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ABSTRACT: 

 

The classification of different objects in the urban area using airborne LIDAR point clouds is a challenging problem especially with 

low density data. This problem is even more complicated if RGB information is not available with the point clouds. The aim of this 

paper is to present a framework for the classification of the low density LIDAR data in urban area with the objective to identify 

buildings, vehicles, trees and roads, without the use of RGB information. The approach is based on several steps, from the extraction 

of above the ground objects, classification using PCA, computing the NDSM and intensity analysis, for which a correction strategy 

was developed. The airborne LIDAR data used to test the research framework are of low density ( 2/41.1 mpts ) and were taken over 

an urban area in San Diego, California, USA. The results showed that the proposed framework is efficient and robust for the 

classification of objects.  
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1. INTRODUCTION 

The problem of classification of objects from low density 

LIDAR point cloud in urban area is challenging, especially 

when there is no RGB information associated with the point 

cloud. The aim of this paper is to fully classify objects in the 

urban areas such as buildings, vehicles, roads and green regions 

(trees and grass). 

We build a framework in order to approach full classification of 

these objects. The framework has several steps starting with 

generating a Digital Terrain Model (DTM) for the point cloud 

in order to isolate terrain points from off-terrain points. 

The second step uses the Principal Component Analysis (PCA) 

as a segmentation tool for the off-terrain point cloud. The PCA 

segmentation technique is useful to discriminate buildings 

(planer points) from trees and vehicles (scattered points). 

However, some buildings with roofs containing pipelines or 

windows will lead to a scattered LIDAR points. The scattered 

points above a certain height could be eliminated with the use 

of Normalized Digital Surface Model (NDSM) which is the 

third step in the classification framework. NDSM is used to 

filter objects with heights above a certain threshold. The last 

step in the framework is to use the corrected LIDAR points’ 

intensity as a filter discriminating the grass area from asphalt 

roads and parking areas.  

In the following section will provide more details of the 

framework. In the third section, the test data and their 

characteristics are introduced. The fourth section includes the 

discussion and analysis of the obtained results. 

 

2. CLASSIFICATION FRAMEWORK 

Figure (1) shows the general steps of, the proposed 

classification framework which includes: DTM generation, 

PCA, NDSM and intensity filters as will be discussed in the 

following subsection. 

 

 

Figure 1. The general classification framework of airborne 

LIDAR data 

 

2.1 Generation of DTM 

There are many filtration methods to obtain the DTM from 

point cloud. Among these are morphological filters, surface 

based filers and segment based filters (Vosselman & Maas, 

2010). In this paper we implmented moropological filters as a 

tool of generation the DTM following the work done by  

(Vosselman, 2000) and  (Sithole, 2001).  (Vosselman, 2000) 

used the difference in height h  over the euclidian distance d  

to filter data. In order to compare the points within a specified 

distance, the points had to be organized in a Delaunay 

triangulation. A height threshold was chosen  so that the 

difference in height between two points with a distance d  
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should not exceed d3.0 . (Sithole, 2001) made some 

modificaions to this filter in order to overcome its inefficincy 

with non gentle slopes. He modified the filter such that the 

threshold varies with respect to the slope of the terrain. His 

work was efficient in the detection of DTM with steep terrain. 

However, in urban areas, terrain areas have gentle slopes 

between points and therefore his method, with its computational 

complexities, is not needed in urban areas where gentle slopes 

occur.  

In this paper, the DTM is generated based on the minimum 

height in the neighborhood. We first organize the point cloud in 

a 3-dimensional kD-tree. Afterwards we search for the local 

minima in each neighborhood. The kD-tree search algorithm not 

only is useful for the DTM generation, but it is also used in the 

PCA segmentation technique.  

