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ABSTRACT: 

 

The objective of this report is to present and discuss a work-flow for extracting, from full-waveform (FW) lidar data, formats which 

are compatible with common information systems (GIS) and statistical software packages. Full-waveform, specifically for forestry, 

got attention from the scientific community because a more in-depth analysis can add valuable information for classification and 

modelling of related variables (e.g. biomass). In order to assess if this is feasible and if the results are useful, the end-user has to deal 

with raw datasets from lidar sensors. In this study case we propose and test a work-flow which is implemented through a self-

developed software integrating ad-hoc C++ libraries and a graphical user interface for an easier approach by end-users. This 

software allows the user to add raw FW data and produce several products which can successively be easily imported in GIS or 

statistical software. To achieve this we used some state-of-the-art methods which have been extensively reported in literature and we 

discuss results and future developments. Results show that this software package can effectively work as a tool for linking raw FW 

data with forest-related spatial processing by providing punctual information directly derived from the FW data or area-based 

aggregated information for a more generalized description of the earth surface.  

 

 

 

 

1. INTRODUCTION 

Lidar sensors have developed towards being faster and more 

accurate. Online processing of the return laser signal returns 

data as discrete points in space (i.e. point clouds) with 

attributes like energy (i.e. intensity) and echo ordinal position. 

In the last ten years there has been increased interest into 

analysis of the whole return signal, referred to as full-

waveform (FW). This is recorded by a digitizer which samples 

at defined time intervals (usually ~1 ns) the amount of 

incoming energy. This implies an increase in the amount of 

data which has to be stocked in memory, moved between PCs 

and processed to extract significant information for end users. 

At least ten times more space is required for this type of data, 

as well as exponentially more cpu-time depending on adopted 

approaches for processing the FW data.  

Numerous related investigations argue pros and cons of using 

FW (Ussyshkin and Theriault, 2011), but all agree that FW 

brings potential improvements related to two aspects: (i) 

enhancement of detection weak return echoes, which results in 

an increase in overall point density (Toth et al., 2011) in some 

cases by a factor of x2 (Reitberger et al., 2008) and (ii) the 

availability of metrics extracted from the distribution of Ei = 

f(ti)  in the FW, e.g., amplitude, echo width, backscatter cross-

section, backscatter cross-section per illuminated area and 

backscatter coefficient, and (iii) the user has greater control over 

data interpretation (Mallet and Bretar, 2009) and more 

information can be extracted.   

In particular forests present a peculiar type of target for laser 

beams, as the tree structure presents multiple small targets, 

represented by leaves and branches, and structurally different 

canopies return different  waveforms responses, thus land-cover 

classification can be improved (Neuenschwander et al., 2009). 

The focus of this paper is to present a workflow for processing 

lidar full-waveform data and convert extracted information in 

different representations and formats which allow further 

processing with conventional geographic information systems 

and statistical analysis tools. The presentation is divided in the 

following sections: (i) an overview of FW lidar applications in 

forestry, with a brief analysis of existing approaches for 

information extraction, (ii) a description of the test dataset used 

and the study area, (iii) an explanation of chosen methods and 

the processing steps in the work-flow, (iv) a discussion on 

resulting products and future improvements. 

 

 

 

1.1 Full waveform lidar in forestry 

Literature has widely investigated lidar applications for 

extracting vegetation information, especially for the field of 

forestry (Hyyppä et al., 2012). Forestry gets a particular 

advantage from lidar data, compared to data from other active 

or passive remote sensors, because the receiver can record 

multiple returns from a single emitted laser pulse, thus multiple 

targets along its path, which cause only partial obstruction, are 

detected, if not too close to each (Mallet and Bretar, 2009). This 

also allows the pulse to have a high probability of reaching the 

ground plane which is a critical aspect of for a relatively 

accurate estimation of the ground plane (F. Pirotti et al., 2013a). 

Tree canopies have characteristic texture with gaps which allow 

the laser beam to reach the ground surface (Lefsky et al., 2002). 

Information on echoes from the ground and from the canopy 
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allow to model crowns and estimate number of stems and tree 

heights with sufficient accuracy to be used for inventorial 

purposes, depending on canopy closure and tree structure 

(Alberti et al., 2013; Pirotti, 2011). In several forest types and 

conditions, the estimation of biomass in a stand has been proven 

to give important results, due to the capability for prediction of 

lidar-derived stand height  or mean height of dominant and co-

dominant trees (Hall et al., 2005; Lefsky et al., 1999; Means, 

1999). In this context FW lidar adds the possibility of an 

analysis of the return signal to further analyze forest cover. The 

objective can be the classification of forest land-cover and 

species (Neuenschwander, 2009) or more forest-related 

parameters like biomass (Alexander et al., 2010; Baccini et al., 

2012; Koch, 2010) or for inventory purposes (Anderson et al., 

2008). 

