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ABSTRACT:

In this paper we address the problem of estimating the attitudes and positions of a set of cameras in an external coordinate system.
Starting from a conventional global structure-from-motion pipeline, we present some substantial advances. In order to detect outlier
relative rotations extracted from pairs of views, we improve a state-of-the-art algorithm based on cycle consistency, by introducing
cycle bases. We estimate the angular attitudes of the cameras by proposing a novel gradient descent algorithm based on low-rank
matrix completion, that naturally copes with the case of missing data. As for position recovery, we analyze an existing technique from
a theoretical point of view, providing some insights on the conditions that guarantee solvability. We provide experimental results on
both synthetic and real image sequences for which ground truth calibration is provided.

1 INTRODUCTION

Block adjustment has a pivotal role in modern Photogrammetry.
The same technique is referred to as Structure from Motion (SfM)
in Computer Vision: given multiple images of a stationary scene,
the goal is to recover both scene structure, i.e. 3D coordinates
of object points, and camera motion, i.e. the exterior orientation
(position and attitude) of the photographs. It is assumed that the
interior parameters of the cameras are known, namely the focal
length and the coordinates of the principal point.

Structure-from-motion methods can be classified as: structure-
first, like independent models block adjustments (e.g. (Crosilla
and Beinat, 2002)), where first stereo-models are built and co-re-
gistered, structure-and-motion methods, such as bundle block ad-
justment (e.g. (Triggs et al., 2000)), resection-intersection meth-
ods (Brown and Lowe, 2005, Snavely et al., 2006), hierarchical
methods (Gherardi et al., 2010, Ni and Dellaert, 2012)), where
“structure” and “motion” are solved simultaneously, and – more
recently – motion-first methods (Govindu, 2001, Martinec and
Pajdla, 2007, Kahl and Hartley, 2008, Enqvist et al., 2011, Arie-
Nachimson et al., 2012, Moulon et al., 2013) that first solve for
the “motion” and then recover the “structure”. All these motion-
first methods are global, for they take into account the whole
epipolar graph, whose nodes represent the views and edges link
views having consistent matching points.

These global methods are usually faster than the others, while en-
suring a fair distribution of the errors among the cameras, being
global. Although the accuracy is worse than those achieved by
bundle adjustment, these global methods can be seen as an effec-
tive and efficient way of computing approximate orientations to
be subsequently refined by bundle adjustment.

In this paper we present a robust global structure-from-motion
system, focusing in particular on the orientation process. First,
the pairwise rotations extracted from the essential matrices are
pruned by detecting and removing outliers, which arise from wrong
two-view geometries caused (e.g.) by repetitive structures in the
scene. To this end, we improve an algorithm based on the notion
of cycle consistency (Enqvist et al., 2011) by introducing cycle
bases.
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In order to estimate the angular attitudes of the cameras, we for-
mulate a gradient descent algorithm based on low-rank matrix
completion, that naturally copes with the case of missing data,
very frequent in practice, in which the epipolar graph is hardly
complete.

As for position recovery, we analyze an existing technique (Arie-
Nachimson et al., 2012) from a theoretical point of view, provid-
ing some insights on the conditions that guarantee solvability.

2 BACKGROUND

In this section we provide a brief summary of the main concepts
in multi-view geometry, useful to define our method. A complete
treatment of this subject can be found in (Hartley and Zisserman,
2004).

The camera model is the pinhole camera, which is described by
its centre c and the image plane. The distance of the image plane
from c is the focal length. The line from the camera centre per-
pendicular to the image plane is called the principal axis, and
the point where the principal axis meets the image plane is called
the principal point. A 3−space point is projected onto the im-
age plane through the line containing the point and the optical
centre. Formally, the relationship between the homogeneous 3D
coordinates X of a scene point and the homogeneous coordinates
x of its projection onto the image plane is a mapping between
projective spaces, called central projection:

P : P3 → P2 x = PX. (1)

The mapping P appearing in (1) is called the camera projection
matrix and can be expressed as P = K[R|t], where K is called
the calibration matrix, that contains the interior parameters, and
R, t are called the exterior parameters. The rotation matrix R ∈
SO(3) and the translation vector t ∈ R3 respectively describe
the position and attitude of the camera with respect to an external
(or global or control) coordinate system. The translation vector t
is linked to the camera centre c through the formula t = −Rc.
The calibration matrix K encodes the transformation in the image
plane from the so-called normalized camera coordinates to pixel

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-63-2014 63



coordinates. It can be expressed as

K =

24rf γf px

0 f py

0 0 1

35 (2)

where f represents the focal length of the camera in terms of pixel
dimensions (in the y direction), r is the aspect ratio, γ is the skew
and (px, py)T are the coordinates of the principal point expressed
in pixels.