In the proposed algorithm, we find the minimum height of each 

neighborhood then compare it with all the points in the 

neighborhood. If the difference h between the minimum height 

and the height of a point in the neighborhood is lower than a 

certain threshold, then the point is considered a ground point, 

otherwise the point is an off-terrain point. This can be written 

mathematically as: 

      }:{ ;min ji ppijii hhNpCNpp      (1) 

))},((:{ minmin
ppdhhhCNpDTM jp

j
pij    (2) 

where minp is the point with minimum height in the 

neighborhood iN . iN is a subset of the point cloud C and the 

threshold height h  is chosen to be the d25.0 . In order to get 

robust results, the radius of the kD- tree search had to be chosen 

as wide as possible so as to combine points of the ground with 

the neighborhood of wide area roofs.  

 

2.2 PCA 

The PCA technique is used in the propose framework for the 

segmentation of the off-terrain points. It is also used in 

classifying the objects into buildings, trees and vehicles. As a 

first step, we construct a 3D-tree search algorithm to find 

neighbourhoods of each point in the point cloud. Then, we 

choose the radius of the 3D-tree search algorithm to be of 3 

meters. The choice of the search radius is optional, but it is 

advisable to use a radius that can help detecting the behaviour 

of the points in the neighbourhood (i.e. planar or scattered). For 

example, if the search radius was too large (e.g. 20 meters), 

LIDAR points from trees, vehicles and buildings might be 

included in the same neighbourhood, consequently, the decision 

that  a certain neighbourhood has a planar or scattered 

behaviour might not be accurate. On the other hand, if the 

search radius was chosen to be too small (e.g. 1 meter) the 

number of neighbourhood points might not be enough to detect 

their covariance behaviour especially with low density point 

cloud (i.e. 
2/41.1 mpts ). We chose a search radius of 3 meters 

in order to cover single trees or single vehicles. The 33  

symmetric covariance matrix vC of each neighbourhood 

associated with each point in the point cloud is computed as:  
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The eigenvalues )3,2,1(  for each covariance matrix are then 

obtained from the following equation: 

    0 XIC
v

     (4) 

where I is the identity matrix and X is the eigenvector 

associated with the three eigenvalues. 

The geometry of the distribution of the points can be identified 

from the eigenvalues of the covariance matrix. Basically, if one 

of the eigenvalues is larger than the two other eigenvalues, it 

means that the LIDAR points are linearly distributed in the 

direction of the vector associated with that eigenvalue. If two of 

the eigenvalues are almost equal but larger than the third 

eigenvalue, this means that the LIDAR points are distributed in 

the plane containing the two vectors associated with these two 

eigenvalues. If the case is that all the eigenvalues are almost 

equal. This means that the LIDAR points are distributed in a 

scattered form in a three dimensional space.  

Then the following geometric classifications, which are based 

on the properties of the eigenvalues discussed above, are used 

to make a decision on the behaviour of the points in a 

neighbourhood [for more details, see (Carlberg, et al. 2009) and 

(Shi and Zakhor 2011)]: 

a) Planar, if 321   . 

b) Scatter, if 321   . 

c) Linear, if 321    . 

We further impose a constraint on the second case. Given that 

trees typically have larger scattering features than that of the 

vehicles, we assume that if 3 is below a certain threshold value 

then the scattered laser points are reflected from vehicles. The 

fact that the laser points reflected from vehicles have low 

scattering characteristics than the trees is due to the difference 

in geometrical shapes between trees and vehicles. 

 

2.3 Obtaining the NDSM 

Although the points reflected from buildings should have a 

planar behaviour, some points might be scattered due to 

pipelines or glassy windows attached to their roofs. This leads 

to confusion in discriminating some of the points reflected from 

buildings from those reflected from trees or vehicles. On the 

other hand, discrimination between vehicles and trees could not 

be guaranteed to be 100 % accurate if we only rely on the 

scattering properties, especially when the 3D-tree search radius 

is set to a possibly large value.  

In order to tackle these problems we use the NDSM to further 

identify objects based on their absolute height. 

In order to determine the off-terrain objects’ heights above the 

ground (DTM), the NDSM is produced by subtracting the DTM 

height from the off-terrain objects’ heights (Ekhtari, et al. 

2009). In order to compute the NDSM we use the 2D-tree 

search algorithm to find the closest DTM neighbourhood of the 

off-terrain points and subtract the height of their minima from 

the off-terrain points.  