 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The area used for testing the method is located in the northern 

part of the Italian peninsula, in the area of Asiago. This area is 

one of many which make up a collection of test sites for the 

NEWFOR project  (NEW technologies for a better mountain 

FORest timber mobilization) in the Alpine Space Programme, a  

broader investigation which will see four distinct study sites 

relative to the Italian partners, providing different forest 

scenarios, i.e. even-aged high-forest, multi-layered  high-forest 

and coppice, sampled with circular areas of 20 m radius 

stratified by forest structure categories.  

 

 
 

 

Figure 1. (top) the Asiago region with the two study areas; 

(bottom)  the Boscon area with the analysed strip and the plots. 

 

All areas have been surveyed with airborne lidar campaigns. In 

our specific case the survey was done with Optech ALTM 

GEMINI 1064 nm wavelength, 167 kHz max pulse repetition 

frequency (PRF), 0.25 mrad (1/e) beam divergence, along with 

the Optech waveform digitizer (8-bit amplitude resolution, 1 ns 

sample rate, 70 kHz max acquisition rate), operated in June 

2012. Figure 1 shows the specific location of a sub-area which 

was used for testing, the Boscon area.  

 

 

2.2 Calibration procedures 

Calibration over vegetated areas poses a challenge as the 

structure of canopy and stem presents multiple and non-

homogeneous surfaces which are intercepted by the laser beam 

along its path. As the recorded waveform P(t) is a result of the 

emitted waveform T(t) convoluted with response from different 

sources as in equation below  (Jutzi and Stilla, 2006a, 2006b) 

 

 P(t) = T(t)*S(t)*M(t)*P(t)+N(t) (1) 

 

where S(t) is the surface response, M(t) is the response of the 

measuring unit, P(t) is the spatial beam distribution, and N(t) is 

the background noise. In our case M(t) is considered negligible 

and P(t) is considered constant and not a Gaussian distribution 

for the reasons reported in (Adams et al., 2012, p. 687) and also 

empirically assessed in an investigation by the author which is 

not yet published. 

The above assumption leaves us with two components, noise 

and surface response. The latter is influenced by the following 

aspects: (a) spherical loss, (b) topographic and (c) atmospheric 

effects (Höfle and Pfeifer, 2007). The first two are related to 

the targets and are very complex to model, whereas the latter is 

a degradation of the energy content of the laser beam as it 

travels through the atmosphere due to physical laws of 

absorption and reflection by gas particles and is an easier 

problem.  

A common approach is to simply correct recorded energy (En) 

with a range-squared relationship using a standard range (Rs) 

and the pulse range (Rn) as shown below. 

  

𝐸𝑐 = 𝐸𝑛
𝑅𝑛

2

𝑅𝑠
2 (2) 

 

Because of the complexity of the physical interactions and also 

the complexity of the forest surface, in our work-flow the 

processing for calibration is done with an empirical 

mathematical model. The function parameters in the model are 

estimated using targets which have the same cross-section and 

which are surveyed at different ranges, e.g. the asphalt runway 

of the airport used for take-off and landing of the vehicle like 

in (Coren and Sterzai, 2006) and reported in (Höfle and Pfeifer, 

2007). This allows creating a look-up-table (LUT) for direct 

correction of the return energy. Our study area is over forests 

and the topic of investigation is uniquely focused on 

vegetation, therefore we assume that targets will be smaller 

than the size of the laser footprint and the target scattering area 

relevant for explaining FW metrics (i.e cross-section σ [m2]) 

remains the same independent of the size of the laser footprint 

area: i.e. as long as the target is small compared to the footprint 

(Wagner, 2010). Empirical correction is important to allow the 

creation of comparable products between sample areas 

extracted from different strips in different flying missions of a 

FW survey (F. Pirotti et al., 2013b). 
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2.3 Waveform analysis 

In our case the digital representation of the waveform consist, 

for each emitted pulse, in one or more segments with an arrow 

of n 8-bit integers representing incoming energy level in a 1 ns 

interval. The segment represents what the digitizer buffer saves 

in memory when the sensor detects a significant return echo 

(above background noise level). To describe the waveform two 

main steps are necessary: the first step is to detect peaks, i.e. 

echoes from reflective targets, and the second step is to define 

metrics related to the peak which describe the cross-section of 

the surface which caused the corresponding echo.  

