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ABSTRACT:

3D cameras are a new generation of sensors more and more used in geomatics. The main advantages of 3D cameras are their handiness,
their price, and the ability to produce range images or point clouds in real-time. They are used in many areas and the use of this kind
of sensors has grown especially as the Kinect (Microsoft) arrived on the market. This paper presents a new localization system based
exclusively on the combination of several 3D cameras on a mobile platform. It is planed that the platform moves on sidewalks, acquires
the environment and enables the determination of most appropriate routes for disabled persons. The paper will present the key features
of our approach as well as promising solutions for the challenging task of localization based on 3D-cameras. We give examples of
mobile trajectory estimated exclusively from 3D cameras acquisitions. We evaluate the accuracy of the calculated trajectory, thanks to

a reference trajectory obtained by a total station.

1. INTRODUCTION AND RELATED WORK

The development of the system presented in this paper meets
the needs of a current R&D project Terra Mobilita, gathering
8 partners from industry and public institutions (STAR APIC,
THALES TRAINING SYSTEM, MENSI-TRIMBLE, DRYADE,
IGN, ARMINES, Sciences Po Foundation, CEREMH). The aim
of the Terra Mobilita project is to develop new automatic pro-
cesses for 3D urban maps creation and updates based on new
mobile laserscanning techniques. It is planned that the platform
moves on sidewalks, acquires the environment and enables the
determination of most appropriate routes for disabled persons
with centimeter accuracy (http://www.terramobilita.fr). In urban
environments, the use of classical localization solutions like GNSS
is limited to areas providing sufficient satellite visibility. In this
context, a localization system supported exclusively by 3D cam-
eras has been proposed.

3D cameras have several advantages, including their usability and
their ability to produce depth images or point clouds in real time.
They are used for many applications, such as user interaction
(gesture recognition) as mentioned in (Kolb et al., 2008), pattern
recognition (Kolb et al., 2009) or scene analysis in robotics (May
et al., 2006).

The marketing of the Microsoft Kinect in 2010 and of the Asus
Xtion Pro in 2011, both based on the technology developed by
PrimeSense (Arieli et al., 2010), led to the wide dissemination of
this kind of sensors. Every 40 millisecond, these sensors provide
depth images of 640 x 480 pixels, from which point clouds can
be generated.

For guarantying the reliability of the point clouds, especially with
the purpose of precise localization, a prior calibration must be
carried out. More information about 3D camera calibration can
be found in (Mittet et al., 2013).

When excluding GNSS solutions, the localization of a mobile
platform requires the estimation of its position over time using
the information it acquires about the environment around him.
The operation consisting in defining the displacement performed
by a moving object (vehicle, wheeled robots or legged robots)
based on the data collected by its actuators, is called odometry.

In the case of a wheeled object, the actuators are rotary encoders.
In the case of system exclusively based on cameras, odometry
is performed using the images they collect. The terminology vi-
sual odometry has been introduced by (Nistér et al., 2004). It
consists in defining the displacement of the mobile based on the
detection of the changes between successive images taken by the
cameras on board. The main advantage of visual odometry com-
pared to classical odometry is that it is not sensitive to terrain dis-
turbances. Indeed, rotary encoders usually provide a biased dis-
tance when the platform crosses sidewalks (loss of contact with
the ground). Moreover, since visual odometry is based on images,
it gives the opportunity to take benefit from well-known image
processing tools. Visual odometry is largely mentioned in the
literature ((Nistér et al., 2004), (Maimone et al., 2007), (Fraun-
dorfer and Scaramuzza, 2012)). The main processing steps are
feature detection, feature matching (or tracking) and motion esti-
mation (Scaramuzza and Fraundorfer, 2011). Since visual odom-
etry is performed on images, it can be applied on several camera
systems, like monocular cameras (Kitt et al., 2011), stereo-vision
systems (Nistér et al., 2004); (Howard, 2008), omnidirectional
cameras (Scaramuzza and Siegwart, 2008) and more recently 3D
cameras (Huang et al., 2011).

Section 2 presents the developed 3D camera system. Not only
the configuration but also the visual odometry approach is de-
tailed. The originality of the localization approach comes from
the use of previously generated orthoimages. The most frequently
feature detectors encountered in the literature are compared and
assessed. Then a feature tracking step enables the displacement
estimation. Section 3 evaluates the quality of the computed tra-
jectory provided by the localization approach. Finally solutions
for improving the system are suggested.

