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ABSTRACT:

The paper presents a flexible approach for the geometric calibration of a2D infrared laser scanning range finder. It does not require
spatial object data, thus avoiding the time-consuming determination of reference distances or coordinates with superior accuracy.
The core contribution is the development of an integrated bundle adjustment, based on the flexible principle of a self-calibration. This
method facilitates the precise definition of the geometry of the scanning device, including the estimation of range-measurement-specific
correction parameters. The integrated calibration routine jointly adjusts distance and angular data from the laser scanning range finder
as well as image data from a supporting DSLR camera, and automatically estimates optimum observation weights. The validation
process carried out using a Hokuyo UTM-30LX-EW confirms the correctness of the proposed functional and stochastic contexts and
allows detailed accuracy analyses. The level of accuracy of the observations is computed by variance component estimation. For the
Hokuyo scanner, we obtained0.2 % of the measured distance in range measurement and0.2 deg for the angle precision. The RMS
error of a 3D coordinate after the calibration becomes5 mm in lateral and9 mm in depth direction. Particular challenges have arisen
due to a very large elliptical laser beam cross-section of the scanning device used.

INTRODUCTION

2D laser scanners based on the time-of-flight principle consume
less power, are compact and light-weight as well as reasonably
priced. Installed on a moving platform, such a measurement
device represents an interesting alternative to stereo vision tech-
niques or 3D laser scanner systems. It thus becomes an indispens-
able instrument for localization, mapping and obstacle detection
in land or airborne mobile robotic applications.

Rogers III et al. (2010) use compact laser scanning range finders
(LSRF) for simultaneous mobile robot localization and mapping
(SLAM) in an indoor office environment. In (Krüger et al., 2013;
Nowak et al., 2013), single-layer laser scanner data are used to de-
tect and localize unmanned swarm vehicles for an extra-terrestrial
exploration mission. Serranoa et al. (2014) present a navigation
algorithm based on 2D laser scanner data to allow seamless in-
and outdoor navigation of an unmanned aerial vehicles (UAVs).
In (Scherer et al., 2012), a LSRF is fixed on a flying robot to
perform autonomous river mapping. In (Kuhnert and Kuhnert,
2013), a small LSRF is attached to a micro drone for precise 3D
power-line monitoring. (Djuricic and Jutzi, 2013) support a UAV
by multiple-pulse laser scanning devices and overcome the limi-
tations in form of low visibility due to soft obstacles like fog or
rain. Holz et al. (2013) take advantage of high LSRF scan rates
and propose a method for obstacle avoidance that allows fully
autonomous UAV flights.

Whether for navigation or for mapping tasks, a calibration of the
laser scanning system is reasonable to maximize data accuracy.
This contribution proposes a flexible method for LSRF system
self-calibration. It is structured as follows: The functional prin-
ciple and the ideal geometric measurement model for a single-
layer LSRF are introduced in section 2. In section 3, the error
characteristic of a light-weight 2D laser scanner is described, er-
ror sources are identified and different calibration strategies for
correction are discussed. The integrated self-calibrating bundle

adjustment approach presented here and the results achieved are
described in detail in sections 4 and 5. Finally, the work is sum-
marized and an outlook is given in section 6.

SENSOR

Laser scanners are active sensors, emitting near infrared light,
which is backscattered from the object surface to the sensor. The
distance is measured by timing the round-trip path of the laser
beam (time-of-flight) or by measuring the phase difference be-
tween the emitted and the received signals (phase-shift). The in-
tensity of the reflected light is often additionally stored as mea-
sure for surface’s albedo. A comprehensive overview of laser
scanning technology is given in (Vosselman and Maas, 2010).

A single-layer LSRF is typically realized as time-of-flight rang-
ing system. It uses pulsed laser light beams to directly measure a
time delay created by light traveling from the sensor to the object
and back. The laser scanning unit measures very fast by send-
ing light beams into the center of a continuously rotating mir-
ror. Latest devices like the 210 gram light-weight Hokuyo UTM-
30LX-EW (figure 1a) shift this mirror with an angular resolution
of 0.25 deg between each measurement in a few microseconds.
With 270 deg field of view, the Hokuyo scanner provides 1080
measurements per scan line in 25 ms. The scanning range is 0.1 m
to 30 m. Multi-echo functionality allows to receive up to three
echoes of a single emitted light pulse.

