
 

 

QUASI-FIVE-POINT ALGORITHM WITH NON-LINEAR MINIMIZATION 
 

 

Kazuo Oda a 

 

a
 Asia Air Survey Co., Ltd.  

1-2-1 Manpuku-ji, Asao-Ku, Kawasaki-Shi, KANAGAWA, 215-0004 JAPAN - 

kz.oda@ajiko.co.jp 
 

Commission V 

 

 

KEY WORDS: Five Point Algorithm, Relative Orientation, UAV 

 

 

ABSTRACT: 

 

Five-point algorithm is a powerful tool for relative orientation, because it requires no initial assumption of camera position. This 

algorithm determines an essential matrix from five point correspondences between two calibrated cameras, but results multiple 

solutions and some selecting process is required. This paper proposes Quasi-Five-Point Algorithm which is non-linear solver with 

seed solution of 8 point algorithm. The method tries to calculate the appropriate essential matrix without selecting process among 

multiple solutions. It is one of non-linear approach, but tries to find an appropriate seed before non-linear calculation. Using 

correspondences  of 3 or more additional points, seed values of the solution is calculated. In this paper relationship between 

traditional parametric relative orientation and essential matrix is discussed, and after that quasi-five-point algorithm is introduced. 

 

 

 

1. INTRODUCTION 

Relative orientation is the important tool in photogrammetry. 

Traditional relative orientation calculates five relative 

orientation parameters with coplanarity constraint equations in 

non-linear optimization process, but without good initial values 

of parameters calculation goes local minimum and fails. 

Recently images captured from UAV are often used in 

photogrammetry. Unstable attitudes of UAV often cause failure 

of calculation of relative orientation. 

 

Five-point algorithm, originally developed and used in 

computer vision field for relative orientation, is now adopted in 

photogrammetry filed. This method computes an essential 

matrix. Essential matrix is a 3 x 3 matrix which gives 

coplanarity constraint in following form: 

 

 

                            (1) 

 

 

where   and    are camera coordinates of corresponding points 

in a pair of images. It determines essential matrix from five 

point correspondences between two calibrated cameras, with 

coplanarity constraint and other constraints. 

 

One type of five point algorithm (Nistér, 2004, Li et al., 2006) 

directly solves scalar multipliers with cubic rank constraint and 

the cubic trace-constraint. These methods solve tenth order of 

polynomial equations and provide multiple solutions.  

 

Another type of five point algorithm is a non-linear solver 

(Batra et al., 2007), where translation vector and the four scalar 

multipliers are solved with non-linear minimization. 

 

This type of method can obtain more accurate result than 

algebraic approaches, but requires multiple seeds to get multiple 

solutions. Thus five-point algorithm requires users to choose the 

right solution among the multiple solutions, with checking 

cheirality or re-projection errors of other point correspondences 

(Dodehorst et al., 2008). 

 

This paper proposes Quasi-Five Point Algorithm which is non-

linear solver with seed solution of 8 point algorithm. This 

method tries to calculate the appropriate essential matrix 

without selecting process among multiple solutions. 

 

Our method is one of non-linear approach which tries to find an 

appropriate seed values before non-linear calculation. Using 

correspondences of three or more additional points, our method 

calculates seed values of four scalar multipliers. 

 

In this paper, relationship between traditional parametric 

relative orientation and essential matrix is discussed. After that 

new normalization method of essential matrix is proposed. 

Utilizing this normalization, quasi-five-point algorithm is 

introduced and some numerical tests show that this method can 

obtain more precise result than algebraic type method. 

 

 

2. COPLANARITY CONSTRAINT, RELATIVE 

ORIENTATION AND ESSENTIAL MATRIX 

2.1 Definition 

Coplanarity constraint is traditionally expressed in 

photogrammetry as following: Let the point                  

and                 are two optical center of stereo pair 

camera, and one point in 3D space is projected on each sensor 

plane. Let 3D coordinates of two projected positions be 

             and             , coplanarity constraint is 

represented in following equation: 
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      (2) 

 

This equation means one of 4 points can be expressed by linear 

combination of the other 3 points in projective space. 

 

In computer vision field, coplanarity constraint can be 

represented as condition that scalar triple product of three 

vectors     
           ,     

           and     
           comes to zero. This means the 

volume of a parallelepiped defined by the three vectors is zero. 

Let   mean cross product and   mean dot product,  

 

     
                  

               
               (3) 

 

By expanding left side of equation (2) and (3), one can see these 

two equations are the same. 

