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ABSTRACT:

Low-cost sensor generated 3D models can be useful for quick 3D urban model updating, yet the quality of the models is questionable.
In this article, we evaluate the reliability of an automatic point cloud generation method using multi-view iPhone images or an iPhone
video file as an input. We register such automatically generated point cloud on a TLS point cloud of the same object to discuss
accuracy, advantages and limitations of the iPhone generated point clouds. For the chosen example showcase, we have classified
1.23% of the iPhone point cloud points as outliers, and calculated the mean of the point to point distances to the TLS point cloud as
0.11m. Since a TLS point cloud might also include measurement errors and noise, we computed local noise values for the point clouds
from both sources. Mean (µ) and standard deviation (σ) of roughness histograms are calculated as (µ1 = 0.44m., σ1 = 0.071m.) and
(µ2 = 0.025m., σ2 = 0.037m.) for the iPhone and TLS point clouds respectively. Our experimental results indicate possible usage of
the proposed automatic 3D model generation framework for 3D urban map updating, fusion and detail enhancing, quick and real-time
change detection purposes. However, further insights should be obtained first on the circumstances that are needed to guarantee a
successful point cloud generation from smartphone images.

1. INTRODUCTION

Point clouds are developing towards a standard product in urban
management. Still, outdoor point cloud acquisition with active
sensors is a relatively expensive and involved process. Genera-
tion of point clouds using smartphone sensors could be a rapid,
cheap and less involved alternative for local point cloud genera-
tion, that could be applied for 3D archive updating or for quick
damage assessment. Before smartphone generated point clouds
can be integrated in an operational workflow it is essential to as-
sess the quality of such cheap point clouds. Therefore in this
study, we analyse a workflow for point cloud generation using
iPhone sensors. First, we discuss how to generate a point cloud
from multi-view iPhone images and from iPhone videos. Then
we calculate the quality of the resulting point clouds using TLS
point clouds as reference. We also discuss advantages/limitations
of iPhone based point cloud generation and open questions in de-
tail.

Modelling 3D urban structures gained popularity in urban mon-
itoring, safety, planning, entertainment and commercial applica-
tions. 3D models are valuable especially for simulations. Most
of the time models are generated from airborne or satellite sen-
sors and the representations are improved by texture mapping.
This mapping is mostly done using optical aerial or satellite im-
ages and texture mapping is applied onto 3D models of the scene
(Mastin et al., 2009), (Kaminsky et al., 2009). One of the tradi-
tional solutions for local 3D data capturing is the use of a Terres-
trial Laser Scanner (TLS). Unfortunately, these devices are often
very expensive, require careful handling by experts and complex
calibration procedures and they are designed for a restricted depth
range only. On the other hand, high sampling rates with millime-
tre accuracy in depth and location makes TLS data a quite reli-
able source for acquiring measurements. Therefore, herein we
use TLS data as reference to evaluate the accuracy of the iPhone
point cloud.

In last years, there has been a considerable amount of research
on 3D modelling of urban structures. (Liu et al., 2006) applied
structure-from-motion (SFM) to a collection of photographs to
infer a sparse set of 3D points, and furthermore they performed
2D to 3D registration by using camera parameters and photogram-
metry techniques. Another work (Zhao et al., 2004) introduced
stereo vision techniques to infer 3D structure from video sequences,
followed by 3D-3D registration with the iterative closest point
(ICP) algorithm. The main challenge with these methods is that
they require numerous overlapping images of the scene. Some
of the significant studies in this field focused into the alignment
work (Huttenlocher and Ullman, 1990) and the viewpoint consis-
tency constraint (Lowe, 2004). Those traditional methods assume
a clean, correct 3D model with known contours that produce
edges when projected. 2D shape to image matching is another
well-explored topic in literature. The most popular methods in-
clude chamfer matching, Hausdorff matching (Huttenlocher and
Kl, 1993) and shape context matching as (Belongie and Malik,
2002) introduced. Koch et al. (Koch et al., 1998) reconstructed
outdoor objects in 3D by using multi-view images without cali-
brating the camera.