The spherical coordinates of an object point are given as
(D, α, β), whereD is the measured slant range andα the cor-
responding horizontal deflection angle. 2D LSRF take measure-
ments over a plane (figure 1b). Consequently, the vertical angle
β := 0 does not exist as a matter of principle. Assuming a right-
handed Cartesian coordinate system, the 3D object coordinates
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Figure 1: (a) Laser scanning range finder Hokuyo UTM-30LX-
EW (Hokuyo, 2014). (b) Measuring principle and coordinate sys-
tem definition.
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Complete 3D scans can be achieved implicitly by moving the
platform on which the sensor is mounted. The registration of sin-
gle measurement stripes can for example be realized by GPS/INS
integration (Maier and Kleiner, 2010), by 3D visual SLAM with
a camera (Georgiev and Allen, 2004) or by attaining accurate sen-
sor pose with respect to a fixed 3D reference frame (Antone and
Friedman, 2007). Considering lever-arm and bore-sight effects
finally results in a 3D point cloud representation of the object
space. Complete 3D scans can be achieved implicitly by mov-
ing the platform on which the sensor is mounted. The registra-
tion of single measurement stripes can for example be realized
by GPS/INS integration (Maier and Kleiner, 2010), by 3D visual
SLAM with a camera (Georgiev and Allen, 2004) or by attaining
accurate sensor pose with respect to a fixed 3D reference frame
(Antone and Friedman, 2007). Considering lever-arm and bore-
sight effects finally results in a 3D point cloud representation of
the object space.

ERROR SOURCES AND CALIBRATION STRATEGIES

The measured ranges and angles are used for calculating 3D point
cloud coordinates (equation 1). The modeling of deviations from
the ideal measurement model is required, if accurate 3D infor-
mation should be delivered. A number of systematic and random
errors can act on the original observations of a laser scanner: Ef-
fects caused by temperature and running-in behavior or multipath
propagation can be decreased or even avoided by an adequate
measurement setup. The influence of white noise can be com-
pensated in static, non-time-critical applications by mean of long-
term measurements. Laser beam divergence may cause angular
displacement errors depending on the location and the shape of
the scanned object. Lichti and Gordon (2004) use a probabilistic
model to specify the magnitude of this unpredictable error to be
equal to one-quarter of the laser beam diameter. Target properties
such as color, brightness and material may also have a significant
influence on LSRF measurements (Kneip et al., 2009).

The results of the distance and angular measurements are fur-
ther affected by perturbations – caused for example by imper-
fections in instrument production – which can be considered in
an adequate correction model. Sets of additional parameters for

the geometric calibration of terrestrial laser scanning (TLS) in-
struments are investigated in e. g. (Gielsdorf et al., 2004; Lichti,
2007; Schneider and Schwalbe, 2008), general correction models
are summarized in (Vosselman and Maas, 2010). The following
considerations base on these works.

A linear distance correction term considers a shifta0 of the mea-
surement origin and a scale variationa1 caused by counter fre-
quency deviations. A vertical offset of the laser axis from the
trunnion axis as well as cyclic distance errors are supposed to be
not existent for a 2D single-layer time-of-flight LSRF (section 2).
The appropriate distance correction model is defined as

∆D = a0 + a1 ·D (2)

The correction model for errors in horizontal direction consists
of six correction terms, namely a horizontal encoder (circle) scale
errorb1, two componentsb2, b3 for modeling the horizontal circle
eccentricity, two further componentsb4, b5 for modeling the non-
orthogonality of the plane containing the horizontal encoder and
the rotation axis and, finally, the eccentricityd6 of the collimation
axis relative to the rotation axis.

∆α = b1 · α
+ b2 · sin α + b3 · cos α + b4 · sin 2α + b5 · cos 2α

+ b6 ·D−1

(3)

Further additional parameters to correct the collimation and trun-
nion axis errors are not required due to the 2D scanning principle.
Also a correction model for errors in elevation angle is not nec-
essary.

Several calibration strategies are reported in the literature to cor-
rect LSRF errors described above. Ye and Borenstein (2002) or
Okubo et al. (2009) for example utilize a computer-controller lin-
ear motion table for calibrating the scanner device. The experi-
mental configuration is extended in (Kneip et al., 2009) by set-
ting not only reference values for the distance measurement, but
for the incidence angle as well. Jain et al. (2011) use time domain
techniques for error modeling. Kim and Kim (2011) fit cubic Her-
mite splines scan-wise to data captured on a translation/rotation
stage.