 

Essential matrix gives the relationship between two camera 

coordinates of the corresponding points on the sensor. Let the 

camera coordinate system of the first camera be the base 3D 

coordinate system, and     
                      ,     be the rotation 

matrix of second camera relative to base coordinate system,     

and      be the focal lengths of two cameras, and               

and                be camera coordinates of corresponding 

points on the image sensor, coplanarity constraint can be 

expressed in  the following equation: 

 

 

                           

  

  

   

       (4) 

 

 

With the following representation of cross product: 

 

                      

              

      

      

      
  

(5) 

 

coplanarity constraint can be written in the following equation: 

 

 

             

      

      

      
      

  

  

   

      

(6) 
 

Here essential matrix is defined as 3 x 3 matrix: 

 

   

      

      

      
       (7) 

 

Thus an essential matrix gives relationship between two camera 

coordinates of a pair of corresponding  point on the sensors: 

 

               

  

  

   

     (8) 

 

This equation cannot fix the scale of E, thus E is generally 

defined up to a scale factor. 

 

Let rotation matrix          be the following expression: 

 

                                              (9) 
 

where 

 

      
   
          
         

  

 

      

         
   

          
  

 

      
          
         

   
  

 

 

Essential matrix can be expressed as: 

 

   

      

      

      
         

      (10) 

 

where   means equality up to a scale factor and          are 

rotation angles of the second camera. 

 

If we adopt another base coordinate system where     
            

        , then   becomes: 

 

 

   
   
   
    

      (11) 

 

 

Using two rotation matrix relative to the base coordinate system, 

an essential matrix has following expression: 

 

 

       
         

     

 

                                 
       

 

            
                       (12) 

 

Where          are rotation angles of the first camera. 

 

 

2.2 Features of Essential Matrix 

2.2.1 Rank Constraint 

 

The rank of essential matrix is zero: 

 

             (13) 
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This is obvious because: 

 

                                       (14) 

 

 

2.2.2 Cubic Trace Constraint 

Essential matrix satisfies the following cubic trace constraint: 

 

                              (15) 

 

 

This can be proved as follows. The trace is similarity-invariant,  
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Notice that: 
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This leads: 

 

           
 

    
              

 

    
     

       
 

    
   

       
 

    
    

        

 

    
                                                 (19) 

 

 

2.2.3 Arbitrariness in Rotation around Line through Two 

Optical Centre 

 

Essential matrix has arbitrariness with rotation around line 

through two optical centres: 

 

 

                      
         

     

 

        
           

        (20) 

 

 

This means that essential matrix is defined with  5 rotation 

angles and we can set     . 
 

2.2.4 Multiple Configuration for an Essential Matrix 

An essential matrix has following features: 
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       (22) 

 

Where 

 

     
    

    
                                                    

 

 

                                          

 

                
    

    
    (23) 

 

 

The equation (22) and (23) one and the third equation is 

essentially the same because essential matrix has arbitrariness 

with rotation around line through two optical centres and: 

 

 

         
 
           

                 (24) 

 

 

With combination of 1) and 2), there are four geometrical 

possibilities for one essential matrix (Hattori et al., 1993, 

Hartley et al., 2003). The valid solution is the one of them 

where all corresponding points exist in front of the both cameras.  

 

 
3. NORMALIZATION OF ESSENTIAL MATRIX 

Introduction of normalization of essential matrix is convenient 

for evaluating precision of calculated essential matrix. Well-

used method is scaling an essential matrix with Frobenius norm, 

that is: 
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                                                             (25) 

 

where Frobenius norm has following definition: 

  

         

         

         

         

 

   

 

   

 

 

         

         

         

         

  

         

         

         

 

 

   (26) 

 

 

In equation (25), Frobenius norm of    is adjusted to be 1. 

From equation (26) and (16): 

 

 

               
 

        

   

   
  

    
 
      

 
          (27) 

 

 

This shows that En has the scale of the case where    is      

or-    . 

 

Here another method is proposed where essential matrix is 

scaled by            : 

 

 

                  (28) 

 

 

In this case,    is adjusted to 1 or -1 and the base line length 

between two camera is fixed to 1. Normalized essential matrix 

   satisfies the following equations. 

 

 

        
                          (29) 

 

 

      
                                        (30) 

 

 

 

4. QUASI-FIVE POINT ALGORITHM WITH NON-

LINEAR MINIMIZATION 

We propose Quasi-Five-Point Algorithm which is non-linear 

solver with seed solution of 8 point algorithm. This method tries 

to calculate the appropriate essential matrix without selecting 

process among multiple solutions. 

 

With coplanarity constraints with five point correspondence, 

essential matrix can expressed in following style: 

 

 

       
 
                                                      (31) 

 

 

where    is the basis for the right null space, and    are the four 

(arbitrary) scalar multipliers (Nistér, 2004, Li et al., 2006). 