Since the last decade, some researchers focused on developing
algorithms which are based on processing the images taken from
smart phone sensors. (Wang, 2012) proposed a semi-automatic
algorithm to reconstruct 3D building models by using images
taken from smart phones with GPS and g-sensor (accelerometer)
information. (Fritsch et al., 2011) used a similar idea for 3D re-
construction of historical buildings. They used multi-view smart
phone images with 3D position and G-sensor information to re-
construct building facades. (Bach and Daniel, 2011) used iPhone
images to generate 3D models. To do so, they also used multi-
view images. They extracted building corners and edges which
are used for registration and depth estimation purposes between
images. After estimating the 3D building model, they have cho-
sen one of the images for each facade with the best looking angle
and they have registered that image on the 3D model for textur-
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ing it. They have provided an opportunity to the user to select
their accurate image acquisition positions on a satellite map since
iPhone GPS data does not always provide very accurate position-
ing information.

Lee and Scatto (Lee and Scatto, 2010) demonstrated a feature
tracking and object recognition application using videos captured
by the iPhone 3GS camera sensor. Heidori et al. (Heidari and
Alaei-Novin, 2013) proposed an object tracking method using
the iPhone 4 camera sensor. These studies show the usability
of iPhone images for feature extraction and matching purposes
which is also one of the important steps of 3D depth measurement
from multi-view images. On the other hand there are some dis-
advantages. Unfortunately, iPhone videos have low frame rates,
have a rolling shutter, and most importantly, they have a narrow
field of view. Each of these effects might make iPhone image
and video processing problematic (Klein and Murray, 2009). In
order to cope with these physical challenges, Klein and Murray
(Klein and Murray, 2009) applied a rolling shutter compensation
algorithm at the Bundle adjustment stage.

In our study, we reconstruct point clouds automatically using
popular computer vision algorithms. We start with acquiring iPhone
sensor data either by making multi-view pictures (as introduced
in (Sirmacek et al., 2013)) or by capturing a video around the ob-
ject of interest. If the sensor input is a video file, then the frame
rate is reduced and the frames are considered as multi-view in-
put images. In the current stage of research, the proposed ap-
proach does not require camera calibration, however in the fu-
ture we would like to consider camera calibration and lens distor-
tion compensation as well. We discuss the accuracy of the point
clouds which are generated using an iPhone sensor by using TLS
point clouds as reference.

2. IPHONE AND TLS POINT CLOUDS

Herein, we first introduce methodology for data acquisition and
point cloud generation using the iPhone sensor. For quantitative
assessment, we use terrestrial laser scanning measurements. Fig.
1, left, shows the building of interest which is chosen as an ex-
ample to explain the steps of the method. Fig. 1, right, shows a
map of the building and scanner locations.

Figure 1: Left; the building chosen for our first showcase. Right;
Google earth view indicating the location of the building of inter-
est and the TLS scanner position.

2.1 iPhone Point Cloud

The iPhone point cloud is generated from iPhone 3GS smart-
phone sensor data. In order to generate point clouds we used
multi-view images and applied a photogrammetry based method.
Multi-view images are acquired in two different ways, either sev-
eral photos are taken from different looking angles or a video
is captured around the object of interest. If the input is a video
file then the video frame rate is reduced to 10% and the frames
are used as multi-view input images. For our example showcase,
we use multi-view photographs. Some samples of the input pho-
tographs are shown in Fig. 2.

Figure 2: Left; some of the multi-view images of the building
of interest. Right; point cloud generated from multi-view iPhone
images.

The algorithm starts by extracting local features of each input
image. In our study, we use the SIFT method for feature and de-
scriptor vector extraction (Lowe, 2004). The smallest Euclidean
distances between the descriptor vectors are considered for match-
ing SIFT features of overlapping input images. After applying
SIFT feature matching, the relative rotation, translation and posi-
tion matrices are calculated and these matrices are used as input
for the structure from motion (SfM) algorithm (Hartley, 1993)
in order to estimate the internal and external camera parameters.
These are used for initializing the bundle adjustment algorithm
which helps us by calculating the complete 3D point cloud.

In Fig. 3, 4 and 5, we present some more iPhone generated point
cloud examples. Fig. 3 shows a point cloud sampling of a histor-
ical windmill. For such a complex and irregular shaped structure,
we find the generated point cloud satisfying for extracting infor-
mation. In Fig. 4, we show a frame from video input of another
showcase building at the left side, and at the right side we show
the automatically generated point cloud. Unfortunately, this fa-
cade is partially occluded by trees, which strongly reduces the
density of the generated point cloud. In Fig. 5, on the top image,
again we show a sample frame from a video input. In the bottom
we show the automatically generated point cloud which seems
dense and satisfying.