The calibration approaches reviewed above utilize reference stag-
es or comparators for accurate translational and rotational dis-
placement measurements. Reference values can also be provided
indirectly by the network geometry determined in the course of
a self-calibration, a procedure which reduces time and instru-
mental effort significantly. Self-calibration strategies are well-
established for 3D TLS (e. g. Schneider and Maas, 2007; Lichti,
2009). Glennie and Lichti (2010) collect a static data set of planar
features in order to determine the internal calibration parameters
of a multi-layer LSRF in a bundle adjustment. The further de-
velopment for compact and light-weight single-layer 2D LSRF is
the main core of this contribution.

INTEGRATED SELF-CALIBRATING BUNDLE
ADJUSTMENT

4.1 Geometric Principle

The calibration approach should hold the following characteris-
tics: (1) To reduce efforts in time and instrumental resources, the
method is based on self-calibration. (2) All necessary types of
observations and constraints are integrated in one joint functional
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and stochastic context. (3) The future expansion of the mathe-
matical model developed is facilitated due to its adaptivity and
modular implementation. (4) The method requires only a target
field, which is stable, compact, portable as well as easy in set-up
and dismantle, but it does not require reference values.

The geometric principle is shown in figure 2. It is based on an in-
tegrated self-calibrating bundle adjustment of directional distance
measurements of a LSRF. Additional images of a digital single-
lens reflex camera (DSLR) ensure a stable network geometry.

The reference between LSRF data and DSLR data can either
be realized by identifying homologous points in both data sets
(which is quite difficult) or by using easily parametrizable geo-
metric primitives (Westfeld and Maas, 2013). In the integrated
self-calibrating bundle adjustment presented here, spatial distrib-
uted cones functioning as 3D primitives. Their parameters as well
as their poses can be determined from both, LSRF and DSLR ob-
servations.

The original LSRF measurements(D, α) are transformed into
a local laser scanner coordinate system (lcs) using equation 1.
The 3D object coordinatesXlcs

lsrf obtained are subsequently trans-
formed into 3D object coordinatesXpcs

lsrf of a higher-level project
coordinate system (pcs):

Xpcs
lsrf = X0

pcs
lsrf + mpcs

lcs ·Rpcs
lcs ·Xlcs

lsrf (4)

where
X0

pcs
lsrf LSRF origin in project coordinate system

mpcs
lsrf Scale factor

Rpcs
lsrf Rotation matrix

DSLR images of signalized points on target’s surfaces are further
captured in order to reliably estimate positions and orientations of
the cone primitives. The rule for mapping an image pointxscs

cam,
which is measured in a local sensor coordinate system (scs), into
its corresponding object pointXpcs

cam is

Xpcs
cam = X0

pcs
cam + mpcs

scs ·Rpcs
scs · xscs

cam (5)

where
Xpcs

0,lsrf Camera’s projection center
mpcs

scs Scale factor
Rpcs

scs Rotation matrix

In order to set the geometric relation between both sensors, all ob-
ject pointsXccs

lsrf,cam in a local cone coordinate system (ccs) deter-
mined from LSRF resp. DSLR data should satisfy the following
general equation of a cone:

0 =
r2

max

h2
max

·
(

hmax− Zccs′
lsrf,cam

)2

−Xccs2

lsrf,cam− Y ccs2

lsrf,cam (6)

where
rmax Maximum radius on cones bottom
hmax Maximum cone height

The necessary transformation between local cone coordinate sys-
tem and project coordinate system is given by

Xpcs
lsrf,cam = X0

pcs
cone+ mpcs

ccs ·Rpcs
ccs ·Xccs

lsrf,cam (7)

where
Xpcs

0,cone Cone’s origin in project coordinate system
mpcs

ccs Scale factor
Rpcs

ccs Rotation matrix

4.2 Functional Model

2D LSFR: LSRF directly deliver distance and angular obser-
vations as well as intensity information. The task is to automate
the detection of the cones in each scan line at each position. An
analysis of both intensity and range data is performed to identify
all measurement points belonging to a reference primitive (fig-
ure 3c). In detail, the processing chain consists of the following
steps:

1. Calculate the mean of the long-term measurements (figures
3a and 3b) performed at each position and further smooth
the resulting single scan lines by moving average (figure 3c;
cyan and black graphs).