 

2.3.1 Peak detection:  in literature there are a vast number 

of investigations over approaches for discriminating peaks from 

the FW signal. Faster methods are the thresholding of local 

maxima (Billauer, 2008) and zero crossing of first derivative 

(Toth et al., 2011). Other methods based on spline-fitting 

(Roncat et al., 2011) or Gaussian decomposition (Mallet and 

Bretar, 2009) have proven to give higher peak detection rate, i.e. 

x1.2 – x2, but are require higher costs in terms of execution 

time i.e. x14 - x3000  (Toth et al., 2011). 

We applied the thresholding technique in this implementation of 

the method, removing any signal which was not above the noise 

level as shown in Figure 2. Noise was calculated by taking 

several samples of digitizer segments without echoes as 

calculating the mean energy level and the standard deviation 

(σ). The energy baseline was defined as any signal below the 

mean + 3σ level (Figure 2). No noise-removal process was 

applied it takes computation time and requires the correct 

definition of smoothing parameters which might become a 

source of error in the process.   

A peak is defined as local maxima, a value which is higher than 

its neighbours around it. So a window has to define the 

neighbour domain. In our case the window consists in the 

number of time bins (ns) where we consider equal to the 

maximum width where a local maximum can be mistaken as a 

peak due to noise. The following conditions have to be met for 

the signal at time t to be defined as a peak: 

 

{

𝐸(𝑡) > 𝐸(𝑡+1…𝑖) 

𝑎𝑛𝑑
𝐸(𝑡) > 𝐸(𝑡−1…𝑖) 

 (3) 

 

Where E(t) is the energy count at time t which is being tested 

for peak condition, i is the window width in time bins defining 

the neighbourhood.  

 

2.3.2 Waveform fitting:  this process defines the boundaries 

of the signal which belong to a certain reflective surfaces. An 

ideal approach is Gaussian decomposition of the signal around 

the peak assuming that the FW is a sum of Gaussian, like it is 

for most cases (Mallet and Bretar, 2009) and then define width 

as full-width-at-half-maximum (FWHM) with the relationship 

with the standard deviation σ of such function. Many 

approaches have been tested successfully, see (Stilla and Jutzi, 

2009). 

Because forest surfaces lead to complex responses and thus 

complex return signals, we adopted a simpler approach and we 

define the FWHM as: 

 

𝑙𝑤  =  {
𝑚 𝐸𝑡−𝑚 = 0.5 ∗ 𝐸𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑟𝑤  =  {
𝑚 𝐸𝑡+𝑚 = 0.5 ∗ 𝐸𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑙𝑤 +  𝑟𝑤 =  𝐹𝑊𝐻𝑀

 (4) 

 

 

where lw and rw are respectively left width and right width and 

m is the distance from the time t of peak Et where signal energy 

falls below half the peak energy (above the energy baseline i.e. 

noise). 

2.3.3 Waveform metrics:  this process extracts metrics 

which characterize the shape of the FW related to the extracted 

peak. The usual metrics extracted are amplitude i.e. energy of 

peak corrected with energy baseline and empirically with 

range/atmosphere, and width as seen in the previous section 

(FWHM). In our process we also extract the following other 

metrics: (i) left and right energy, as the integral of energy 

around the peak see  Figure 2 (ii) rise time and fall time as in 

(Drake et al., 2002) and FW center of mass as the distance to 

median energy (similal to the HOME metric by same authors). 

 

𝐿𝐸𝑛 = ∫ 𝐸(𝑡)𝑑𝑡
𝑡2

𝑡1
 (5) 

 

Where LE is the left energy relative to peak n (Figure 2) and t1 

and t2 are the time bins corresponding to the lw and rw 

respectively as described in the previous section. 

 

 

 

Figure 2. Plot of energy digitizer values over time for a return 

FW signal: characterization of waveform by amplitude (PE) and 

partial integral of parts including two echoes. 
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2.3.4 Data products: the software we present outputs FW 

metrics in different formats and using different spatial criteria. 

The first spatial criteria is to extract all data, thus if exporting a 

strip all data will be written. It has been tested and disk space 

and memory requirements limit this type of output. The other 

criteria is to use shapefiles that delimit sample plots to spatially 

clip data at first step of echo definition, and thus proceed with 

the FW and metric extraction only on echoes falling inside the 

sample plots. Sample plots can be points or polygons. In the 

first case the user has to provide a radius for defining the plot 

area. A unique textual identifier, defined in a specific attribute 

column, is required for associating the echoes with sample area. 

Inside each sample area echoes and respective metrics are kept 

in tabular format which is then also represented as a point cloud. 