The geometry of two images is the relative geometry of two dif-
ferent perspective views of the same 3D scene. It is usually re-
ferred to as epipolar geometry. Suppose a point X in 3−space
is imaged in two views, at x in the first, and x′ in the second; x
and x′ are called corresponding or matching points. The cam-
era centres, the 3-space point X and its images x and x′ lie on
a common plane, that is called the epipolar plane. As the posi-
tion of X varies, the epipolar planes “rotate” about the baseline,
that is the line connecting the camera centres. The image point
x back-projects to a ray in 3-space (defined by the camera centre
and x) that is imaged as a line l′ in the second view, called the
epipolar line. The mapping F : x 7→ l′ = Fx associating a
point in one image to its corresponding epipolar line in the other
image is called the fundamental matrix. The corresponding point
x′ must lie on l′, i.e. x′T Fx = 0. This relation is known as
the epipolar constraint. If the calibration matrices K, K′ of the
cameras are known, then the essential matrix can be defined from
the fundamental matrix as E = K′T FK. The importance of the
essential matrix is that it encodes the relative motion between the
two cameras. In other words, the essential matrix admits the fol-
lowing decomposition

E = [t]×R (3)

where R and t respectively denote the relative rotation and trans-
lation between the cameras, and [t]× denotes the skew-symmetric
matrix corresponding to the cross product with t. Translation
t can be recovered from E only up to an unknown scale factor
which is inherited by the reconstruction.

If the scene is captured by n ≥ 2 cameras, then for each avail-
able pair (i, j) we can compute the relative orientations (Rij , tij)
starting from the essential matrix Eij , according to (3). The prob-
lem now is to recover the exterior orientations, i.e., the rotation
matrices Ri ∈ SO(3) and the translation vectors ti ∈ R3 of the
cameras such that the projection matrix of the i−th camera is

Pi = Ki[Ri|ti] (4)

where Ki are the known calibration matrices.

3 OVERVIEW

Given n input images, we follow a standard global SfM pipeline.

1. A collection of key-points across the images is extracted and
matched (typically by using SIFT (Lowe, 2004));

2. The essential matrices Eij are computed from the match-
ing points by using the 8−point Algorithm in combination
with RANSAC, and subsequently refined by using a Gauss-
Newton type algorithm on the Essential Manifold, as ex-
plained in (Helmke et al., 2007). Finally, they are factorized
via Singular Value Decomposition (SVD) to obtain the rel-
ative rotations Rij of the cameras (Hartley and Zisserman,
2004);

3. Exterior camera orientation is computed as a sequence of
two global optimizations. First, the attitude Ri of each cam-
era is estimated, and then the positions ci are recovered.
This step is preceded by an outlier removal phase, in which
wrong relative orientations are detected.

4. Optionally, the 3D coordinates of the key-points are com-
puted by triangulation, and the quality of structure and mo-
tion estimation may be refined through bundle block adjust-
ment.

Our contributions, which concern Step 3 of the above pipeline,
are the following. First, we introduce a novel optimization method
to estimate the exterior attitudes Ri of the cameras starting from
the relative attitudes, that is described in Section 4. Secondly,
we formulate a novel algorithm to remove the outliers among the
relative rotations, presented in Section 5. Finally, in Section 6
we provide a theoretical analysis of the linear algorithm intro-
duced in (Arie-Nachimson et al., 2012), that solve for exterior
positions. The discussion carried out in the paper is supported by
experimental results on both synthetic and real images, shown in
Section 7. The conclusions along with possible further develop-
ments are presented in Section 8.

4 ATTITUDE ESTIMATION: A MATRIX
COMPLETION APPROACH

In this section we estimate the exterior attitude of the cameras
starting from the relative attitude measurements. We develop a
gradient descent algorithm to minimize a suitable cost function,
highlighting its connection with Matrix Completion theory. We
suppose that the pairwise measurements are subject to noise only.
The presence of outliers is handled in Section 5.

4.1 An Introduction to Matrix Completion

The Matrix Completion is a well studied problem and appears in
many areas other than computer vision, such as collaborative fil-
tering and sensor localization. It consists in recovering the miss-
ing entries of a low-rank matrix (Candès and Tao, 2010).

More precisely, the goal is to recover a n1×n2 matrix B of rank
r � n1, n2. Only a fraction of its entries is available, represented
by index pairs (i, j) in a set Ω ⊂ {1, 2, . . . , n1}×{1, 2, . . . , n2}.
If the number of observed entries is large enough, then solving the
following optimization problem

min
X

rank(X)

subject to PΩ(X) = PΩ(B).
(5)

will recover the original matrix correctly. Here, PΩ denotes the
orthogonal projection onto the subspace of matrices that vanish
outside of Ω. However, this problem is also known to be compu-
tationally intractable (NP-hard). An efficient heuristic consists in
replacing the rank function in (5) with its convex envelope, that
is the nuclear norm (Fazel, 2002). The nuclear norm of X is
the sum of the singular values of X and it is denoted by ‖X‖∗.
The authors of (Candès and Tao, 2010) proved that under suitable
assumptions, with high probability, nuclear norm minimization
recovers all the entries of B with no error.