2.2 TLS Point Cloud

Evaluation of the quality of iPhone generated point clouds is done
by comparing them with Terrestrial Laser Scanner (TLS) point
clouds. In this study, for reference point cloud generation, we use
a FARO Photon 120/20 laser scanner which is capable of gath-
ering up to 976000 points-per-second at a maximum distance of
100 meters with an accuracy of 2mm ranging error at 25 m (Faro,
2014). We show our scanner in Fig. 6.

Each captured 3D point is associated with four values (x, y, z, l)
where (x, y, z) are its Cartesian coordinates in the scanner’s local
coordinate system, and l is the laser intensity of the returned laser
beam. This scan takes approximately one minute. In Fig. 7, we
show a view of the 3D point cloud for the example showcase.
As it can be seen, the occlusion limits the data acquisition from
the front facade and the looking angle to the left wall causes less
dense point cloud generation.

3. COMPARING THE POINT CLOUDS

In order to compare iPhone and TLS point clouds, the point clouds
must be registered to each other. Since both point clouds contain
outliers, first we start with eliminating the outliers and leave only
the points of interest in the point cloud data. To do so, we apply
a pre-processing step based on connected component analysis in
3D space which is performed by octree segmentation. We assume
that the largest connected component must contain the points be-
longing to our object of interest (i.e. the building facade). There-
fore, we keep the points of the largest segment and eliminate all
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Figure 3: Top; Some samples from multi-view iPhone image data
set of the historical windmill. Bottom; Automacatically gener-
ated point cloud.

Figure 4: Left; A sample iPhone video frame from the building
of interest. Right; Automacatically generated point cloud.

other points from the point cloud. In Fig. 8, we show the de-
tected segments based on connected component analysis and the
selected segment for iPhone point cloud analysis. In Fig. 9, we
show the detected segments for the TLS point cloud after outlier
removal.

To register the point clouds, we first start with coarsely aligning
them. Since iPhone images are not georeferenced nor calibrated,
their point cloud appear in an arbitrary place in the 3D space, in
an arbitrary orientation and scale. Especially when the scale is
different most of the commonly used registration algorithms can-
not reach a result. Therefore, we first scale the point cloud man-
ually by using a point cloud processing software and again with

Figure 5: Top; A sample iPhone video frame from the building of
interest. Bottom; Automacatically generated point cloud.

Figure 6: FARO Photon 120/20 model scanner.

Figure 7: The point cloud obtained by our TLS device.

the same software we coarsely align the iPhone point cloud on the
TLS point cloud. Then, we start the point cloud registration pro-
cess. One of the most well-known algorithms for registering two

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-547-2014 549



Figure 8: Top; segments obtained by connected component anal-
ysis. Bottom; Largest segment is selected as the object of interest
and the other segments are removed.

Figure 9: Left; segments obtained by connected component anal-
ysis. Right; Largest segment is selected as the object of interest
and the other segments are removed.

point clouds based on overlapping surfaces is the iterative closest
point (ICP) method (Besl and Mckay, 1992), an iterative algo-
rithm which requires an initial rough registration. Essentially, the
algorithm steps are as follows;

• For each point in the source (iPhone) point cloud, find the
closest point in the reference (TLS) point cloud.

• Estimate the combination of rotation and translation using
a mean squared error cost function that will best align each
source point to its match found in the previous step.

• Transform the source points using the obtained transforma-

tion function.

• Iterate (re-associate the points, and so on).

In Fig. 10, we represent the registration result for the showcase
iPhone and TLS point clouds. In the following section, we dis-
cuss the accuracy of the results in detail.