2. DEVELOPED APPROACH

2.1 System presentation

As urban furniture might assist the localization process, the imag-
ing system has been placed on a stick, at 2 meters from the ground.
The choice of the number and of the position of the cameras
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meets the following requirements: maximal ground coverage in
the motion direction and reduced overlapping areas. Indeed, given
the technology used by Kinect, it is to expect that overlapping ar-
eas induce measurement artefacts. In order to cover a wider field
of view, three cameras have been installed on the platform. They
have been tilted in order to bring the field of view border as close
as possible to the vehicle. The position and orientation of the
3 cameras enable to cover about 9 x 6 meters area in front of
the platform. After creative design study, the final prototype has
been conceived in CAD environment (Figure 1) and constructed
as shown in Figure 2.

Figure 1: CAD model

Figure 2: Prototype

2.2 About the creation and use of orthoimages

This section presents the calibration performed on our system to
merge the captured clouds. Then, the generation of orthoimages,
based on merged point clouds, is exposed. These orthoimages are
then used to estimate the displacement of our mobile.

2.2.1 Point cloud generation One camera (Asus Xtion Pro)
produces a point cloud composed of 300000 points. For process-
ing the information of the three point clouds captured by the three
cameras, a fusion of the point clouds is suggested. This step re-
quires the knowledge of the 3D relative transformations between
the frames of the cameras. For determining them, a pattern of
targets has been constructed (Figure 3). The targets coordinates
are measured in the three point clouds and matched with their co-
ordinates on the pattern. At this stage, it is possible to calculate
the translations and rotations between the 3 cameras (Table 1).
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Figure 3: Calibration sheet

2.2.2 Orthoimage generation After fusion of the point clouds

of the three cameras, the system is able to produce point clouds
of 900000 points for one position of the platform. Obviously, the
dataset might become voluminous and consequently the process
is time consuming. That is why, instead of operating in 3D point
clouds, we decided to orthoproject the points onto the ground.

Camera 1 Camera 2 Camera 3
Q 16.7186 39.3136 13.7818
(4 0.2353) | (£ 0.1405) | (£0.2319)
(] 36.1954 -2.2857 -37.2252
(+£0.2413) | (£0.1826) | (£ 0.3102)
K -29.5936 -93.7636 -158.8719
(£ 0.2054) | (£0.1634) | (£0.2216)
T 0.656 m 0.580 m 0.517
(£ 0.003) (4 0.003) (4 0.004)
Ty 0.792 m 0.768 m 0.837 m
(£ 0.003) (£ 0.002) (£ 0.003)
T. -0.618 m -0.615m -0.605 m
(£ 0.003) (4 0.002) (0.003)

Table 1: Coordinates of each camera in the frame of the calibra-
tion sheet. 2, ®, x are the rotation angles, and T3, Ty, T~ the
translation.

This idea has several advantages. Firstly, the well-known 2D al-
gorithms which have proven their efficiency in the image process-
ing field can be applied on these orthoimages. Secondly, an or-
thoimage simplifies drastically the 3D environment without los-
ing the altimetric information.

In order to create an orthoimage, it is necessary to calculate the
ground pixel size covered by a point of the point cloud. Asus
Xtion Pro provides depth images of 640 x 480 pixels. From this
depth image, it is possible to generate a point cloud. Given the
acquisition geometry shown in Figure 4 and knowing the height
(h) of the camera and its orientation to the ground (), the part
covered by the pixel on the ground can be calculated using equa-
tion (1). It must be denoted that the size of the pixels grows with
the range. The pixels of the orthoimage are coded in grayscale
regarding the point altitude. Therefore the third dimension infor-
mation is kept. An example of orthoimage is presented in Fig-
ure 5.