A more practical problem is when the observations are corrupted
by noise or the matrix to be reconstructed is only approximately
low rank. In this case the constraint PΩ(X) = PΩ(B) must be
relaxed, resulting in the following problems

min
X
‖X‖∗

subject to ‖PΩ(X)− PΩ(B)‖F ≤ Θ
(6)
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min
X

1

2
‖PΩ(X)− PΩ(B)‖2F

subject to rank(X) ≤ r
(7)

min
X

λ‖X‖∗ +
1

2
‖PΩ(X)− PΩ(B)‖2F (8)

for some Θ ≥ 0 and λ ≥ 0. Here ‖·‖F denotes the Frobe-
nius norm. In this work we focus on problem (7) since in our
application the rank of the incomplete matrix is known, as will
be explained below. Many authors have proposed efficient meth-
ods to solve this problem, such as OPTSPACE, a gradient descent
algorithm on the Grassmann manifold (Keshavan et al., 2009).

4.2 Proposed Algorithm

Let Rij ∈ SO(3) denote the relative rotation between coordinate
frames indexed by j and i, and let bRij be an estimate of Rij ,
obtained through the essential matrix factorization. Only somebRij are known and they are represented by index pairs (i, j) in
a set N ⊂ {1, 2, . . . , n} × {1, 2, . . . , n}. The goal is to find
the absolute rotations Ri ∈ SO(3) of the cameras such that the
compatibility constraint

Rij = RiR
T
j (9)

is satisfied ∀(i, j) ∈ N . In the presence of noise, the pairwise
rotations will in general not be compatible. Thus an appropriate
minimization problem is

min
R1,...,Rn∈SO(3)

X
(i,j)∈N

‖ bRij −RiR
T
j ‖2F . (10)

Problem (10) is known as Multiple Rotation Averaging in com-
puter vision literature (Hartley et al., 2013). Note that the solution
is determined up to a global rotation, corresponding to a change
in orientation of the external coordinate system. This fact is in-
herent to the problem and cannot be resolved without external
measurements.

In order to rewrite Problem (10) in terms of matrix completion,
we introduce the following notations. Let G and R respectively
denote the 3n×3n block-matrix containing the pairwise rotations
and the 3n × 3 block-matrix containing the absolute rotations,
namely

G =

2664
I R12 . . . R1n

R21 I . . . R2n

. . . . . .
Rn1 Rn2 . . . I

3775 , R =

2664
R1

R2

. . .
Rn

3775 (11)

where I denotes the 3 × 3 identity matrix. It is shown in (Arie-
Nachimson et al., 2012) that G can be decomposed as G = RRT ,
thus it is symmetric, positive semidefinite and of rank 3. Simi-
larly to G we define bG as the 3n × 3n block-matrix containing
the observed pairwise rotations bRij extracted from the estimated
essential matrices; it contains zero blocks in correspondence of
the missing pairs. The presence of missing data is very common
in real scenarios, for example because of occlusions or matching
failure. In particular, if two cameras see the scene from different
points of view, then there are no corresponding points between
them; thus the essential matrix, and hence the relative motion of
the pair, can not be computed. Let Ω be the sampling set of bG.

The rotation estimation problem (10) is equivalent to

min
G

1

2
‖PΩ( bG)− PΩ(G)‖2F (12)

where the unknown matrix G should be of the form (11), thus it
is required to be symmetric positive semidefinite and to have rank

3. In addition, G should be composed by rotation matrices with
identity blocks along its diagonal.

In order to obtain a matrix completion problem (7) we relax these
constraints and consider only the rank−3 requirement, obtaining

min
G

1

2
‖PΩ( bG)− PΩ(G)‖2F

subject to rank(G) ≤ 3.
(13)

This problem can be solved efficiently using the OPTSPACE al-
gorithm. This method decomposes the unknown matrix as

G = USV T (14)

where U, S, V have the same dimensions of the factors in the
SVD of G. Such a decomposition guarantees that G satisfies
rank(G) ≤ 3. The minimum with respect to S is easy to calcu-
late, since the cost function is quadratic in S. The minimum with
respect to U, V is found by the gradient descent algorithm, us-
ing the rank-3 projection of the data matrix as initial datum. See
(Keshavan et al., 2009) for details.