2. Apply dynamically derived distance and intensity thresholds
for further data containment.

3. Find local maxima to roughly detect the positions of the
cones (figure 3c; red crosses).

4. Calculate local extrema of distance gradient curves.

5. All measurement points located between two local extrema
belong to a cone if and only if a rough cone position detected
in (3) is included (figure 3c; red dotted lines).

6. Remove outliers, for instance caused by multipath effects at
surface edges.

The distances measured between LSRF optics and cone surfaces
serve as first, the corresponding angles of deflection as second
observation type:

D =

√

X lcs
lsrf

2
+ Y lcs

lsrf
2

+ Z lcs
lsrf

2
+ ∆D (8)

α = arctan
Y lcs

lsrf

X lcs
lsrf

+ ∆α (9)

The observation equations 8 and 9 include the unknown distance
and angular error-correction parameters∆D resp. ∆α intro-
duced in section 3.

Further unknowns are the 3D coordinates of each scanned point
on the cone surfaces, in a first instance as local sensor coordinates
Xlcs

lsrf. Using equation 4 results in higher-level project coordinate
Xpcs

lsrf which have to fulfill the constraint equation 6 including the
unknown cone parameters radiusrmax and heighthmax.

The fact that a 2D LSRF measures in one horizontal laser scan-
ner plane only has taken into account by the following constraint
which forces the vertical angleβ to be zero:

β = arctan
Z lcs

lsrf
√

X lcs
lsrf

2
+ Y lcs

lsrf
2

:= 0 (10)

Supporting DSLR camera: A convergent multi-image set of
a DSLR camera is taken of all 3D reference primitives. The posi-
tions of circular coded targets have been detected and measured
automatically with a standard deviation of1/25 pixel using the
photogrammetric software packageAICON 3D Studio (figure 4).
These image point coordinates form the third type of observa-
tions introduced into the bundle adjustment. The well-known
collinearity equations as inverse function of equation 5 are the
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Figure 2: Geometric model.

corresponding observation equations for mapping an object point
Xpcs

cam(X, Y, Z) to an image pointxscs
cam(x, y) using a central pro-

jection:

x = x0

− c · r11 · (X −X0) + r21 · (Y − Y0) + r31 · (Z − Z0)

r13 · (X −X0) + r23 · (Y − Y0) + r33 · (Z − Z0)

+ ∆x

y = y0

− c · r12 · (X −X0) + r22 · (Y − Y0) + r32 · (Z − Z0)

r13 · (X −X0) + r23 · (Y − Y0) + r33 · (Z − Z0)

+ ∆y

(11)

where
c Focal length
x0 Principal point
∆x Correction functions
X0 Projection center
rr,c Elements of a rotation matrixR

The unknowns which can be estimated from equation 11 are the
focal lengthc, the principal pointx0 and the parameters of the
image correction functions∆x as interior orientation parameters
as well as the exterior orientation parametersX0

pcs
cam and

Rpcs
scs(ω, ϕ, κ) of the supporting DSLR camera. Further, the coor-

dinatesXpcs
cam(X, Y, Z) of all object points signalized on the cone

surfaces can be calculated in project coordinate system. Like the
3D coordinates determined by the LSRF, they should also satisfy
the general equation 6 of a cone.

Additional Constraints: A 3D rotation can be described by
three Euler angles(ω, ϕ, κ) or, in order to avoid ambiguous trig-
onometric functions, by four quaternions(q1, q2, q3, q4). The use
of quaternions makes sense from a numerical point of view, but
requires one additional equation per LSRF resp. DSLR position

Figure 4: Image point coordinate measurement by ellipse fit.

to enforce an orthogonal rotation matrixR:

1 = q2
1 + q2

2 + q2
3 + q2

4 (12)

The reference frame of the integrated self-calibrating bundle ap-
proach should be adjusted as an unconstrained network. The rank
defect of the resulting singular system of equations can be re-
moved by including seven additional constraints: 3 translations,
3 rotations, 1 scaling factor, (e. g. Luhmann et al., 2006). The
scale was determined by two diagonal reference distances across
the target field and used to fix the scale factorsmpcs within the
transformation equations 4, 5 and 7.

