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ABSTRACT: 
 
This paper aims at obtaining basic knowledge about characteristics of observation models for human tracking method as a stochastic 
process. As human tracking in actual cases are complicated, we cannot always use the same observation models for every situation. 
Thus in most cases observation models are set empirically so far. In order to achieve an efficient choice of models and parameters, 
understanding some advantages and disadvantages of such models regarding to observation conditions is important. In this paper we 
conduct a sensitive analysis on some types of observation models. In particular, we obtain both colour and range information at a 
railway station. We prepare six predictive distributions as well as six models and parameters for both colour and range observation 
models. We calculate posterior distributions of each pattern, namely 36 patterns for both colour and range models. As a sensitive 
analysis we compare a value of a ground truth and an expected value of posteriors. We also compare variances of predictive and 
posterior distributions. Through this experimental results, we confirm our analysis method is efficient to obtain information about 
observation models. In fact, all models analysed are good in whole. One suggestive result is that colour models can deal with a 
predictive error in mean values, while range models in variances. Another is that under occlusions range models show a good 
performance.  
 

1. INTRODUCTION 

Human tracking method is classified roughly into two groups. 
One is that in each frame human candidates are detected and 
then the same person is identified in adjacent frames. 
Mathematically this problem can be solved as an optimization 
problem. The other is that, in each frame, each human position 
is predicted from that of previous frame and then accurate 
position is calculated by an observation model using observed 
information. As we can consider pedestrian behaviour model for 
successive frames, this method has an advantage to tracking 
many persons simultaneously in complex situations in which 
occlusions and proximities are occurred (e.g. Ali and Dailey, 
2009; Nakanishi and Fuse, 2012). Mathematically this method 
should be solved as a stochastic process. Typical formulation 
for this method is based on Bayesian statistics: Predicted 
position is described by prior distribution, observed information 
corresponds to data and accurate position to posterior.  
 
When we use this method, we define a likelihood function that 
describes likelihood of observed information occurred by given 
predicted position. We call this likelihood function “observation 
model” in human tracking method (explained later in detail). 
The main topic in this paper is how to set this observation 
model and its parameters. As both predicted positions and 
observations have uncertainty, it is difficult to choose which 
model to use. Thus, in actual case, most existing tracking 
methods set observation models just empirically and their 
performance and effect to tracking accuracy are rarely discussed. 
However, using empirical setting, we always have to set models 
and parameters manually. We cannot directly apply a setting on 
one observation site to another. Moreover, we might have to 
change model settings on the same observation site on different 
time or day.  
 

Nevertheless according to uncertainty in observations, we 
cannot avoid to set some models and parameters adaptive to 
observation sites. However if we have some knowledge about 
advantages and disadvantages of each model to a certain 
observation condition, we can efficiently select observation 
models that seems to be adequate. Therefore in this paper we 
aim at obtaining basic knowledge about characteristics of 
observation models for human tracking method as a stochastic 
process. We obtain colour and range observations in a real 
situation. Next we set some predictive distributions and models 
and their parameters. Then we conduct a sensitive analysis on 
them as a basic experiment in order to achieve better modelling 
in the future. Through this experiment, we show our analysis 
method is efficient to obtain information about observation 
models. In the discussion, we shall present a difference between 
colour and range observation models revealed in this research. 
 
The rest of the paper is organized as follows. In chapter 2, we 
briefly describe a stochastic human tracking process and in 
chapter 3 we propose a method to analyse observation models. 
Then in chapter 4, we present settings for sensitive analysis, 
including settings of predictive distributions and observation 
models, as well as calculation techniques. In chapter 5, we 
apply this settings and conduct the sensitive analysis. We show 
the experimental results and some characteristics of each 
observation model. Finally we conclude the paper in chapter 6. 
 
 

2. STOCHASTIC PROCESS MODELLING FOR 
HUMAN TRACKING 

2.1 General State Space Model 

Human tracking can be regarded as a stochastic process. We use 
a general state space model (Figure 1) for this stochastic process 
modelling.  
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In this modelling, we can estimate a dynamics of unobservable 
variables. A state vector xt is a set of unobservable variables at 
time t that we will estimate a true value. An observation vector 
zt is a set of observable variables at time t. A system model 
p(xt|xt-1) is a conditional density function that represents a 
dynamics of a state vector. An observation model p(zt|xt) is also 
a conditional density function that represents a likelihood of 
realisation of zt given xt. 
 