Figure 4: System geometry
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5.8 meters

9.2 meters

Figure 5: Orthoimage obtained from our system

Our localization approach is based on the determination of the
mobile displacement observed between orthoimages acquired reg-
ularly during the movement. The presented system produces,
for each time ¢, one point cloud of 900000 points. This point
cloud is transformed into an orthoimage called O:. The set of
orthoimages is denoted Op.,, = Oo, ..., O,. The determination
of the platforms trajectory requires computing the displacement
performed between two successive orthoimages. This displace-
ment is obtained through the calculation of the transformations
parameters 73 :—1 between the orthoimage O; at time ¢ and the
orthoimage O;_1 att — 1. At time ¢, the position of the platform
is defined by equation 2.

Pt = Pt—l * Tmi_l(withpo = I) (2)

In previous equation, the rigid transformation 7% ;1 is defined as
detailed in equation (3).

Rit 1 tigs_
Tir—1 = ( t’(; ! t’; ! ) 3)

where R :+—1 € SO(3) (3D rotation group) is the rotation matrix,
and t; ;1 € R3*! is the translation vector.

The position P, of the camera system is obtained by concate-
nating all transformations 73 (¢ = 1...n). Therefore we have
P, = P,_1Tn n—1. The initial position is given by Fy at tilt
t = 0, initialised as the user wishes. The whole positions occu-
pied by the system is therefore Po., = { Po, ..., Pn}.

2.3 Features extraction and tracking

In our approach, visual odometry is based on the estimation of
displacements occurred between two successive orthoimages. The
transformation calculation requires firstly the detection of corre-
sponding points in two successive orthoimages. For every image
to process at time ¢, firstly the feature points are detected and
then their homologous points in the orthoimage taken at t — 1
are searched. The feature extraction step as well as the following
matching step are crucial because their robustness and rapidity in-
fluence the trajectory accuracy and the trajectory calculation time.

In this context, several detectors and descriptors have been com-
pared and assessed. Among the mostly used and well-known

detectors, there are corners detectors like (Harris and Stephens,
1988) or GFTT from (Shi and Tomasi, 1994) and blob detec-
tors like SIFT (Lowe, 2004), SURF (Bay et al., 2006) or ORB
(Rublee et al., 2011). SIFT, SURF and ORB are widely used in
visual localization. They look for regions with invariance proper-
ties including invariance to scaling and rotations.

The SIFT detector, although it is already ten years old, has proven
its superiority in many applications related to points of interest
(features). However, it suffers from computational complexity
making it too slow for real-time applications such as SLAM or
visual odometry. Faced with this problem, many improvements
have been performed on the SIFT detection algorithm. Our study
will focus on one of the most famous of them, SURF, and a more
recent detector, ORB, which is itself a derivative of FAST (Ros-
ten and Drummond, 2006). The approach proposed by (Shi and
Tomasi, 1994) will also be taken into account in this study, be-
cause this detector is known for its effectiveness in visual odom-
etry applications ((Nistér et al., 2006), (Milella and Siegwart,
2006)).

2.3.1 Assessment of features detectors The motion estima-
tion is carried out using the points detected in the orthoimages.
Detection of landmarks plays a fundamental role in the overall
functioning of our system. This step can be computationally ex-
pensive, and thus the speed of localization will depend directly
on the speed of detection. It is also noted that the accuracy of de-
tection, i.e. the ability to “re-discover” the same points in two
successive orthoimages will affect the accuracy of the motion
estimation. Finally, the number of points detected and mapped
should be sufficient to find the transformation between two or-
thoimages. In order to find the most suitable detector for our
application, different criteria are taken into account :

o the stability of the detector,
e the number of detected features,

e and finally the detection time.

(Mikolajczyk and Schmid, 2005) propose a method for assessing
detectors. Stability of the detectors is evaluated using the crite-
rion of repeatability. The repeatability rating for a pair of cor-
responding images is computed as the ratio between the correct
correspondences, and the total number of detected points (equa-
tion 3). The same points detected in two images are appointed
as correspondences. Knowing the transformation between two
images, these correspondences are computed by applying the in-
verse transform to the points of the second image. If locally the
region around this point has sufficient overlap with the corre-
sponding point in the first image, then it is considered as a good
correspondence. Thus, if two images contain respectively n1 and
n2 detected points, then the repeatability criterion is defined as
follows :

good_correspondances
min(ni, n2)

@

repeatability =

The repeatability criterion is a good estimator to evaluate the sta-
bility of the detectors. As seen previously, this property has an
impact on the final precision of our application, therefore it is im-
portant to study this criterion.