4.3 Stochastic Model

The stochastic model contains information about the accuracy of
the functional model, especially the weighting of the observations
and constraints. Usually, information from the instrument man-
ufacturer or from previous accuracy analyses provide the basis
for specifying the a-priori variance of a measurement. The inte-
grated calibration method combines heterogeneous observations
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Figure 3: Part of (a) range and (b) intensity LSRF raw data captured from one position over time. The five bluish/black lines in
range/intensity data (in a distance of approx.5 m around the region of135 deg) clearly represent the five cones. The result of the
segmentation of the cones is shown in (c): The cyan and the black curvesrepresent the mean of the long-term measurements in distance
resp. intensity channel. The red crosses roughly mark the detected cone positions, and the red lines highlight the corresponding
measurement points which are introduced into the bundle adjustment.

with unknown accuracy as well as different constrained geomet-
ric relations. The expansion of the stochastic model to the geode-
tic concept of include variance component estimation (VCE; Ku-
bik, 1967; F̈orstner, 1979) ensures that this heterogeneous infor-
mation pool is fully exploited.

The stochastic model is represented by the variance-covariance
matrix Σll of the observations before the adjustment process.
The weights of the observations are given by the quotient ofs2

0

to s2
i . The variance of the unit weights2

0 is a constant, andsi are
the variances of the observations, namely the variance compo-
nents2

D for the LSRF distance measurements,s2
α for tapping the

LSRF deflection angles ands2
xy for the DSLR image point mea-

surements. To differentiate between constant and distance-related
error components, the group variance for the distance measure-
ment is further separated into two adaptive variance components
s2

D = s2
D0 + s2

D1 ·D2 (Sieg and Hirsch, 2000).Σll can now be
subdivided into three components, i.e., one (adaptive) component
per group of observation:

Σll = diag(ΣD,Σα,Σxy)

= diag
((

s2
D0 + s2

D1 ·D2) I, s2
αI, s2

xyI
) (13)

where
I Identity matrix

The remaining additional constraints for the non-existent vertical
angle (equation 10), the implementation of quaternions (equation
12) as well as for a free network adjustment are considered to be
mathematically rigorous byPC = 0 in the extended system of
normal equations (Snow, 2002; section 4.4). Solely the geomet-
ric cone model is introduced less restrictive due to imperfections
in the manufacturing of the traffic cones, which were used as ref-
erence primitives (equation 6; section 5.1). Their weights are
adjusted automatically as fourth variance component group.

In the course of the VCE, the approximate values for the variance
components are improved within a few iterations. See (Koch,
1999) for further information.

4.4 Solving the Adjusmtent Task

The integrated bundle adjustment bases on an extended Gauss-
Markov model:

Ax̂− l = v; Bx̂ + w = 0

vTPv + 2k (Bx̂ + w) → min
[

x̂
k

]

=

[

ATPA BT

B −P−1
C

]−1 [
ATPl

w

]

(14)

where
v Residuals
k Lagrangian multipliers

The functional model (section 4.2) is required to set up the coeffi-
cient matricesA andB, which contain the linearized observation
and constraint equations, the reduced observation vectorl and the
vector of inconsistenciesw. The weight matricesP andPC as
inverse variance-covariance matricesΣll resp. ΣC define the
stochastic model (section 4.3). The extended system of normal
equations is solved iteratively. At each step, the solution vectorx̂
is added to the approximate values of the previous iteration until
the variances reach a minimum and the optimization criterion is
fulfilled.

As a least squares adjustment, the method delivers information
on the precision, determinability and reliability of the unknown
parameters. This includes the a-posteriori variances2

i of each
of the parameters as well as the correlation between parameters.
In combination with an automatic VCE, a-posteriori variancess2

l

ands2
l̂

of the original resp. adjusted observations can further be
stated. Data snooping techniques for gross error detection are
implemented as well as a student test to decide whether an intro-
duced parameter is significant or not. The least squares adjust-
ment is repeated until no gross error remains and all used param-
eters are significant.
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Figure 5: Measuring device Hokuyo UTM-30LX-EW in front of
the target field.