After we obtain z1:t = {z1, z2,..., zt}, a series of observations 
from time 1 to t, the posterior distribution of xt is calculated by 
Bayes’ theorem as follows: 
 

          1: 1: 1

1 1 1: 1 1

( | ) ( | ) ( | )

( | ) ( | ) ( | )
t t t t t t

t t t t t t t

p p p

p p p d

x z z x x z

z x x x x z x
          (1) 

 
In this equation, p(zt|xt) is an observation model, p(xt|xt-1) is a 
system model and p(xt-1|z1:t-1) is the estimation result at time t-1. 
If we need the very estimated value for xt, an expected value of 
p(zt|xt) is usually used. 
 

 
Figure 1.  General state space model 

 
2.2 Stochastic Human Tracking Process 

We describe the stochastic human tracking process based on a 
general state space model. 
 
We assume that a true value of a human position cannot be 
observed directly and represented as a conditional distribution. 
In each frame, a predictive distribution p(zt|xt-1) as a prior 
distribution for a true value is calculated based on past 
observations. Then it is updated to a posterior distribution 
p(zt|xt) after present observation data are acquired.  
 
Formulation of system models are beyond the scope of this 
paper. There are some manners to set system models for human 
tracking. Some researches simply use a random walk model or a 
uniform motion model (e.g. Ali and Dailey, 2009). Others 
introduce a stochastic behaviour model such as a discrete choice 
model (e.g. Nakanishi and Fuse, 2012). In this paper, we 
assume that predictive distributions are given in advance by a 
certain system model. 
 
We formulate observation models according to observations. 
For example, if we can use both colour and range information, 
we formulate models for each. Details are explained in the next 
chapter. 
 
 

3. METHOD OF SENSITIVE ANALYSIS 

As above, the role of an observation model is to reflect 
observation information to predictive distributions. However, a 
performance evaluation of observation models is difficult 
because of uncertainty in both predictive distributions and 
observation data. Thus existing tracking methods set 
observation models just empirically. 
 
In this chapter we propose a method to analyse observation 
models. Firstly we set the components of a general state space 
model. 
 
State Vector Settings: A state vector is defined as an ellipsoid 
and its coordinates that are human positions and shapes. In 
many researches, human shape is treated as an ellipse so this 
setting is considered to be natural. In this paper we fix four 
variables: three represent size of an ellipsoid and one represents 
height of a centroid of an ellipsoid. Thus we only consider two 
variables that represent a horizontal position of an ellipsoid. 
 
Observation Vector Settings: An observation vector is defined 
as observations from stereo video camera, namely colour and 
range information. Thus we can discuss both colour and range 
observation models in this paper. At each observation point, we 
obtain three-dimensional colour information (r, g and b) and 
three-dimensional range information (X, Y and Z). 
 
Predictive Distribution Settings: We set some types of 
predictive distributions regarding the accuracy of system models. 
Details are explained in the next chapter. 
 
Observation Model Settings: We choose some observation 
models according to related works. Details are explained in the 
next chapter. 
 
Ground Truth Data: We prepare a ground truth data manually 
in advance to evaluate posteriors. Details are explained in the 
next chapter. 
 
The sensitive analysis in this paper is conducted on above 
settings as follows:  
 
1. Make predictive distributions based on a ground truth. 
2. Calculate posteriors on chosen observation models. 
3. Compare some values: a ground truth and an expected value 

of a posterior (residuals); and variance of a predictive 
distribution and a posterior distribution. 

 
 

4. SETUP OF EXPERIMENTS 

In this section, we describe some settings for a sensitive 
analysis. Experimental results will be described in chapter 4. 
 