An alternative approach to guarantee that the rank requirement is
satisfied, is to express the unknown matrix as

G = RRT (15)

where R ∈ R3n×3. Such a decomposition guarantees that G is
symmetric, positive semidefinite and of rank at most 3, yielding a
tighter relaxation. It does not guarantee that G is composed of ro-
tations. This results in the following unconstrained optimization
problem

min
R

1

2
‖PΩ( bG)− PΩ(RRT )‖2F . (16)

Let F be the cost function in (16). We propose to minimize F by
using the gradient descent method with line search. The gradient
of the objective function is

gradR(F) = 2PΩ(RRT − bG)R. (17)

As for the initial guess, initial values for each Ri are easily found
by propagating the compatibility constraint Ri = bRijRj along
a spanning tree of the epipolar graph, starting from a given ro-
tation assumed to be the identity (see Section 5 for definition of
the epipolar graph). As regards the stopping criterion, the algo-
rithm ends when the quantity ‖PΩ( bG)−PΩ(RRT )‖F /

p|Ω| is
below a given threshold, where |Ω| is the number of nonzero ele-
ments of bG. Note that our algorithm does not guarantee that the
optimization variable R is composed of rotations. Indeed, mini-
mizing the cost function directly in the rotation space SO(3) is a
difficult task, as explained in (Hartley et al., 2013), thus a suitable
relaxation of such constraint is usually the preferred technique.
To be as near as possible to such constraint, we propose to alter-
nate each gradient descent step with a projection onto SO(3) of
each 3 × 3 block in R. The nearest rotation (in the Frobenius
norm sense) can be found through singular value decomposition,
as explained in (Keller, 1975).

5 CYCLES AND CONSISTENCY

In this section we explain how to detect the outliers among the
relative rotations. The presence of false two-view geometries,
which generate outliers, is a common situation in real scenarios
and it is caused by repetitive structures in the scene. Indeed, these
structures can lead to two-view geometries supported by a large
number of correspondences, but not reflecting the underlying true
geometry.
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We consider the epipolar graph G = (V, E) induced by the rela-
tive rotations bRij estimated from pairs of views. This graph has
a vertex (V ) for each camera and edges (E) in correspondence of
the available pairwise rotations. We think of G to be undirected,
since bRij is given if and only if so is bRji, and bRji = bRT

ij . If
the graph is not connected, the largest connected component is
considered only (otherwise it is impossible to estimate the rota-
tions). In order to identify the inconsistent edges, we study the
composition of rotation matrices along cycles. More precisely,
we consider connected cycles in which every vertex has degree
two, i.e. circuits. If the error in a cycle, measured as the devia-
tion from identity, is less than a fixed threshold ε, then the cycle
is supposed to contain inlier edges only. Actually, it may not
be, since two outlier rotations may “compensate” such that their
wrong contributes vanish, but this is very unlikely to happen in
practice. If the cycle error is greater than the threshold, then the
cycle must contain at least one inconsistent rotation. To detect
such outliers, we improve the algorithm described in (Enqvist et
al., 2011).

The authors of (Enqvist et al., 2011) consider a maximum-weight
spanning tree, where the weights are the numbers of inlier corre-
spondences, and they analyze cycles formed by the remaining
edges. A cycle is kept if the cycle error, normalized by the factor
1/
√

l, where l is the cycle length, is small enough; otherwise the
non-tree edge is removed. This approach is highly dependent on
the chosen spanning tree: if this tree contains an actual outlier,
then such a rotation will not be removed, and hence the estimated
absolute rotations are wrong. Hereafter, we name this method as
the EOK-Algorithm.

To overcome this drawback, we propose a novel algorithm based
on the notion of cycle basis. Indeed, cycles in a graph form a vec-
tor space over the field Z2 of dimension nE −nV +nC (Kavitha
et al., 2009), where nE is the number of edges, nV is the num-
ber of vertices, and nC is the number of connected components
of the graph. A basis for the vector space can be constructed by
“completing a spanning forest”, namely by adding non-tree edges
to a spanning forest. Computations on the cycle space are easily
carried out by representing cycles as vectors in ZnE

2 . Our goal is
to construct a spanning tree formed by inlier edges only. Under
this assumption, we can successfully detect the outlier pairwise
rotations by using the EOK-Algorithm. We think of G to be un-
weighted, since a relative rotation may be correct even if it is
generated by a low number of point correspondences. Moreover,
we throw away all the edges not belonging to any cycle, since
they give no useful information about rotational consistency.

Algorithm 1 describes the overview of our method. The key ob-
servation is that any linear combination of inlier cycles will al-
ways generate an inlier cycle, while linear combinations of outlier
cycles may generate inlier cycles. Thus, in order to obtain an in-
lier spanning tree, we propose to sum the outlier cycles. Clearly,
it is computationally intractable to analyze all possible combina-
tions. What we propose are two reasonable approaches to choose
the combinations that guarantee, with high probability, to extract
a spanning tree formed by inlier edges only.

• Sum the inconsistent cycles that have an outlier edge in com-
mon, in order to eliminate that edge. Indeed, if two cycles
have an edge in common, then their sum does not contain
that edge. If the edge is actually an outlier, then, with high
probability, the sum will be a consistent cycle.

