
AUTOMATED EXTRACTION OF 3D TREES FROM MOBILE LIDAR POINT CLOUDS 
 

 

Y. Yu a , J. Li b*, c , H. Guan c, D. Zai a, C. Wang a 

 

 
a Department of Computer Science, Xiamen University, 422 Siming Road South, Xiamen, FJ 361005, China - (allennessy.yu, 

david102812)@gmail.com, cwang@xmu.edu.cn 
b Key Laboratory of Underwater Acoustic Communication and Marine Information Technology (MOE), Xiamen University, 422 

Siming Road South, Xiamen, FJ 361005, China - junli@xmu.edu.cn 
c Department of Geography and Environmental Management, University of Waterloo, 200 University Avenue West, Waterloo, ON 

N2L 3G1, Canada - (h6guan, junli)@uwaterloo.ca 

 

Commission V, ICWG I/Va 

 

 

KEY WORDS: Mobile LiDAR, Tree Extraction, Shape Context, Segmentation, Point Cloud 

 

 

ABSTRACT: 

 

This paper presents an automated algorithm for extracting 3D trees directly from 3D mobile light detection and ranging (LiDAR) 

data. To reduce both computational and spatial complexities, ground points are first filtered out from a raw 3D point cloud via block-

based elevation filtering. Off-ground points are then grouped into clusters representing individual objects through Euclidean distance 

clustering and voxel-based normalized cut segmentation. Finally, a model-driven method is proposed to achieve the extraction of 3D 

trees based on a pairwise 3D shape descriptor. The proposed algorithm is tested using a set of mobile LiDAR point clouds acquired 

by a RIEGL VMX-450 system. The results demonstrate the feasibility and effectiveness of the proposed algorithm. 
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1. INTRODUCTION 

Object detection and extraction from mobile light detection and 

ranging (LiDAR) point clouds has been a very active research 

topic in photogrammetry and remote sensing community. Most 

of existing methods are based on geometric features and 

reflectance properties of the objects to be handled. Yang et al. 

(2013b) proposed a principal component analysis (PCA) 

approach to separate trees and buildings from off-ground points. 

Then, building facades were fitted using the RANSAC 

algorithm. Finally, building facade footprints were extracted 

after projecting each fitted facade onto the horizontal plane, 

removing redundant segments, and connecting disjoint 

segments. Yu et al. (2014b) developed a pairwise 3D shape 

descriptor for modelling geometric features of 3D discrete 

points in manifold space. This 3D shape descriptor obtained 

promising results in extracting 3D light poles and trees from 

mobile LiDAR point clouds. Pu et al. (2011) proposed a 

percentile-based algorithm to extract pole-like objects, such as 

street light poles and traffic signposts, for road inventory 

mapping. Considering the attachments (e.g. advertising boards) 

and the shrubs, an off-ground object was first divided into 

quartiles. Then, the third quartile was selected and further 

partitioned into a set of slices. Finally, pole-like objects were 

recognized through the analysis of pole-like structures from the 

partitioned slices. Vertical profile analysis (Yang et al., 2013a; 

Guan et al., 2014) algorithms were developed to rapidly extract 

and delineate 3D urban roads from mobile LiDAR point clouds. 

 

Rather than handling large-volume and highly dense point 

clouds in 3D space, some researchers projected and interpreted 

them into 2D geo-referenced feature images. Thus, object 

detection and extraction can be carried out based on 2D imagery 

using image processing methods. Considering elevation 

differences among street-scene objects, Yang et al. (2012) 

projected 3D point clouds into 2D geo-referenced elevation 

images through inverse distance weighted (IDW) interpretation. 

The generated feature images were used to extract street-scene 

objects, such as buildings and trees. Guan et al. (2014) 

rasterized the road surface points into a geo-referenced intensity 

image via an IDW interpretation method which utilized 

intensity information to interpret a group of points into a single 

pixel. The reflectance information in the generated images was 

used to extract road markings, which are highly retro-reflective 

objects painted on road surfaces, through intensity thresholding 

and morphological operations. Similarly, Yang et al. (2012) 

developed a model-based algorithm to extract rectangle-shaped 

road markings from the generated geo-referenced intensity 

images. Yu et al. (2014a) used marked point processes to 

extract road manhole and sewer well covers from geo-

referenced intensity images of road surfaces. Two types of 

marked points (disks and rectangles) and a set of 

transformations were defined to respectively model the 

geometric structures of road manhole and sewer well covers and 

their movements. 

 

In this paper, we develop a novel algorithm to extract 3D trees 

directly from 3D mobile LiDAR point clouds. To reduce the 

quantity of the data to be handled, ground points are first 

removed from the raw point cloud using a block-based elevation 

filtering approach. Then, the isolated and unstructured off-

ground points are further grouped and segmented into clusters 

representing individual objects through Euclidean distance 

clustering and voxel-based normalized cut segmentation, 

respectively. Finally, a model-driven method is developed to 

extract 3D trees of specific categories based on the similarity 

measurements between the prototype and each segmented object. 