4.1 Data Observation 

We take a video at the ticket gate of Tama-Plaza station, the 
railway station in a popular residential area about 20-kilometer 
west from central Tokyo. The video was taken from a site about 
10-meter height, looking down obliquely (Figure 2). Both 
colour and range observations are acquired (Figure 3). 
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5[m] 

Figure 2. Observation site 

 
colour observations 

 
range observations 

Figure 3. Example of colour and range observations 
 
4.2 Coordinate System and State Vector 

A coordinate system used in this paper is defined as shown in 
Figure 4. We assume that the ellipsoid of state vector stands 
vertically on the xz plane. Thus the components of state vector 
is four constants (y-value and size of ellipsoid) and two 
variables (x- and z-value). We set y-value to 1.0[m] and the size 
of ellipsoid to 1.6[m] height and 0.4[m] diameter. 
 

 
Ellipsoids stand vertically on xz plane 

and their size and y-value of centroid are fixed. 

Figure 4. Ellipsoid settings of human position and shape 
 
4.3 Ground Truth Dataset 

From this video we choose a few frames. Firstly we manually 
get passengers’ positions from images (examples are shown in 
Figure 5). Then we label this dataset with its condition: normal 
or complicated (occluded and/or proximate). In Figure 5, blue 
ellipses show normal condition and red ones show complicated 
condition. 
 
These conditions correspond to data accuracy. In normal 
conditions, observation information have relatively high 
reliability. On the other hand, in complicated conditions, 
observations don’t have enough information to estimate 
accurate human positions. We check whether this difference 
may affect the performance of observation models, in the next 
chapter. 
 

 
Figure 5. Example of the ground truth data 

 
4.4 Predictive Distributions 

We set predictive distributions shown below (Table 6 and 
Figure 7). In this experiment, we assume that all predictive 
distributions are two-dimensional isotropic normal 
distributions: N(x*t, σ2)×N(z*t, σ2). Therefore they can be 
described as 
 

2 2
* *

1 2 2

2

2 2

1| exp
2 2

1 exp
2 2

t t t t
t t

x x z z
p

d

x z   (2) 

 
where  σ2 = variance of normal distribution for each direction 
 xt, zt = predictive position on xz plane at time t 
 x*t, z*t = average position on xz plane at time t 
 d = distance between predictive and average position 
 
We omit the index t in what follows, for we calculate any 
distributions at only time t in this paper. 
 
Each predictive distribution corresponds to a certain situation of 
system model accuracy. We set PD type 1-4 as average position 
equals to the ground truth with different variances, 2.52[cm2], 
5.02[cm2], 7.52[cm2] and 50.02[cm2], respectively. This is a 
situation that system models can predict the expected value with 
high accuracy and these variances are assumed to correspond to 
confidence of prediction in various situations. We also set PD 
type 5-6 as average position are different from the ground truth 
with their distance 5.0[cm] and 10.0[cm] respectively, and with 
the same variance 5.02[cm2]. This is a situation that the 
prediction is not good because of some reasons. We also check 
whether this difference may affect the performance of 
observation models, in the next chapter. 
 

Table.6 List of Predictive Distributions 

PD type Average position Variance[cm2] 
1 Ground truth 2.52 
2 Ground truth 5.02 
3 Ground truth 7.52 
4 Ground truth 50.02 

5 5.0 [cm] different 
 from ground truth 5.02 

6 10.0 [cm] different 
 from ground truth 5.02 
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Blue lines illustrate an image of a standard deviation of 
each predictive distribution. Note that a probability that 
predicted position is within a distance of one sigma is about 
47% (68%×68%). 

Figure 7. Image of predictive distribution 
 
4.5 Observation Models 

We set some models to conduct a sensitive analysis. Because 
observation models are required to return likelihood of any 
position if human can be at that point, they should be 
continuous function, as predictive distribution is continuous. 
From this aspect, referring to previous research, we select 
models we employ in this paper. 
 
Colour Observation Models: For colour observation models, 
we use Bhattacharyya coefficient 
 

  |colour m m
m

p f B f p qz x   (3) 

 
where  B = Bhattacharyya coefficient 
  m = pixel value 
 p, q = normalized histogram of predictive position 
   and a ground truth respectively 
 pm = relative frequency of pixel value m  
  in histogram p  
 f = function set later 
 
This is a coefficient correlation of colour histograms. 
Bhattacharyya coefficient compares similarity of colour 
histograms of a predicted position and a ground truth. 
 