• Sum the inconsistent cycles in order to connect the con-
nected components of the set of inlier edges. Indeed, if a
cycle contains an edge that connects two components and

an other cycle does not contain that edge, then their sum
connects the two components. If this cycle is actually an
inlier, then we can connect the components through inlier
data.

In both cases, we sum cycles in pairs of two (and not triplets,
quadruples, . . . ) in order to set a limit on the number of linear
combinations.

Algorithm 1 fails when the spanning tree T in Step 2 is consti-
tuted by outlier edges only. In this case EC will be equal to the
empty set during all the subsequent steps. To overcome this prob-
lem, it is sufficient to restart the algorithm with a different initial
spanning tree. The advantage of our approach is that the output
EC is guaranteed to be constituted by inlier edges only. In par-
ticular, note that EC is initialized to the empty set in Step 1 of
Algorithm 1, while in the EOK-Algorithm it is initialized to a
maximum-weight spanning tree, that may contain outliers.

Algorithm 1 Outlier Removal among the Relative Rotations

Input: epipolar graph G = (V, E), relative rotations bRij ex-
tracted from the estimated essential matrices, (i, j) ∈ E, an-
gular threshold ε

Output: set EC of consistent pairwise rotations

1. Initialize EC = ∅ and Cguess = ∅, where Cguess denotes
the set of outlier cycles.

2. Compute a spanning tree T from E. Form a cycle basis
by completing T and classify all the cycles of the basis
into inliers (EC ) and outliers (Cguess). Eliminate from E
all the edges not belonging to any cycle.

3. Compute a spanning forest F from EC . If F is con-
nected, then the algorithm ends by applying the EOK-
Algorithm to EC with F as input. Otherwise, go to Step
4.

4. Apply the EOK-Algorithm to each connected component
of EC in order to increase the support of EC or to identify
some outlier edges.

5. Sum the cycles in Cguess that have an outlier edge in com-
mon, in order to eliminate that edge. If the support of EC

has changed after this step, then go to Step 6. Otherwise,
go to Step 7.

6. Compute a new spanning forest F from EC . If F is a
spanning tree, then the algorithm ends by applying the
EOK-Algorithm to EC with F as input. Otherwise, apply
the EOK-Algorithm to each connected component of EC ,
as in step 4.

7. Sum the cycles in Cguess in order to connect the connected
components of EC .

8. Compute a new spanning forest F from EC . If F is a
spanning tree, then the algorithm ends by applying the
EOK-Algorithm to EC with F as input. Otherwise, con-
sider the largest connected component of EC and apply
the EOK-Algorithm to it.

6 POSITION RECOVERY: A NEW INTERPRETATION

Once camera attitudes R1, . . . , Rn are recovered, we estimate
translations t1, . . . , tn directly from point matches as explained
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in (Arie-Nachimson et al., 2012). This method is based on a
factorization of the essential matrix that generalizes the classical
one, since it involves the exterior parameters only.

Let Eij denote the essential matrix of the pair (i, j), namely
Eij = [tij ]×Rij , where Rij ∈ SO(3) and tij ∈ R3 describe
the relative orientation between view j and i. It is shown in (Arie-
Nachimson et al., 2012) that Eij can be expressed as

Eij = Ri([ci]× − [cj ]×)RT
j (18)

where ci ∈ R3 denotes the absolute location (center) of the i−th
camera. The advantage of this expression is that pairwise infor-
mation is no longer required. As explained in (Arie-Nachimson
et al., 2012), the epipolar constraint defined by (18) leads to a
linear equation for every pair of matching points

(ci − cj)
T (RT

i p
(m)
i ×RT

j p
(m)
j ) = 0 (19)

where p
(1)
i , . . . ,p

(Nij)

i and p
(1)
j , . . . ,p

(Nij)

j are Nij correspond-
ing points from images i and j respectively, expressed in nor-
malized image coordinates. Hence a sparse homogeneous linear
system is obtained, that can be expressed in matrix form as

A

0@c1

. . .
cn

1A = Ac = 0 (20)

where A is a matrix of dimensions (
P

i,j Nij) × (3n) whose
entries depend on the set of point matches and on the absolute
rotations, according to (19). Note that the solution is determined
up to a global similarity. Clearly ci = cj ∀i, j (all the cameras
share the same position) is a solution to (19). We define trivial
such a solution. In particular

ci = (1, 0, 0)T ∀i
ci = (0, 1, 0)T ∀i
ci = (0, 0, 1)T ∀i

are three trivial solutions of (19), which generate a 3−dimensional
subspace of ker(A). Thus there exists a unique (up to a similarity)
non trivial solution if and only if

dim(ker(A)) = 4 (21)

and the sought solution is the optimal solution orthogonal to the
trivial subspace. Such a solution is given by the eigenvector as-
sociated with the fourth smallest eigenvalue of the matrix AT A,
whose dimensions depend on the number of cameras only (not on
the number of point matches).