RESULTS

5.1 Experimental Configuration

A 3D calibration target field was designed in order to proof the
concept presented here (figure 5). It consists of eight standard
retro-reflective traffic cones with a maximum heighthmax of
90 cm and a maximum radiusrmax of 15 cm. The cones are
spatial distributed over an area of approximately10 m × 5 m.
Six LSRF positions in distances of up to15 m allow for the de-
termination of all distance- and angular-related correction terms.
LSRF scans in larger distances could not be oriented reliably. The
3D target field was further captured by a supporting DSLR cam-
era. Overall 100 convergent images, some of them rolled against
the camera axis, ensure a stable network geometry.

5.2 LSRF Calibration Parameters

Table 1 lists the LSRF calibration parameters and the correspond-
ing a-posteriori standard deviations estimated within the integrat-
ed bundle adjustment. The additive terma0 of the distance cor-
rection model∆D is 9 mm, the multiplicative parametera1

amounts to 0.19 % of the measured distance. The circle scale
b1 to correct errors in horizontal direction is -0.21 % of the de-
flection to the zero point. The eccentricity of the collimation axis
to the rotation axis causes a correction of up to 3.5 mm. Further
parameters of the correction model∆α for errors in horizontal
direction could not be estimated significantly.

Considerable correlations between the LSRF calibration terms
could not be observed. The highest coefficient is about0.7 be-
tween the distance correction parametersa0 anda1.

5.3 LSRF Pose

The pose of a single LSRF view point can be stated with an a-
posteriori RMS of1.7 mm resp. 7.2 mm for the position of the
projection center in xy- resp. z-direction of the project coordinate
system. The mean RMS deviation of the rotation components is
0.14 deg. The uncertainties in determining LSRF height com-
ponents can be explained by the unfavorable ratio between the
maximum radius and the height of the traffic cones used.

5.4 Cone Parameters and Pose

The parameters as well as the poses of the cone primitives are
estimated by directional LSRF distance measurements and DSLR
image coordinate measurements. The unknown cone parameters
are calculated with a RMS error of 0.5 mm for a maximum radius
of 14.34 cm and 8.8 mm for a height of 90.13 cm, and the poses
with a mean a-posteriori standard deviation of 0.11 mm for the
shift and9.46e−3 deg for the rotation.

5.5 3D Object Coordinates

The mean a-posteriori standard deviation of the cone surface
points Xlsrf observed by the LSRF is4.8 mm in lateral direc-
tion and9.2 mm in height. The precision of a 3D object point
Xcam estimated from DSLR image coordinate measurements is
0.09 mm.

5.6 Residuals

The residualsvD of the distance measurements are shown in fig-
ure 7 for an adjustment with and without considering the LSRF
error correction model. The red graph results from of a func-
tion fitted into the residuals of the uncorrected distance measure-
ments. It indicates a slight constant offset and a distance-related
trend. The RMS of the residuals is0.63 mm, the expected value µ
is -0.28 mm. The black graph of a function fitted into the remain-
ing residuals after a adjustment parametrized with LSRF correc-
tion terms is nearly a straight line withy = 0 = const. The
normally distributed residuals do not show interpretable effects.
The RMS is equal to the previous solution, but the expected value
µ = 0.8 µm tends more clearly towards zero.

The situation is similar for the residuals of the angular measure-
ments: The RMS of the angular residuals of an un-parametrized
estimation is0.1 deg (µ = 2.52e−2 deg). If calibration param-
eters are taken into account, the RMS is reduced to0.06 deg
(µ = 9.05e−3 deg).

The normally distributed residualsvxy of the image coordinate
measurements do not show any systematic effect. They vary in
both coordinate directions with an a-posteriori RMS deviation
svxy about1/20 pixel around the expected value µ= 1.7e−3 µm.

Even though probably not all LSRF effects are considered, the
results show that the integration of LSRF correction parameters
is better suited to model the geometric-physical reality of a LSRF
measurement process.

5.7 Observational Errors

The a-posteriori standard deviations of the original observations
estimated automatically by VCE as well as of the adjusted ob-
servations calculated in the course of the error analysis after the
bundle adjustment are shown in table 2.

ŝD0 ŝD1 ŝα ŝxy

not significant 1.95e−3 3.46e−3 rad 0.57 µm

ŝD̂ ŝα̂ ŝx̂ŷ

1.47 mm 2.39e−3 rad 0.19 µm

Table 2: A-posteriori standard deviationsŝ of the original and the
adjusted observations.