Now consider a point that belongs to the off-terrain points. To 

get its NDSM we subtract the height of its nearest DTM point 

from its height. However, when using a search radius smaller 

than the 2D-dimensions of the roof, we might not be able to 

find neighbouring DTM points in such radius (e.g. a point lies 

at the centre of a roof with width of 20 meters won’t have 

neighbouring DTM points in a search radius of 10 meters). In 

order to solve this issue, instead of searching for neighbouring 

points in a specified radius, we use the k-nearest points’ 

algorithm to search for a specific number of nearest DTM points 

close to the off-terrain points.  It should be noticed that if an 

off-terrain point was incorrectly identified as a terrain point, 

that point would generate errors in the NDSM computation. In 

order to avoid this, we find the point with minimum height of 
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the DTM k-nearest points associated with the off-terrain point 

of interest, and then we subtract the height of both points. 

 

   }:min{ CNphhNDSM j
j
DTMpp j

DTMj
 







    (5)   (5) 

 

where 
jph  is the height of the off-terrain point jp , j

DTMp
h is 

the height of the points 
j
DTMp  belonging to the DTM 

neighbourhood jN of the point jp . 

 

2.4 LIDAR intensity correction 

The intensity of the reflected laser points can be used in many 

applications beside objects classification (such as strip 

adjustment, forestry, etc...).  Several factors influence the 

received laser intensity (power), for example: 

a) Spherical loss. 

b) Topographic effects. 

c) Atmospheric attenuation. 

 

Hence the intensity recorded by the laser scanner is not reliable 

for the process object classification. Therefore, a number of 

corrections must be made to the intensity values in order to 

benefit from it in object classification. 

(Höfle and Pfeifer 2007) introduced two approaches for the 

recorded intensity correction. The first approach is called data-

driven correction. This approach uses predefined homogeneous 

areas for the estimation of the best parameters for a global 

correction function that takes into account all range-dependent 

influences (using least-squares). The second approach is called 

the model driven correction. In this approach each recorded 

intensity value is corrected independently based on the physical 

principle of LIDAR systems. 

In this paper, we used the model driven correction since we 

don’t have a predefined area associated with the data that we 

have.  

The formula given by (Höfle & Pfeifer, 2007) is: 

   



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1
10),( 10000

2Ra

2
s

2
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R

R
IRI      (6) 

where cI is the corrected intensity value,  R  is the recorded 

range,    is the angle of incidence defined as the angle 

between the surface normal and the incoming laser shot ray,  I  

is the recorded intensity,  sR  is a user-defined standard range 

and a  is the atmospheric attenuation coefficient measured in 

dB/km. 

In this paper we use intensity as a mean of discrimination 

between grass and asphalt regions (including roads and parking 

areas). The reason why we use intensity with the DTM points is 

that DTM points are mostly flat in urban areas, and therefore 

can’t be segmented based on the PCA technique. On the other 

hand, PCA and NDSM are used efficiently with the off-terrain 

objects identification (i.e. no need for further processing 

regarding their intensity values). 

  
.  

3. RESULTS ANALYSIS AND DISCUSSION 

 

3.1 Test Data 

The test data was obtained from the OpenTopography portal on 

the internet (http://www.opentopography.org). The data were 

collected in 2005 over the city of San Diego, California, USA. 

The point cloud density is 2/41.1 mpts . The data were collected 

over an area of 1,190.00 km.  A subset of the data with an area 

of ( mm 670850  ) was used as a test data. The test data were 

used such that it is full of urban objects such as buildings, 

vehicles and trees. 

 

3.2 Visual assessment of the results 

 

Figure (2) shows an image of the reference test area (ground 

truth). The image was taken from Google Earth, version 

(7.1.2.2041). The image date is August 26th, 2005. 

 

 

Figure 2. Ground truth image of the test area.   

 

It should be mentioned here that there might be some 

differences related to the number of vehicles and their shapes in 

the ground truth image and the processed LIDAR Data. This is 

mainly because there is a temporal difference between the image 

taken for the area and the LIDAR data collection. 