 

Our method calculates scalar multipliers with non-linear 

optimization where an appropriate seed is found before non-

linear calculation. Using additional 3 or more point 

correspondences, our method calculates seed values of four 

scalar multipliers with equation (29) and equation (30). This 

means the method directly calculate a normalized essential 

matrix   . 

 

After calculation of seed values of scalar multipliers, non-linear 

least square optimization of scalar multipliers is executed. Ten 

equations, which are Equation (29) and nine equations from 

equation (30) , are used for this optimization. Optimization is 

formulated as 

 

 

           
                                              (32) 

 

 

where    is left side polynomials of the ten equations. 

Levenberg-Marquardt method is adopted in this algorithm for 

this optimization. This is beacase, in pre-testing, Levenberg- 

Marquardt method worked better than Gauss-Newton 

minimization. 

 

Quasi-five-point algorithm cannot get good initial values in case 

of perfectly planar 3d scene, because the calculation of seed 

values fails because of  rank regression. For such cases, this 

algorithm provide try-and-error process with randomized seed 

value. 

 

 

5. NUMERICAL TESTS 

5.1 Case 1: Tests with Non-Planar Scene 

Numerical tests had been executed with simulated data. The 

distance between two cameras is fixed to 1m, and 8 points are 

distributed in 2 m x 1 m at the distance of 1 m – 10 m from 

optical centres (Figure 1). Undulations of 3D point distributions 

had been set to 0.1 to 0.00001 relative to the distance.  

 

 
Figure 1. Distribution of 3D point in the test 
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Rotation angle of two cameras had been set at random with –  

to   variation in   angle, –    to     variation in   and   

angle, respectively. An error of calculation is defined with 

following equation: 

 

 

   
         

         
                           (33) 

 

 

where   
  shows the true normalized essential matrix. 

Calculations of essential matrix with Nistér’s algorithm had 

been executed together for the sake of comparison. 

 

 
Figure 2. Log10 error and distance to the point 

(Non-planar scene, without noise) 

 

Figure 2 shows relationship between distance to the point and 

log10 error without noise. Each error value is the mean value of 

5 tests with different flatness. The figure shows that quasi-five-

point algorithm is 1 or 2 order better than Nistér’s algorithm.  

 

The figure shows that errors are getting worse with longer 

distance from cameras to the 3D points. This is because view 

angle of the area where points are distributed in an image is 

getting smaller. Errors of quasi-five point algorithm get worse 

almost 2 order, but they are better than the cases of Nistér’s 

algorithm which get worse almost 4 order. 

 

In this test all calculations converge on the correct values 

without try-and-error process. This means estimation of initial 

values works well. 

 

5.2 Case 2: Perfectly Planar scene 

Tests with perfectly planar scene had been also executed. 

Undulations of 3D point distributions had been set to zero. 

Rotation angle of two cameras had been set at random with –  

to   variation in   angle, –    to     variation in   and   

angle, respectively. The upper limit of retry count had been set 

to 20 times. 

 

Figure 3. Log10 error and distance to the point 

(Planar scene, without noise) 

 

Figure 3 shows relationship between distances to the point and 

log10 errors without noise. The figure shows almost same trend 

as the Figure 2, errors of quasi-five-point algorithm at 1 m, 6 m 

and 9 m were worse than Nister’s. It is because they included a 

few cases in which non-linear optimization did not converge, or 

converged on incorrect values. 

 

Table 1 shows the detail information of the test. Fifty different 

situations had been executed. Ninety-six % of the calculations 

converged and ninety-two % converged on correct values and 

two % converged on incorrect values. The average of retry 

count is 5.32 times. The cases which converged on incorrect 

values are considered that they had reached one of multiple 

solutions illustrated in Figure 4. 

 

Converged 48/50 (96%) 

Converged correctly 46/50 (92%) 

Converged incorrectly 2/50(4%) 

Average retry count  5.32  

 

Table 1. Results with perfectly planar scene 

 

 
 

Figure 4. An example of multiple solutions of five-point 

algorithm 
The illustration shows the point distribution viewed from bottom of the 
y-axis, where five points lay on the same plane If two cameras are 
rotated around the y axis so as to two bottom edges of triangle have 
same z coordinate value, matching points makes parallel lines with the 
base line and satisfy coplanarity constraint. 
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6. CONCLUSION AND FUTURE WORKS 

Quasi-five-point algorithm has been proposed. The tests show 

that the precision of the algorithm is better than Nistér’s 

algorithm if non-linear optimization converges on the correct 

value. In case of completely flat scene, nonlinear calculations 

obtained correct results in the rate of 92%. 

 

The evaluation remains in noise-free case so far, so we will 

examine the cases with noise in near future. 
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