We employ two manners to generate histograms. A histogram is 
generated as follows: At predicted or ground truth position we 
make an ellipsoid representing human shape, and then make 
histogram of observed points inside that ellipsoid. Here we 
employ two manners to treat each pixel. One is treating every 
pixel equally (Uniform type) and the other is weighting pixels 
according to a distance from the centroid of the ellipsoid 
(Weighted type).  
 
We calculate B for each colour observed, r, g and b and then 
calculate product of them. We also employ three functions for 
f(B) in equation (3). These are, pcolour = B (linear model), pcolour 
= exp(-5(1-B)) (Exp-5 model) and pcolour = exp(-10(1-B)) (Exp-
10 model). The difference between each model is shown in 
Figure 8. In a qualitative manner, Exp-10 model is more 
sensitive to a difference between the histogram of a predictive 
position and a ground truth.  
 
Thus at last we have six models for colour observations. 
 

 
Figure 8. Likelihood of each colour model 

 
Range Observation Models: For range observation models, we 
use a distribution according to a similarity between a shape of 
predicted ellipsoid and observed 3D points in actuality. For 
each pixel P included in the ellipsoid, let d(P) the distance from 
observed coordinates to the centre of the ellipsoid O. Let P' the 
point that a half line from O to P intersects the ellipsoid, and 
ˆ( )d P the distance from O to P'. We consider two model types 

as follows: Equation (4) measures a distance (Distance Type) 
and (5) a ratio (Ratio Type). 
 

1 ˆ| 1range p p
p

p d d
I

z x  (4) 

1| ˆ
p

range
p p

d
p

I d
z x    (5) 

 
where  I = number of pixel P in total 
 λ = parameter set just below 
 
We employ three values for λ in Equation (4) and (5). These are 
0.5, 1.0 and 2.0. Thus we also have six models for range 
observations. 
 
4.6 Calculation Techniques 

We use particle filter (Gordon, et al., 1993; Kitagawa, 1996) for 
calculating equation (1), for observation models are non-linear. 
In this work we use 1024 particles to approximate posteriors. 
We also use Halton sequences (Halton, 1964) to generate prior 
(predictive) distributions. They are typical quasi-random 
number sequences. Thus good approximation of posteriors with 
less number of particles is expected. 
 
 

5. EXPERIMENTAL RESULTS 

In this section, we describe experimental results. 
 
5.1 Results 

As described in chapter 3, we calculate residuals and variances 
of each posterior as a sensitive analysis. Table 9 and 10 show 
residuals and variances in each observation model, parameter 
setting and predictive distribution. 
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Table 9. Sensitive analysis on colour models   Table 10. Sensitive analysis on range models 

 
Histogram 
type 

PD 
Type 

Model 
type 

Residual [cm] Variance of 
posterior 
distribution [cm2] 

Model 
type 

PD 
Type 

Parameter 
setting 

Residual [cm] Variance of 
posterior 
distribution 
[cm2] 

Dataset: 
Normal / 
Complicated / 
All 

Dataset: 
Normal / 
Complicated /  
All 

Dataset: 
Normal / 
Complicated / 
All 

Dataset: 
Normal / 
Complicated / 
All 

Uniform 

1 
Linear 0.3 / 0.0 / 0.2 7.5  /  8.4  /  7.8 

Distance 

1 
λ=0.5 1.3 / 0.0 / 1.0 7.6 / 8.8 / 7.9 

Exp-5 0.5 / 0.2 / 0.4 5.7 / 40.0 / 17.1 λ=1.0 1.3 / 0.0 / 0.9 7.6 / 8.8 / 7.9 
Exp-10 0.5 / 0.3 / 0.4 4.1  /  6.4  /  4.9 λ=2.0 1.3 / 0.0 / 0.9 7.6 / 8.8 / 7.9 

2 
Linear 1.3 / 0.3 / 1.0 25.4 / 86.1 / 45.6 

2 
λ=0.5 1.8 / 0.1 / 1.3 30.4/35.2/31.8 

Exp-5 1.5 / 1.2 / 1.4 17.9 / 587  /  208 λ=1.0 1.8 / 0.0 / 1.3 30.5/35.1/31.8 
Exp-10 1.4 / 0.8 / 1.2 11.0 / 25.5 / 15.9 λ=2.0 1.8 / 0.0 / 1.3 30.5/35.1/31.8 