In this paper, the images used for assessing feature detectors are
orthoimages obtained from simulated point clouds. Simulated
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point clouds can be generated with Blensor (Gschwandtner et al.,
2011). Blensor is an application which permits the 3D modeling
of scenes, and the simulation of 3D data as acquired by systems
such as LIDAR, ToF cameras, as well as 3D cameras. It allows
the definition of a 3D scene within Blender, and afterwards the
acquisition of a sensor by placing it in this scene (Figure 6). It
is equally possible to define a displacement to be followed by the
sensor in the scene. Therefore, the user can ask the sensor to
follow a specific trajectory. Based on this known trajectory, the
transformation between to successive point clouds (and therefore
orthoimages) is known.

(@ (b)

Figure 6: Image used in order to assess features detectors a) 3D
scene used to generate the orthoimage ; b) Orthoimage obtained
thanks to the 3D scene (simulated data)

Based on these images, the repeatability criterion of Shi-Tomasi,
SIFT, SURF and ORB detectors has been calculated. The evalu-
ations were performed for rotations and translations transforma-
tions.

+ SURF SIFT <© ORB + GFTT

Repeatability

Angle (*)

Figure 7: Repeatability of detector for several rota-
tion angles

As presented in Figure 7, for low rotations, ORB and SURF have
a better repeatability than other detectors. However, when the ro-
tation angle increases, SURF presents better results. Also in the
case of translation, ORB and SURF stand out (Figure 8).

The second criterion covered by our study is the number of de-
tected points. As presented in Table 2, the largest number of de-
tected points is provided by ORB, and the lowest by SIFT.

SURF | SIFT | ORB | GFIT

1271 | 1255

Number of detected points 612 500

Table 2: Number of detected points, based on the orthoimage of
Figure 6b

The third criterion on which our study is focused concerns the
detection time. Indeed, the final application aims to operate in
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Figure 8: Repeatability of the detectors for several
translations

real time, so it is necessary to choose an efficient detector not
only in terms of precision, but also in terms of speed. That’s why
the ratio detection_time/nb_point has been studied (Figure 9).

B Time/nbFeatures

SURF

SIFT
ORB

GFTT

0 0,002 0,005 0,007 0,009

Figure 9: Execution time for different detectors (in
seconds)

As illustred in Figure 9, from a temporal point of view, ORB and
GFTT are faster than SURF. SIFT is the slowest among the eval-
uated detectors.

On the basis of the three selected criteria, namely the repeata-
bility, the number of detected points and the speed, we were able
to determine the most appropriate detector for our approach. As
regards to the criterion of repeatability, ORB has the best results
both for rotational movements and for linear movements. Re-
garding the number of detected points, it is also ORB that pro-
vides most of points of interest. Finally, from a temporal point of
view, it is still ORB that provides the most satisfying results. In
conclusion, ORB provides the best results and has been adopted
in the implementation of our approach.

2.3.2 Matching or tracking ? Once this detection step is ma-
de, it is necessary to connect the detected points between two suc-
cessive orthoimages. There are two approaches to achieve this
stage : matching and tracking. The matching operates in four
steps. Firstly, it detects points of interest in two images. Then,
detected points are associated with their descriptors. The descrip-
tors are compared using a similarity measure. After comparing
descriptors of the first image with the descriptors of the second
image, the best correspondence between two points of interest is
selected by the nearest descriptor. Symmetrical correspondences
are considered as more reliable than asymetrical ones.

On the other hand, the tracking approach consists of detecting
points in the first image, and achieving their tracking in the fol-
lowing image using a local research approach. This technique
requires sufficient overlapping between two images.
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Figure 10 shows the 3D scene used to generate orthoimages in
order to compare tracking and matching. Figure 11a presents the
results of correspondences obtained for tracking and Figure 11b
presents the results of correspondences obtained for matching.
This experiments shows that, given the type of images we treat
(orthoimages), it seems more appropriate to use an approach based
on tracking. In fact, the orthoimages used are highly uniform.

In this context, we decided to developed an algorithm based on
the approach proposed by (Lucas and Kanade, 1981) and im-
proved with the pyramidal implementation (Bouguet, 2001). This
allows us to perform the tracking of points even in the case of
large displacements between two images.