The similarity between two point cloud objects is measured 
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using a novel pairwise 3D shape descriptor, which can 

effectively and distinctively model the geometric structures of a 

3D point within its vicinity. The proposed algorithm has been 

tested on a set of mobile LiDAR point clouds collected by a 

state-of-the-art RIEGL VMX-450 system. The experimental 

results obtained demonstrate the effectiveness and feasibility of 

the proposed algorithm in extracting 3D trees directly from 

mobile LiDAR point clouds. 

 

2. METHOD 

2.1 Ground Removal 

Due to the design of mobile LiDAR systems, laser scanners 

usually have perfect views of the ground and roadside upward 

objects, such as buildings, trees, pole-like objects, etc. Thus, the 

collected point clouds contain a great portion of data points 

belonging to the ground. To reduce both computational and 

spatial complexities, it is necessary to filter out ground points 

before carrying out the extraction of 3D trees. In this paper, we 

propose a block-based elevation filtering approach to rapidly 

remove ground points. 

 

Considering the perturbations of the ground in a large scene, a 

raw point cloud is first vertically divided into a group of blocks 

with a block size of wb. These data blocks are processed 

separately to remove ground points. Such a strategy can 

effectively suppress the impacts of ground perturbations on the 

filtering results. Then, within each block, the point with the 

minimum elevation is ascertained and its elevation is selected as 

a height base for calculating the height of each data point. The 

height of a point is defined as the elevation difference between 

this point and the point with the minimum elevation within the 

same block. Finally, the points with heights smaller than a pre-

defined threshold hg are regarded as ground points, and further 

removed. After processing all blocks, the ground points are 

basically filtered out. Figure 1 shows a visual example of the 

off-ground points obtained using the proposed block-based 

elevation filtering approach. 

 

 
Figure 1. (a) Raw point cloud, and (b) off-ground points. 

 

2.2 Off-Ground Point Clustering and Segmentation 

The off-ground points obtained through ground removal are still 

isolated and unorganized. Therefore, the points belonging to a 

specific object need to be further grouped before the 

identification of 3D trees. In this paper, we first adopt a 

Euclidean distance clustering approach to group the discrete 

off-ground points into clusters. The Euclidean distance 

clustering approach utilizes the Euclidean distances between 

each pair of points to group them into a set of clusters based on 

a clustering distance dc. Particularly, an un-clustered point is 

contained into a specific cluster if and only if its shortest 

Euclidean distance to the points within this cluster lies below dc. 

Otherwise, a new clustering operation will start at this point. 

Such a clustering approach can rapidly provide an initial and 

promising clustering result for the off-ground points. To further 

reduce the searching regions, the small clusters unlikely to be 

trees are eliminated. This is achieved by calculating a bounding 

box for each cluster and eliminating those clusters with a 

diagonal of their bounding boxes smaller than a pre-defined 

threshold. Figure 2(a) presents the clustering result after 

eliminating small segments. Different colours represent 

different clusters. 

 

 
Figure 2. (a) Off-ground points clustering result, and (b) 

segmentation result of adjacent or overlapped objects. 

 

However, as shown in Figure 2(a), some clusters contain 

multiple objects. This is because the Euclidean distance 

clustering approach cannot separate the adjacent or overlapped 

objects based on only distance measurements. To further 

segment such clusters, we introduce a voxel-based normalized 

cut segmentation method (Shi and Malik, 2000). First, the 

clusters containing more than one objects are partitioned into an 

octree structure with a spacing of wo. Then, the partitioned 

voxels are grouped into a weighted graph G = {V, E}, where 

nodes V are constructed by the voxels and edges E are linked 

between each pair of nodes. The weight wij on the edge 

connecting nodes i and j is defined to measure the similarity 

between these two nodes. It is defined as follows: 
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where pi = (xi, yi, zi) and pj = (xj, yj, zj) denote the centroids of 

voxels i and j, respectively; pi
H = (xi, yi) and pj

H = (xj, yj) are the 

projections of the centroids on the horizontal plane; pi
V = zi and 

pj
V = zj are the z coordinates of the centroids; σH and σV are the 

standard deviations of the horizontal and vertical distributions, 

respectively; dH is a distance threshold for determining the 

maximum horizontal distance between two voxels. 

 

Then, the computed weights of graph G are used to construct a 

generalized eigenvalue problem (Shi and Malik, 2000) for 

segmenting the voxels into disjoint groups representing 

individual objects: 

 

(D-W)y = λDy,                                   (2) 

 

where Wij = wij, and D is a diagonal matrix with Dii = Σm wim. 

 

Finally, by applying a threshold to the eigenvector associated 

with the second smallest eigenvalue, the clusters are segmented 

into two segments. Figure 2(b) shows the segmented clusters 

using the proposed voxel-based normalized cut segmentation 

method. 