Another product is created by the spatial aggregation of the 

metrics using regular gridded formats both in 3D (voxels) and 

2D (pixels). In the latter case conventional raster formats are 

used, where in the former VTK file format is used. In the next 

page we present results and discuss potential utilizations. 

 

 

3. RESULTS 

3.1 Products 

The results from running the process over the data are saved in 

the following formats (see Figure 3):  

  (i) VTK formats (Kitware, 2014)  

      (a) voxel representation (i.e. structured grid) with the 

medians of each metrics represented as scalars in each cell; 

      (b) point representation (i.e. unstructured grid) with scalars 

for each point with  metrics’ values;  

  (ii) several raster representations in GeoTiff format each 

holding a characteristic defined in the pixel area by four bands 

for median, standard deviation, 5%, and 95% quantile values of 

the metric. Minimum and maximum values are not used because 

they are too much influenced by outliers;  

  (iii) a textual representation of echoes inside the sample area 

as table in comma separated value (CSV) format with each 

column holding the value of the metric for that peak. 

Each file created as output is named after the FW file which 

was used and the shapefile which holds the sample plots’ 

locations. 

 

 

 

 

 

Figure 3. From top to bottom: VTK representation, raster grid 

representation and CSV representation of metrics extracted 

from the FW. 

 

These files can then be imported respectively in software 

which allows importing VTK files (e.g. GRASS, Paraview), in 

conventional GIS software for the GeoTiff raster output, and 

statistical analysis tools for the CSV files (e.g. R software for 

statistical computing). These formats can be joined with 

information from the sample plots which contain ground-truth 

data (e.g. basal area, diameter at breast height etc…) and 

models can be tested for correlation. 

 

3.2 Further processing scenarios 

An example of further processing of data extracted from this 

work-flow is to use the CSV representation for importing in 

software supporting spatial statistical analysis such as R-cran (R 

Development Core Team, 2014).  Joining FW data extracted 

with our method from sample plots with ground-truth data 

surveyed from the plots themselves is the first step towards 

modelling, e.g. with regression techniques. In Figure 4 a sample 

plot with a point cloud derived from our method had a ground 

surface defined via an iterative morphological approach (F. 

Pirotti et al., 2013c; Francesco Pirotti et al., 2013) which allows 

to then proceed into defining a canopy height model (CHM) and 

regression analysis to define biomass (Vaglio Laurin et al., 

2014) or tree detection (Pirotti, 2010). 
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Figure 4. (top-left) level-plot of ground plane raster before filter 

and (top-right) after filter; (bottom) representation of fitted 

ground plane and lidar echoes in the sample area, colour scale 

represents height from ground plane. 

 

In forestry this is a fundamental step as an accurate ground 

surface is the first step towards defining vertical characteristics 

of the vegetation which are in turn correlated to biodiversity and 

to the dynamics of tree growth. Figure 5 shows results of 

aggregating data by plots and by vertical bins of 0.15 cm 

(corresponding to 1 ns two-way travel time of laser pulse); 

specifically the number of peaks falling in the vertical slice are 

reported. Plots have a circular shape and have a 20 m radius. 

 

  

  

Figure 5. Profiles showing the vertical distribution FW peaks in 

four different plots.  

 

 

4. DISCUSSION AND CONCLUSIONS 

In this paper we presented results of processing FW data for 

extracting products for further processing of data for forest 

applications. We also show a scenario for further processing 

such formats for initial statistical analysis. This is an important 

step for connecting research and development to end-users 

which are used to handling more conventional data formats. 

Data analysts use geographic data and geographic information 

systems and statistical analysis tools and can take advantage of 

such tool. More complex interactions with existing datasets 

related to land management, e.g. biodiversity (Piragnolo et al., 

2014), or even collaborative portals (Pirotti et al., 2011) which 

integrate FW data with other remote sensing data can bring 

added value to end users. Having a lot of data does not imply 

having a lot of information, especially if users cannot extract 

important components from such data. That is the reason that 

exporting data representations of the FW information can bring 

help in that direction.   

The methods used have been chosen for speed over accuracy, 

and a future development ideally would allow the user to choose 

which method to use for peak extraction and waveform 

characterization. This would allow more room for specific 

processing according to the study area, which might have 

different types of land cover – high or low vegetation – or 

different forest structure – coppice or high-forest – or also 

different canopy density thus requiring a more time-consuming 

peak detection algorithm for detecting peaks in weak echoes 

below the initial canopy layers. Geometric and radiometric 

correlations also have to be studied in order to provide other 

methods other than an empirical range/atmosphere correction, 

especially in case no clean targets are available for creating a 

LUT. Being FW a very promising source of data for forest 

applications, efforts in this directions will provide useful tools 

for researchers and data analysts. 
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