Our contribution to this exterior position recovery method is a
theoretical analysis of the linear system (20). We provide a nec-
essary condition for a non-trivial solution to exist, analyzing the
epipolar graph G = (V, E) generated by the images. More pre-
cisely, we show that there exists a unique non trivial solution only
if the epipolar graph is formed by cycles. In other words, in the
presence of edges not belonging to any cycle multiple solutions
occur.

Consider for simplicity the case n = 3 and suppose that the avail-
able pairs are (1, 2) and (2, 3). The epipolar graph is not formed
by a simple cycle, since the edge (3, 1) is missing. In this case
system (20) can be expressed as

Ac =

»
A12 −A12 0
0 A23 −A23

– 0@c1

c2

c3

1A = 0 (22)

where

Aij =

266666664

(RT
i p

(1)
i ×RT

j p
(1)
j )T

(RT
i p

(2)
i ×RT

j p
(2)
j )T

. . .

(RT
i p

(m)
i ×RT

j p
(m)
j )T

. . .

(RT
i p

(Nij)

i ×RT
j p

(Nij)

j )T

377777775
. (23)

We observe that rank(Aij) = 2 or, equivalently, that the 3−space
points (RT

i p
(m)
i × RT

j p
(m)
j ) lie on a common plane for varying

m. Actually, these points lie on a plane which is orthogonal to
the baseline of the pair (i, j). To see this, recall that the cor-
responding points p

(m)
i , p

(m)
j and the camera centers lie on a

common epipolar plane, and, for varying m, the epipolar planes
rotate around the baseline. Consequently

rank(A) = rank
»
A12 0
0 −A23

–
= 4 (24)

since the second block-column of A is a linear combination of
the others. Thus dim(ker(A)) = 5, which means that there ex-
ist multiple non trivial solutions to the exterior position recovery
problem. These solutions can be computed as follows. Let b12

and b23 respectively denote the baselines of the pairs (1,2) and
(2,3), that solve A12b12 = 0 and A23b23 = 0. By computation
we obtain

Ac = 0 ⇔
(

c1 = c2 or c1 − c2 = αb12

c2 = c3 or c2 − c3 = βb23

(25)

and hence the solutions are

c =

0@c3

c3

c3

1A , c =

0@ c1

c1

c1 − βb23

1A , c =

0@c2 + αb12

c2

c2

1A (26)

for some c1, c2, c3 ∈ R3 and α, β ∈ R. The first solution cor-
responds to the trivial 3−dimensional subspace of ker(A). In the
second solution cameras 1 and 2 have the same centre, while in
the third solution cameras 2 and 3 have the same centre. This
is possible since the epipolar graph is not constituted by a cycle,
and hence we do not have any compatibility constraint between
the baselines.

The discussion above applies equally well to the general case. If
there are n > 3 cameras and the epipolar graph is not covered
by cycles, then dim(ker(A)) > 4. Indeed, if an edge does not
belong to any cycle then the camera centers corresponding to its
endpoints can collapse, yielding to multiple solutions. In conclu-
sion, in order to successfully estimate the exterior positions, the
epipolar graph is required to be formed by cycles only.

7 EXPERIMENTS

In this section we discuss the efficiency and accuracy of our con-
tributions in both synthetic and real scenarios. All the simulations
are carried out in MATLAB on a dual-core 1.3 GHz machine.

7.1 Synthetic Images - Attitude Estimation

We analyze the performances of our matrix completion algorithm
in the presence of noise and missing data. Since no outlier is in-
troduced among the relative rotations, Algorithm 1 is not applied
here. We compare our method with the techniques described in
(Arie-Nachimson et al., 2012), namely spectral decomposition
(EIG) and semidefinite programming (SDP). The former enforces
the entire columns of R to be orthonormal, instead of imposing
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the orthonormality of each 3 × 3 block. The latter enforces the
matrix G to be symmetric positive semidefinite and to have iden-
tity blocks along its diagonal. In our implementation, the MAT-
LAB command eigs is used for EIG and the SeDuMi toolbox
(Sturm, 1999) for SDP. We also include in our analysis the ma-
trix completion algorithm OPTSPACE, whose MATLAB 1code
has been provided by the authors of (Keshavan et al., 2009). To
evaluate the accuracy of attitude estimation, any of the metrics
analyzed in (Huynh, 2009) can be used, since they all are bi-
invariant and respect the topology of SO(3). In our experiments
we choose the angular (chordal) distance, which takes values in
the range [0, 180◦].