 

2.3 Tree Extraction 

We develop a model-driven method to extract trees of specific 

categories from the segmented off-ground objects. As shown in 

Figure 3(a), a tree model is selected as a template for matching 

the objects having similar features with the model. To this end, 

the model and each of the segmented off-ground objects are 

uniformly sampled a set of feature points. In order to compute a 
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one-to-one matching between the feature points on the model 

and an off-ground object, the numbers of feature points are set 

to be the same for the model and the off-ground object, 

respectively. Then, each feature point is described using the 

pairwise 3D shape context proposed by Yu et al. (2014b). 

Denote ( 1)

1 2 1[ , ,... ] bK Np p p

p NH h h h R
 

   as the pairwise 3D shape 

context for feature point p. N denotes the number of feature 

points, and Kb denotes the number of bins for constructing the 

pairwise 3D shape context (Yu et al., 2014b). The matching 

cost between a pair of feature points p and q is defined as:  
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The dissimilarity between the model P and an off-ground object 

Q is defined as: 
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where MP,Q(π) computes the one-to-one matching costs between 

the feature points on the model P and the feature points on the 

off-ground object Q; G(P, Q) measures the global dissimilarity 

between P and Q. They are defined as follows: 
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Finally, the dissimilarity measurements from all off-ground 

objects are thresholded to achieve the extraction of the trees. 

Figure 3(b) presents the extracted 3D trees using the model in 

Figure 3(a). 

 

 
Figure 3. (a) Tree model, and (b) extracted 3D trees. 

 

3. RESULTS AND DISCUSSION 

3.1 System 

The mobile LiDAR point cloud data used in this study were 

collected using a state-of-the-art RIEGL VMX-450 mobile 

LiDAR system. As shown in Figure 4, this system is smoothly 

integrated with two full-view RIEGL VQ-450 laser scanners, 

four high-resolution CCD cameras, two global navigation 

satellite systems (GNSSs), an inertial measure unit (IMU), and a 

wheel mounted distance measurement indicator (DMI). The two 

laser scanners are configured with an “X” pattern for providing 

a better coverage of the surveyed scenes. The scanners rotate to 

emit laser beams with a maximal measurement rate of about 1.1 

million measurements per second, a line scan speed of up to 400 

scans per second, and a maximal valid range of approximately 

800 meters. The accuracy and precision of the acquired point 

clouds are within 8 mm and 5 mm, respectively. 

The mobile LiDAR point cloud data were collected on Ring 

Road South in City of Xiamen, China. It is a typical tropical 

urban area with high-rise buildings, dense vegetation, and 

various traffic utilities. The entire mapping system was mounted 

on the roof of a minivan (see Figure 4). The driving speed was 

limited within 50 km/h. With such a mapping speed, the point 

density close to the scanner centre is about 7000 points/m2. The 

highly dense and accurate point cloud data are a promising data 

source for extracting 3D trees. 

 

 
Figure 4. RIEGL VMX-450 mobile LiDAR system. 

 

 

3.2 3D Tree Extraction 

Three datasets containing different categories of trees were 

selected for the evaluation of the proposed algorithm, as shown 

in Figures 5(a), 6(a), and 7(a), respectively. First, ground points 

were removed from the point clouds using the block-based 

filtering method with a block size wb = 3 m and a height 

threshold hg = 0.4 m. Then, the off-ground points were further 

clustered via the Euclidean distance clustering approach with a 

distance dc = 0.15 m and segmented into individual objects 

based on the voxel-based normalized cut segmentation method 

with parameter configurations of wo = 0.1 m, σH = 2 m, σV = 10 

m, and dH = 5 m. Next, each model and each off-ground object 

were uniformly sampled N = 20 points which were modelled 

using the pairwise 3D shape context. Finally, 3D trees were 

extracted from the segmented off-ground points based on the 

dissimilarity measurements between the model and the off-

ground objects. The extracted 3D trees in each dataset were 

respectively presented in Figures 5(b), 6(b), and 7(b). The 

extraction results demonstrate that the proposed algorithm 

achieves promising performance in extracting 3D trees directly 

from 3D mobile LiDAR point clouds. 

 

4. CONCLUSION 

In this paper, we have proposed a novel algorithm for extracting 

3D trees directly from 3D mobile LiDAR point clouds. We 

developed a block-based ground removal method to rapidly 

filter out ground points. To group the isolated and unstructured 

off-ground points into specific object representations, we 

combined Euclidean distance clustering and voxel-based 

normalized cut segmentation to organize discrete points into 

clusters and segment the clusters containing multiple objects 

into individual objects. Finally, a 3D object extraction method 

was developed for extracting 3D trees from the segmented off-

ground objects based on a pairwise 3D shape context. The 

proposed algorithm has been tested on three mobile LiDAR 

point cloud datasets with different categories of trees. The 

extraction results have demonstrated the feasibility and 

effectiveness of the proposed algorithm in extracting 3D trees 

directly from 3D point clouds. 
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Figure 5. (a) Dataset I, and (b) extracted 3D trees. 

 

 

 
Figure 6. (a) Dataset II, and (b) extracted 3D trees. 

 

 

 
Figure 7. (a) Dataset III, and (b) extracted 3D trees. 
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