3 
Linear 2.7 / 1.3 / 2.2 49.7 / 679  /  260 

3 

λ=0.5 2.5 / 0.1 / 1.8 66.9/79.2/70.4 
Exp-5 2.7 / 3.1 / 2.8 34.1 / 1716 / 595 λ=1.0 2.6 / 0.1 / 1.9 67.2/78.8/70.5 
Exp-10 2.2 / 1.3 / 1.9 18.6 / 59.6 / 32.3 λ=2.0 2.7 / 0.0 / 1.9 67.3/78.7/70.5 

4 
Linear 12.8/36.9/20.8 2140 /15069/ 6450 

4 
λ=0.5 19.8/20.3/19.9 2110/2093/2104 

Exp-5 44.1/60.2/49.5 21065/36356/26162 λ=1.0 19.9/21.0/20.2 2116/2081/2106 
Exp-10 7.6 / 6.2 / 7.1 1619 / 2083 / 1774 λ=2.0 19.9/21.3/20.3 2119/2076/2106 

5 
Linear 3.9 / 5.0 / 4.3 26.8 / 804  /  286 

5 
λ=0.5 5.8 / 5.1 / 5.6 31.1/35.3/32.3 

Exp-5 2.9 / 6.0 / 3.9 20.5 / 2148 / 730 λ=1.0 5.9 / 5.1 / 5.6 31.1/35.2/32.3 
Exp-10 1.8 / 2.8 / 2.1 13.0 / 51.4 / 25.8 λ=2.0 5.9 / 5.0 / 5.6 31.1/35.1/32.3 

6 
Linear 7.8 /16.0/10.5 29.0 / 6617 / 2225 

6 
λ=0.5 10.2/10.1/10.1 31.5/34.8/32.5 

Exp-5 6.2 /18.2/10.2 26.7 / 8841 / 2965 λ=1.0 10.2/10.0/10.2 31.5/34.7/32.4 
Exp-10 4.0 / 6.0 / 4.6 19.1 / 253 / 97.0 λ=2.0 10.2/10.0/10.2 31.5/34.6/32.4 

Weighted 

1 
Linear 0.2 / 0.0 / 0.2 7.6  /  8.5  /  7.9 

Ratio 

1 
λ=0.5 1.3 / 0.0 / 1.0 7.6 / 8.8 / 7.9 

Exp-5 0.4 / 0.1 / 0.3 5.7 / 32.5 / 14.7 λ=1.0 1.4 / 0.0 / 1.0 7.6 / 8.8 / 7.9 
Exp-10 0.4 / 0.1 / 0.3 4.4  /  7.1  /  5.3 λ=2.0 1.4 / 0.1 / 1.0 7.6 / 8.8 / 7.9 

2 
Linear 1.2 / 0.2 / 0.9 24.3 / 85.0 / 44.5 

2 
λ=0.5 1.8 / 0.1 / 1.3 30.4/35.4/31.8 

Exp-5 1.3 / 0.8 / 1.1 15.9 / 442  /  158 λ=1.0 1.9 / 0.1 / 1.4 30.3/35.6/31.8 
Exp-10 1.2 / 0.5 / 0.9 9.9 / 24.1 / 14.6 λ=2.0 2.0 / 0.2 / 1.5 30.2/35.8/31.8 

3 

Linear 2.5 / 0.8 / 1.9 45.6 / 424  /  172 
3 

λ=0.5 2.5 / 0.1 / 1.8 66.8/79.7/70.5 
Exp-5 2.3 / 2.2 / 2.2 28.4 / 1284 / 447 λ=1.0 2.4 / 0.2 / 1.8 66.4/80.7/70.5 
Exp-10 1.8 / 0.9 / 1.5 14.7 / 48.0 / 25.8 λ=2.0 2.5 / 0.4 / 1.9 65.8/82.1/70.5 