To generate the ground truth scene and motion we proceed as
follows. 200 points with 3D coordinates uniformly distributed
in the range [−5, 5] are projected onto n = 100 images. The
camera locations are sampled at random in the cube [−30, 30]3

far from the point cloud. As for the attitude, the z−axes of the
cameras point toward the centroid of the point cloud, while the
x− and y−axes are chosen randomly. Thus each 3D point lies
in front of all the cameras, and hence the cheirality constraints
are satisfied. For simplicity, we assume that all the cameras have
the same calibration matrix (f = 1000, r = 1, γ = 0, px =
py = 500). Finally, a Gaussian noise with variance between 1
and 10 is added to the image point coordinates. Since no outlier is
introduced among the correspondences, RANSAC is not applied
here.

We consider a realistic scenario in which a percentage p of the
relative rotations is missing. In our experiments we consider the
cases p = 0, p = 0.5 and p = 0.9. We also analyze the challeng-
ing case in which the number of available bRij is n− 1, which is
the theoretical minimum number of relative rotations necessary to
solve for absolute rotations. Figure 1 shows the results, averaged
over 30 trials. In the cases p = 0, p = 0.5 and p = 0.9, all the
analyzed techniques are equally robust with respect to noise. If
the number of available relative rotations is n− 1, then EIG and
OPTSPACE yield gross errors in the estimates of the attitudes. On
the contrary, our method and SDP gives good results even in this
challenging case.
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Figure 1: Mean angular errors in estimating the absolute rotations
as a function of the variance of Gaussian noise. Note that in the
bottom right figure the scale in the y−axis is different from the
other figures.

We also analyze the efficiency of our method in terms of compu-
tational time. Figure 2 reports the running time of the analyzed

1http://web.engr.illinois.edu/∼swoh/software/
optspace/code.html

algorithms as a function of the number of cameras. The execu-
tion cost does not include the construction of the data matrix bG.
Our (non-optimized) MATLAB code is significantly faster than
semidefinite programming and comparable to EIG and OPTSPACE
algorithms.
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Figure 2: Execution times (in seconds) of exterior attitude esti-
mation as a function of the number of cameras. The right figure
is a zoom of the left one.

In summary, our method achieves the best accuracy as SDP but it
is much faster.

7.2 Synthetic Images - Outlier Detection

In this section we compare Algorithm 1 with our implementation
of the EOK Algorithm. We consider the following figures:

false negative rate =
c

a + c
(27)

accuracy =
a + d

m
(28)

where c is the number of false negatives, i.e., actual outliers that
are erroneously classified as inliers, a is the number of true pos-
itives, i.e. outliers that are correctly detected, d is the number of
true negatives, i.e. inliers that are correctly detected, and m is the
number of available relative rotations. False negatives are more
dangerous than false positives, as they may corrupt the final es-
timate, whereas false positives can only impact on the statistical
efficiency, as they reduce the number of good measurements that
are considered in the final estimate. Thus, the main indicator is
the false negative rate, which should be as small as possible. The
accuracy is considered to check if the method is not rejecting too
many samples as outliers.

We consider n = 20 images, and we generate the ground truth
scene points and camera orientations as done in the previous sec-
tion. As for the fraction of missing pairs, we analyze the cases
p = 0.25, p = 0.5 and p = 0.8. Differently from the previous
experiment, the number of matching points is not the same for all
pairs, namely each 3D point is not seen by all the cameras. This
is done by forcing the visibility matrix to have a band structure.
A fraction of the available relative rotations is drawn uniformly
from SO(3), simulating outliers. The probability that a given rel-
ative rotation is an outlier is inversely proportional to the number
of corresponding points of the pair, which is consistent with the
assumptions made in (Enqvist et al., 2011).

The angular threshold ε is set equal to 3◦. Tables 1, 2 and 3 show
the results, averaged over 30 trials. Our method yields an effec-
tive outlier detection, since false negative rate is always proximal
(or even equal) to zero. In the cases p = 0.25 and p = 0.5,
Algorithm 1 gives better results than the EOK Algorithm, as con-
firmed by the theory. In the case p = 0.8, false negative rate of
the EOK Algorithm is extremely high, causing misclassification
of the outliers, and hence wrong estimates of the absolute rota-
tions. On the contrary, our method yields zero false negative rate,
i.e. is an outlier is never misclassified as inlier. As for accuracy,
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the EOK Algorithm outperforms our method. The reason why
our method is not accurate in this case is that it is not able to find
an inlier spanning tree from the whole epipolar graph G. It ex-
tracts a spanning tree from the largest connected component of
G only, discarding some cameras (and hence some relative rota-
tions).

% outliers 10 20 30 40 50

FNR - our 0 0.003 0.009 0.011 0.015
FNR - EOK 0.057 0.061 0.063 0.056 0.059

AC - our 0.942 0.948 0.937 0.946 0.916
AC - EOK 0.887 0.844 0.797 0.796 0.813

Table 1: Outlier detection: false negative rate (FNR) and accu-
racy (AC) of the classification in the case p = 0.25.