The deviation̂sD of an original LSRF distance measurement is
about0.20 % of the measured distanceD. Depending on the
measuring range[1, 15 m] specified in section 5.1, the accuracy
can thus be stated with[2.0, 30 mm]. These values correspond
to the level of precision specified by the manufacturer (Hokuyo,
2014). Remark that the constant offsetŝ2

D0 as one of the two
adaptive variance components could not be estimated reliably. It
was excluded from the variance component estimation process.
At first sight this seems exceptional for time-of-flight ranging
system, since distance measurements are primarily limited by
the precision of the time measurement. The contradiction can

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-385-2014 390



0

2

4

-14

-12

-10

-8

-6

-4

-2

0

1

2

XpcsY pcs

Z
p

c
s

Figure 6: Network geometry: All eight traffic cones and six LSRF positions (represented as fans) are shown, but only a few camera
poses for reasons of clarity. The crosses on top as well as the different orientations of the cones additionally ensure a stable network
geometry.

a0

(mm)
a1 b1 b2 b3 b4 b5 b6

(mm)

x̂i 8.62 1.89e−3 −2.10e−3 0 0 0 0 3.32

ŝx̂i 1.09 3.54e−4 3.87e−4 fix fix fix fix 1.64

Table 1: LSRF calibration parametersx̂i with their standard deviationŝsx̂i .

only be explained by an excessive distance-related influence of
the beam divergence on the measurement precision of a Hokuyo
UTM-30LX-EW (for more detail see paragraph below).

The deflection angleα is specified with an a-priori standard de-
viation of 0.2 deg, which corresponds to3/4 of the angular step
width. This order of magnitude seems to be quite high. One
reason for this might be found in the beam divergence. Accord-
ing to manufactures information, the elliptical laser spot size of
the Hokuyo UTM-30LX-EW is50 mm × 500 mm at sensor’s
maximum distance of30 m. This footprint corresponds to an an-
gular widening of approximately0.1 deg × 1.0 deg. Further, the
orientation of the laser spot (in scan direction resp. across scan
direction) depends on the deflection angle and alternates within a
single scan line.

In average, the a-posteriori standard deviationŝxy of an image
coordinate measurement is1/15 pixel. It is thus slightly worse
than the precision of the pure image point measurement by ellipse
fit as stated in section 4.2.

The a-posteriori standard deviationŝ0 of the unit weight is near
to the a-priori constant values0 = 100, which indicates an op-
timally determined accuracy ratio for all groups of observations.
This implies that the a-posteriori variances of the original obser-
vations are equal to their a-priori variances.

The mean standard deviationsŝD̂ and ŝα̂ of the adjusted LSRF
observations are1.5 mm for the distance measurement and
0.1 deg for the angular values. In average, the a-posteriori stan-
dard deviation̂sx̂ŷ of an image coordinate measurement becomes
1/43 pixel.

CONCLUSION AND OUTLOOK

The flexible self-calibrating bundle adjustment approach present-
ed in this contribution determines a geometric correction model
of a 2D single-layer LSRF and estimates all distance- and
angular-related correction parameters. The heterogeneous infor-
mation pool is fully exploited by estimating variance components
automatically within the integrated stochastic model. The experi-
mental configuration of the self-calibration is based on a portable
3D target field, whose geometry is determined simultaneously
in the adjustment. Complex experimental set-ups can thus be
avoided.

The process validation showed that the integration of LSRF cal-
ibration parameters leads to a more accurate solution. The accu-
racy of an original LSRF range measurement can be stated with
approximately0.2 % of the measured distance and with0.2 deg
for the angle specifications. The RMS error of a 3D coordinate
after the calibration becomes5 mm in lateral and9 mm in depth
direction.

Future work can concentrate on an improved experimental setup
with wide-angle 3D cone primitives to improve the network ge-
ometry. The influence of the beam divergence as well as the de-
pendencies of the LSRF distance measurements on reflectance
due to different surface properties should be analyzed. As soon
as effects of remaining error sources are investigated, the param-
etrization of the error correction model can be easily adapted.
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Figure 7: Residuals of the distance measurements with (black) and without(red) correction parameters.
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