4. ACCURACY TEST ON THE SHOWCASES

For the showcase point cloud, the iPhone point cloud is obtained
by using 25 iPhone photographs taken from different positions.
The resulting point cloud contains 230876 points. The number of
points might increase if more input images are used, however that
also leads to higher computation time and memory requirements.
After removing outliers 228023 points remain. This means that
1.23% points of the original point cloud were considered out-
lier. As expected the TLS point cloud for the same surface is
denser. In the TLS point cloud, after removing the outliers, we
have 357118 points. After registering these two point clouds, we
analyse their differences by determining the point to point dis-
tances. In Fig. 10, we show the point to point distances with color
codes. Here blue color shows the source points which have ’0’m.
distance to the reference data. Yellow and red colors show the
source points which have higher distances to the reference point
cloud. In Fig. 11, we present the distribution of the distances that
we have calculated between iPhone and TLS point clouds. By
fitting a Gaussian model to fit on this distribution, we have cal-
culated the mean value as 0.11 m. and the standard deviation as
0.08 m.

Since the reference TLS point cloud might also contain measure-
ment errors and noise, we determine a local roughness values for
both iPhone and TLS point clouds. For roughness value compu-
tation, each point cloud is processed independently. For the point
cloud at hand, a kernel size is selected by the user. The kernel
size determines the radius of a sphere which is centred on each
point. For each point, one roughness value is calculated inside the
kernel. The roughness value is equal to the distance of the point
to the least square best fitting plane which fits on the neighbour-
ing points which are inside the kernel. For roughness evaluation
of the showcase point clouds (iPhone and TLS), a kernel size is
chosen as 0.5m. When we look at the histogram of the roughness
values, mean (µ) and standard deviation (σ) of the roughness his-
tograms are calculated as (µ1 = 0.44m., σ1 = 0.071m.) and
(µ2 = 0.025m., σ2 = 0.037m.) for the iPhone and TLS point
clouds respectively. These results show us that the reference TLS
point cloud also contains some measurement errors and noise.
Besides it shows us that the higher sigma value of the iPhone
point cloud roughness histogram is caused by not only the error
and noise, but also by the embossed window edges which also
clearly appear on the TLS point cloud.

5. DISCUSSION AND THE FUTURE WORK

The proposed method thus offers very high flexibility in 3D model
acquisition with cheap and easy-to-use sensors. Although the ex-
periments are done using iPhone images and videos, any smart-
phone sensor would be sufficient for data acquisition and 3D re-
construction.

We have observed that both iPhone and TLS point clouds have
their own advantages and disadvantages. Some of the important
points can be listed as follows. TLS point clouds do not always
contain color information. When the color texture of the facade
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needs to be displayed on the 3D data, then a normal camera pho-
tograph must be registered on the point cloud to obtain colors.
TLS has a certain distance limit to scan objects. For instance,
the FARO scanner which is used in this study can scan objects at
maximum of 100m. distance. TLS has a good feature that it is
not effected from weather and the illumination conditions. Even
at night time it is possible to acquire 3D point clouds.

Last but not least, the sampling resolution of the TLS is very high.
On the other hand, iPhone point clouds already contains the RGB
color information registered to the points. The distance limit is
not 100m., however it is hard to say after which distance we can-
not do 3D reconstruction any more. We believe that, since the
3D reconstruction depends on local feature extraction and fea-
ture matching steps, the object must be in a distance, scale and
resolution where the local characteristic object features can be
extracted and matched correctly. Since it is a passive sensor, for
iPhone point cloud generation good illumination conditions are
necessary. IPhone point cloud generation also requires additional
scaling and georeferencing steps.

Besides, we have some open questions that require further ex-
periments. For example, for iPhone generated point clouds, we
cannot say exactly what the looking-angle differences, maximum
and minimum input photograph numbers, suggested distance to
the object, sampling rate of the video -when it is the input im-
age source- should be. We need to analyse effects of repeti-
tive facade structures (which leads to mismatches of features),
homogeneous surfaces (which doesn’t give features for match-
ing process) and occlusions. In our next study, we will also fo-
cus on automatic georeferencing and scaling of the iPhone point
clouds. In this way, before registration process, pre-alignment
of the iPhone point cloud on TLS point cloud will be done fully
automatically. Furthermore, we will expand our quantitative as-
sessments by comparing the iPhone generated point clouds which
are given in Fig. 3, 4 and 5 with TLS point clouds.
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Figure 10: Top; Registered iPhone and TLS point clouds. Bottom; point to point distances are shown with pseudocoloring.

Figure 11: Distribution of the distances (in meter) between the example iPhone point cloud and TLS point cloud.
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