% outliers 10 20 30 40 50

FNR - our 0.022 0.019 0.008 0.016 0.023
FNR - EOK 0.078 0.105 0.108 0.101 0.106

AC - our 0.802 0.782 0.770 0.738 0.693
AC - EOK 0.808 0.757 0.715 0.741 0.749

Table 2: Outlier detection: false negative rate (FNR) and accu-
racy (AC) of the classification in the case p = 0.5.

% outliers 10 20 30 40 50

FNR - our 0 0 0 0 0
FNR - EOK 0.389 0.324 0.318 0.322 0.321

AC - our 0.407 0.445 0.497 0.503 0.509
AC - EOK 0.684 0.701 0.725 0.721 0.726

Table 3: Outlier detection: false negative rate (FNR) and accu-
racy (AC) of the classification in the case p = 0.8.

7.3 Real Images

In this section we apply the techniques presented in this paper
to estimate the absolute motion of real cameras, from which the
scene structure captured by the images can be recovered (up to a
global similarity).

The complete pipeline from the input images, for which the cali-
bration matrices are assumed to be known, to the 3D reconstruc-
tion is as follows. First, the SIFT keypoints are extracted and
matched to obtain pairs of corresponding points across the n input
images. The essential matrices are computed through RANSAC
and refined by using Gauss-Newton iterations on the essential
manifold, as explained in (Helmke et al., 2007). This method is
based on a unique and robust local parameterization of the man-
ifold based on the algebraic properties of the essential matrix.
Each essential matrix is factored to obtain a unique pairwise ro-
tation, which is considered missing if insufficiently many inliers
are found. Algorithm 1 with ε = 1◦ is used to detect wrong rel-
ative rotations, and all the edges not belonging to any cycle are
discarded, because for the corresponding images, the recovery of
exterior orientation is not possible with this method. The (inlier)
pairwise rotations are used to compute the set of exterior attitudes
through the matrix completion algorithm described in section 4.
The corresponding points and the recovered rotations are used to
solve for the exterior positions through the linear algorithm pre-
sented in (Arie-Nachimson et al., 2012). The coordinates of the
3-space points that project to the images are computed by trian-
gulation and image points with high reprojection error are elim-
inated. Finally, the quality of structure and motion estimation is
improved through Bundle Adjustment.

We consider two collections of images for which ground truth cal-
ibration and motion are provided, namely the Fountain-P11 and

the Herz-Jesu-P8 sequences (Strecha et al., 2008). The datasets
are formed respectively by n = 11 and n = 8 images of di-
mensions 3072× 2048 pixels. Results are shown in Table 4 and
Figures 3, 4. Our method is able to recover camera positions and
orientations accurately, and yields a rich 3D reconstruction of the
scenes. The root-mean-square reprojection error is 0.4640 pixels
for the Fountain-P11 dataset and 1.0262 pixels for the Herz-Jesu-
P8 dataset. The percentages of missing pairs are respectively
25.45% and 32.14%.

Fountain-P11 HerzJesu-P8
Angular Error - before BA 0.8748◦ 0.6720◦

Angular Error - after BA 0.0516◦ 0.0607◦

Location Error - before BA 0.1227 m 0.2249 m
Location Error - after BA 0.0037 m 0.0128 m

Table 4: Mean errors in estimating the rotations (degrees) and lo-
cations (meters) of the cameras, before and after applying bundle
adjustment (BA).

Figure 3: Top: two of 11 images of the Fountain-P11 sequence.
Bottom: the sparse 3D reconstruction obtained with our method.

8 CONCLUSION

In this paper we addressed the problem of recovering the atti-
tudes and positions of n cameras in a global SfM system. We
proposed a gradient descent algorithm to estimate the attitudes of
the cameras, based on low-rank matrix completion, obtaining re-
markable results even in the extreme situation where only n − 1
pairwise measurements are available. Moreover, we formulated a
novel method based on the notion of consistency and cycle basis
in order to remove outlier input rotations, improving the tech-
nique proposed in (Enqvist et al., 2011). Finally, a theoretical
analysis of the exterior position recovery algorithm described in
(Arie-Nachimson et al., 2012) was presented.

As regards possible future work, Algorithm 1 could be reformu-
lated using the theoretical formalism of the Group Feedback Edge
Set problem. As an alternative, we are developing a matrix com-
pletion algorithm which is robust both with respect to noise and
outliers, avoiding the need of a demanding preliminary outlier re-
jection step (Arrigoni et al., 2014). Finally, we plan to investigate
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Figure 4: Top: two of 8 images of the Herz-Jesu-P8 sequence.
Bottom: the sparse 3D reconstruction obtained with our method.

sufficient conditions under which the position estimation problem
admits a unique non-trivial solution.
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