Figures (3) and (4) show the extracted DTM and off-terrain 

points, respectively. A comparison between the ground truth in 

Figure (2) and both DTM and off-terrain images shows that the 

filter used for the generation of DTM is efficient and robust 

especially with wide roofs. 

After the extraction of the DTM points, the intensity filter was 

used to discriminate the asphalt regions from the grass. 

In order to filter the data using intensity values, we used the 

histogram to gain information about the distribution of the 

intensity values and hence the distribution of grass and asphalt 

regions. Figure (5) shows the histogram of the intensity values 

of the DTM points. There are two spike peaks at the intensity 

values of 255 and 0. Other peaks are close to the peak at 

intensity of 0 values. It is expected that the grass has a higher 

return intensity than that of the asphalt regions. It is obvious 

then from the histogram that the intensity of the grass has a peak 

around the value 255 whereas the other peaks are the associated 

with the asphalt regions.  
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Figure 3. The extracted DTM points. 

 

 

Figure 4. The extracted off-terrain points. 

This histogram is used to detect the intensity threshold value at 

which the DTM is either considered as grass or asphalt.  

 

 

Figure 5. Histogram of the intensity values of the DTM points.   

 

Based on the intensity filter, the result of classification of DTM 

points is shown in Figure (6). The points coloured black are the 

asphalt regions which is either roads or parking areas and the 

points coloured green are grass.  

 

 

Figure 6. Classification of DTM points into grass and asphalted 

regions.   

Figure (7) shows the full objects classification of the test area, 

where buildings were assigned the red colour, vehicles were 

assigned the blue colours, the black colour is assigned to the 

asphalt regions and the green colour for the green regions ( trees 

and grass). 

 

 

Figure 7. Full classification of the coarse LIDAR point cloud.   

 

3.3 Classification quality assessment 

In order to statistically assess the results of the proposed 

classification framework, we compare the final classification 

results with the ground truth. The result of this comparison is a 

confusion (error) matrix and its associated Cohen’s kappa 

coefficient.  Table (1) shows the confusion matrix. The total 

number of points is given with the number of points correctly or 

incorrectly classified.  
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Classified 

Ground truth 

Buildings Trees/grass Vehicles Asphalt 

Buildings 123747 8705 7020 109 

Trees/grass 2453 12923 1264 0 

Vehicles 11538 425 98733 0 

Asphalt 376 733 40 177994 

Total points 138114 22786 107057 178103 

Table 1. The confusion (error) matrix of the airborne LIDAR 

classification. 

 

The confusion (error) matrix describes the amount of agreement 

between the ground truth and the classified objects. The 

diagonal of the matrix describes the agreement between the 

ground truth of an object and its classification. Their sum is the 

overall proportion of observed agreement: 

                                         iipP0     (7) 

 

 The off-diagonal elements describe the agreement that 

happened by chance between an object and another object. The 

sum of the off-diagonal elements is called chance-expected 

agreement: 

                                        j

ji

ie ppP 


    (8) 

 

The Cohen kappa coefficient associated with the confusion 

matrix is then given by: 

                                        
e

e

P

PP






1

0     (9) 

 

This coefficient is a measure of the agreement between 

classification and ground truth. It takes on a value of 1 with 

perfect agreement. It has a value close to 0 if the agreement is 

expected to be by chance (i.e. incorrect classification). Values 

of   above 0.75 indicate very good to excellent agreement [for 

more details, see (Monserud & Leemans, 1992) and (Cohen, 

1960)]. 

The value of Cohen kappa coefficient associated with the 

confusion matrix in Table (1) is 8925.0 , which implies an 

excellent agreement between the classification and the ground 

truth. 

 

 

4. CONCLUSION 

This paper presents a framework for the classification of low 

density airborne LIDAR data. The framework is based on PCA, 

generation of DTM and NDSM and the use of intensity filter. 

The visual and statistical assessments of the results proved an 

efficient and robust automatic classification results in the urban 

areas. Test results shows that although the LIDAR data was of 

low density, there is an excellent agreement between the 

classified objects and the ground truth. This can be concluded 

from the value of Cohen’s kappa coefficient. That proves that 

the classification framework was successful. 
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