4 
Linear 12.8/28.5/18.0 2000 /10056/ 4685 

4 
λ=0.5 19.7/20.4/19.9 2114/2098/2110 

Exp-5 36.7/53.3/42.2 17527/33646/22900 λ=1.0 19.6/19.6/19.6 2111/2117/2113 
Exp-10 4.5 / 3.5 / 4.2 580 / 1160 / 773 λ=2.0 19.5/18.4/19.1 2106/2151/2119 

5 
Linear 3.7 / 4.7 / 4.0 25.7 / 550  /  200 

5 
λ=0.5 5.8 / 5.1 / 5.6 31.0/35.3/32.2 

Exp-5 2.4 / 5.2 / 3.3 17.8 / 1693 / 576 λ=1.0 5.8 / 5.2 / 5.6 30.9/35.5/32.2 
Exp-10 1.4 / 2.9 / 1.9 10.4 / 38.9 / 19.9 λ=2.0 5.7 / 5.3 / 5.6 30.7/35.8/32.2 

6 
Linear 7.3 /13.1/ 9.3 27.8 / 4669 / 1575 

6 
λ=0.5 10.2/10.1/10.1 31.5/34.7/32.4 

Exp-5 5.4 /16.0/ 8.9 24.3 / 7636 / 2562 λ=1.0 10.1/10.2/10.1 31.4/34.7/32.4 
Exp-10 2.9 / 5.9 / 3.9 14.2 / 157 / 61.7 λ=2.0 10.0/10.4/10.1 31.4/34.8/32.3 
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5.2 Discussions 

All models were good as a whole in terms of residuals and 
variances in predictive distribution type 1-3. As PD type 1-3 are 
considered to be good prediction accuracy, this tendency is the 
most important for observation models. There are little 
difference between histogram type for colour and model type 
for range models. So from another aspect, considering 
computational speed, uniform histogram with linear model for 
colour and Ratio model with λ = 2.0 for range model are good. 
This is because some variables in that models are already 
calculated when being evaluated whether the point is inside the 
ellipsoid or not. 
 
The results on PD type 5 and 6 show that colour models can 
deal with a predictive error in expected values especially in 
normal conditions. It is natural to think that we can distinguish 
the human and other objects by the difference in colour 
information. On the other hand, these models cannot well deal 
with a predictive error in variances except Exp-10 models. We 
can understand this tendency like this: Colour models can judge 
whether an object is a certain human or not, but cannot search 
the very position of it. 
 
The results on PD type 4 show that range models can deal with 
a predictive error in variances, for posteriors’ variances are 
smaller than that of prior (2500). Range models are also good at 
dealing with complicated situations, especially with occlusions. 
 
Exp-10 colour models show different behaviours from others. 
They seem to achieve decreasing variances as well as small 
residuals. However when we use Exp-10 models, fairly accurate 
system models are required. If a predictive distribution is far 
from a true value, then that models cannot return any values, as 
illustrated in Figure 8. In case we have confidence on system 
models, we can use Exp-10 models and expect a good 
performance. 
 
Through this analysis we showed the way to evaluate 
observation models. Only simple comparisons of residuals and 
variances can provide us some valuable information. So the 
next step is to evaluate other models and analyse many 
tendencies around observation models and observation data. In 
addition, a method to compare distributions directly could 
provide more information. Moreover, a joint analysis with 
system models is expected. 
 
 

6. CONCLUSION 

In this paper we conducted the sensitive analysis on observation 
models for human tracking methods as a stochastic process. We 
developed the method to evaluate and compare some 
observation models. Through experiments we confirm that our 
method is efficient. Results showed some suggestive 
characteristics of models: All models analysed are good in 
whole; Colour models can deal with a predictive error in mean 
values, while range models in variances; Under occlusions 
range models show a good performance. 
 
Future works will firstly aim to improve proposed method 
through conducting analyses on other data and models, as well 
as developing a method to compare distributions directly. 
Although an adequate observation model may depend on 
situations of observation site, we believe that analyses in many 
cases can provide us much knowledge. Based on that 

knowledge we can use some observation models simultaneously 
and dynamically select the best one according to accuracy of 
predictive distribution and data acquisition. We will also 
expand this method to a joint analysis with system models like 
identical twin experiments in the field of data assimilation. 
These experiments will lead us to a new standpoint of desirable 
system models, according to accuracy of observation data and 
observation model. 
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