Despite the use of tracking, bad correspondences remain in the
dataset. It is then necessary to remove them in order to calcu-
late the most accurate motion estimation. In the next section we
propose to introduce the method implemented to eliminate outlier
correspondences.

Figure 10: 3D scene used to generate the orthoimage in
order to compare tracking and matching approaches

(a) (b)

Figure 11: Correspondences obtained for : a) tracking ; and b)
matching. The vectors in green represent the calculated corre-
spondences

2.4 Outliers removal

When it is needed to estimate a model, it is always necessary to
remove outliers, in our case the bad correspondences. The sample
consensus RANSAC (Fischler and Bolles, 1981) is a classical ap-
proach for model estimation in the presence of outliers. Structure
from motion (SFM) is one of the applications of RANSAC. In
the case of SFM, the model to discover is a movement composed
of a translation and a rotation (R, t). The principle of RANSAC
is based on calculating an hypothesis from a subset chosen ran-
domly from the original sample, and to verify this hypothesis with
the rest of the data. The hypothesis which has the highest consen-
sus is considered as being the best solution. The number of iter-
ations N necessary to obtain a solution is computed in equation
5.

where s is the number of minimal data points, € is the percentage
of outliers in the data points, and p is the requested probability of

log(1 —p)

= log(i- (1) ®

success (Fischler and Bolles, 1981). N grows exponentially with
the number of points necessary for estimating the model.

There is a great interest in finding the minimal parametrization
of the model because N might slow down the motion estima-
tion algorithm. For a movement without constraints (6 degrees
of freedom) from a calibrated camera, it is necessary to have 5
correspondences. In the case of a planar motion, the model com-
plexity is reduced to 3 DoF and can be estimated with 2 points as
described in (Ortin and Montiel, 2001).

In (Scaramuzza, 2011), the author suggests to exploit the non
holonomic constraint of the vehicle on which the acquisition sys-
tem is placed. This configuration permits to use a restrictive mo-
tion model which allows to parameterize the motion with only
one correspondence. When a wheeled vehicle rotates around a
point, the trajectory described by each wheel is a circle. The cen-
ter of this circle is called Instantaneous Center of Rotation (ICR)
in Figure 12. ICR can be computed by intersecting all the roll
axes of the wheels. This property can be applied to mobiles as
car or robots, or to our mobile. Let us assume the camera system
is fixed somewhere on our mobile (with origin in O.), as depicted
in Figure 12. In the orthoimage frame corresponding to this po-
sition, the axis Z. is orthogonal to the plane of motion, and X,
is oriented perpendicularly to the back wheel axis of the mobile.
After a displacement of the mobile, we can then define O,/ the
origin, and Z./, X the axis of the reference of our mobile. The
movement of a camera mounted on the mobile can be locally de-
scribed as a circular displacement. This reduces the movement
to only two degrees of freedom, namely the angle of rotation (6),
and the radius of curvature (in the case of a translation, the radius
of curvature tends to infinity). Every feature correspondence can
be named “’vector of displacement”, and defined by two parame-
ters, 6 and p.

Figure 12: Circular motion of a wheeled vehicle (Scara-
muzza, 2011)

It is then possible to calculate 6 for each of these vectors. Conse-
quently, RANSAC can be initialised with only one correspon-
dence. As an alternative, the author also suggests to use his-
togram voting. Indeed, it is possible to construct an histogram
of 6 values, where each bin represents the number of correspon-
dences having the same 6.

The vector of correspondence should provide the same value for
0 between two successive positions. Therefore, the histogram
analysis allows to easily remove the outliers, i.e., the correspon-
dences for which the value of 6 is higher than a threshold. Figure
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13 presents the histogram obtained for the 6 calculations related
to Figure 11a.

This approach is not iterative, thus it greatly simplifies the com-
putational complexity of this step. Furthermore the quality of
inliers is not equivalent in the entire image. As mentioned in the
section explaining the orthoimages generation (section 2.2.2,) the
most distant points will be less accurate. This means that, de-
pending on the distribution of correspondences in the scene, the
inliers found by RANSAC might be different, and therefore might
affect the final motion estimation.

