigo was acquired by a terrestrial 

laser scanner for the second experiment. Figure 10 shows a low-

density version of the point cloud.  

 

Figure 11 shows the histograms of z-, x- and y coordinates and 

the extracted peaks used for the placement of cuboids. In the 

histogram of z coordinates only two peaks were found, 

indicating that there is only one storey. The peaks in the 

histogram of x- and y coordinates were used to apply the cuboid 

placement rule. The result is shown in Figure 12(a). As it can be 

seen, two cuboids are missing in the middle of the interior 

space. Examining Figure 10 reveals a gap in the ceiling caused 

by an inner patio connecting the floors of the building. Because 

of this gap the points-on-ceiling constraint was not satisfied for 

this part of the point cloud, and so no cuboids were placed 

there. Those cuboids can be placed manually by providing 

appropriate position and scale parameters to the first rule, or by 

disabling the point-on-ceiling constraint temporarily. Figure 

12(b) shows the result of cuboid placement with the two 

cuboids placed manually.   

 

Since the interior space in this experiment did not contain any 

interior walls there were no empty spaces left between the 

cuboids. Therefore, the second rule for connecting the cuboids 

had no effect, and the adjacent cuboids could already be 

 
(a) 

 
(b) 
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merged. Figure 13 shows the final model generated by merging 

adjacent cuboids through iterative application of the third rule. 

Overall, the final model of the interior space was created by 16 

times application of the first rule (place cuboid) and 23 times 

application of the third rule (merge cuboids). The second rule 

(connect cuboids) was applied, but did not create any 

connecting cuboids. 

 

 
Figure 10. Point cloud of an interior space obtained by 

terrestrial laser scanning. 

 

 

Figure 11. Histograms of z-, x- and y coordinates for the real 

point cloud and the extracted peaks. 

 

 
(a) 

 
(b) 

Figure 12. Cuboid placement in the real point cloud. Two 

cuboids are missing (a) because there are no points on the 

ceiling (see also Figure 10). These were placed manually by 

temporarily disabling the points-on-ceiling constraint (b). 

 
(a) 

 
(b) 

Figure 13. Final model of the interior space obtained by 

iteratively applying the merge rule to the cuboids. The model is 

shown as a solid with transparent faces (a), and as converted to 

B-rep with the ceiling removed to provide a better view of the 

interior (b).  

 

5. REPRESENTATION OF SEMANTICS 

Using the shape grammar, an indoor environment is modelled 

as a configuration of parameterized spaces. Such a model 

contains semantics like height and volume of the spaces and 

their topological relationships. Knowledge about the 

configuration of interior spaces and relations between them is 

the basis for the representation of semantically rich 3D building 

models both in the world of Building Information Models 

(BIM) and in the world of 3D GIS. While topological 

relationships between elements are inherent in both cases, the 

geometric detail and the semantic content depend on the 

application area for which models are created. 

 

In the world of 3D GIS, the CityGML standard represents 

building interiors as navigable and non-navigable spaces in 

models at level of detail 4 (LoD-4). While presently our models 

consist of navigable spaces, non-navigable spaces can be easily 

modelled by placing cuboids on walls using the points-on-walls 

index (See Figure 7). Also the grammar can be extended to 

model openings like doors and windows. In CityGML, openings 

that connect spaces represent adjacency between them, since the 

surface that represents the opening is part of the boundaries of 

both spaces. The adjacency relationship between spaces though 

openings can be used to derive an accessibility graph for indoor 

navigation or for determining the spread of gas or smoke.  

 

In the world of BIM, the gbXML standard was exclusively 

developed in order to support all the information necessary for 

energy analysis applications. In terms of geometry, the 

structural elements of a building (i.e. walls, ceilings and floors) 

are represented as planar surfaces each being adjacent to two 

spaces. These surfaces can be simply obtained from the 

volumetric spaces (See Figure 13). The adjacency relations, 

which is fundamental for heat transfer calculation between 

spaces, can also be passed from the spaces to the surfaces and 

stored as part of their semantic content. 

 

6. CONCLUSIONS 

In this paper we presented an approach to 3D modelling of 

indoor environments based on a shape grammar. It was shown 

that indoor environments can be modelled by iteratively 

placing, connecting and merging cuboid shapes. We also 

presented methods for learning the parameters and sequence of 

the rules from a point cloud.  

 

The shape grammar presented in this paper can be used to 

model a variety of indoor architectures. Our experiments, 
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however, showed the applicability of the method to indoor 

environments with Manhattan-World structure only. Future 

work will focus on extending the grammar with additional rules 

and conducting further experiments to model non-Manhattan-

World indoor environments. Further experiments are also 

needed to evaluate the methods with data that contain more 

clutter and occlusions. 
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