Number of points

Angle (deg)

Figure 13: Histogram obtained for the 6 calculation related
to Figure 11a

In summary, the overall motion estimation algorithm developed
in our work is divided in five steps :

1. Generation of an orthoimage from the current point cloud

2. Extraction of feature correspondences between current and
previous orthoimages

3. Calculation of the pixel distance between the corresponding
points. If more than 90% of the distances are less than 3
pixels then assume no motion and return to step 1

4. Removing the outliers using histogram voting

5. Calculation of the motion estimation from all the remaining
inliers.

It must be denoted that the previous poses and structure are not
used to refine the current estimate.

3. QUANTITATIVE ASSESSMENT OF OUR
APPROACH

In order to validate the developed approach, a dataset has been
acquired in laboratory conditions. The mobile platform (Fig-
ure 14a) has been pushed on about 20 meters in a large room.
Several objects have been integrated to the scene for simulating
urban furniture (Figure 14b).

The acquisition has been performed inside a building, because
currently the Kinect technology remains inefficient outside (ex-
cept during sunless days). To evaluate the accuracy of the calcu-
lated trajectory, a reference trajectory is needed. In fact, during
its displacement, the mobile platform has been tracked simulta-
neously by total station measurements. Therefore, the deviations
between the calculated trajectory and the reference trajectory pro-
vide a quantitative assessment of the localization algorithm.

3.1 Results

During this acquisition, 1400 point clouds were saved and merged,
and 1400 orthoimages have been produced. The estimated path is
indicated in red dots in Figure 15 and the path obtained through

(a) (b)

Figure 14: Mobile platform (a) and acquisition scene, with in red
the path followed by our mobile system (b)

the total station is indicated in blue dots. The final drift at the end
is about 1.3 m after 20 meters of displacement. It is observed that
the drift is constant during the movement. This result is already
quite good if one considers that the proposed approach is incre-
mental (at each new orthoimage only the current pose is updated
without refining the previous poses).
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Figure 15: Comparison between estimated path (in red) and path
obtained via total station (in blue)

3.2 Limitations

The assessment of the computed trajectory has highlighted some
limitations regarding our system.

Firstly the position of the 3 cameras introduces a discontinuity
in the global field of view of the system, because the three fields
of view are not overlapping (Figure 5). This causes errors in the
transformation calculation especially when objects are lost by the
detection process as soon as they enter into these empty areas.

The orientation of the cameras was chosen to see the wider possi-
ble, however it turns out that the points located far away from the
plateform are very unstable. Indeed, from the study on calibra-
tion conducted in (Mittet et al., 2013), it has been demonstrated
that there is a measurement noise. Indeed, the measuring system
of the camera operates by interval measurements. Although these
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ranges are given in millimeters and fixed, the distance informa-
tion may change from one interval to another. Therefore the dif-
ference between two successive point clouds even if the mobile
is stationary introduces errors in the trajectory calculation. It is
then necessary to filter this phenomenon, but it remains difficult
to distinguish between a real displacement, and a displacement
due to measurement noise.

3.3 Solutions

Several solutions are proposed to solve these problems. On the
one hand, we plan to take advantage from the objects shadows
moving between two successive frames. On the other hand, it
seems interesting to label encountered objects as individual en-
tities. Finally, this evaluation showed the necessity to assign a
memory to the detection algorithm. It means that every object oc-
curring in the scene must be recorded and followed. This memory
assignment is essential for detecting the points encountered twice
in a pass, like in the case of a loop closure. A global optimiza-
tion procedure in which weights will be assigned to the detected
features is also under progress.

4. CONCLUSION AND PERSPECTIVES

In this paper, we describe a new localization system for estimat-
ing the relative displacement of a mobile plateform. This local-
ization system is composed of RGB-D cameras exclusively. It
should be noted that our algorithm is system independent. All
of our developments have been implemented in order to be valid
for any type of 3D camera. From our system it is possible to ob-
tain orthoimages computed from point cloud provided by RGB-
D cameras. We also present our algorithm, which permits us to
compute the motion estimation of our plateform. The proposed
approach was applied to real data, and the quantitative assesse-
ment was realized by comparing our result to the real position
of the platform obtained by total station measurements. Further-
more, in the near future, we plan to improve our approach by in-
tegrating a memory as well as bundle block adjustment process.
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