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ABSTRACT:

Semi-Global Matching (SGM) is a widespread algorithm for image matching which is used for very different applications, reaching
from real-time applications (e.g. for generating 3D-data for driver assistance systems) to aerial image matching. Originally developed
for stereo-image matching, several extensions have been proposed to use more than two images within the matching process (multi-
baseline matching, multi-view stereo). Most of these extensions still perform the image matching in (rectified) stereo images and
combine the pairwise results afterwards to create the final solution. This paper proposes an alternative approach which is suitable for
the introduction of an arbitrary number of images into the matching process and utilizes image matching by using non-rectified
images within a closed solution. The proposed approach differs from the original SGM method in two major aspects: Firstly, the cost
calculation is formulated in object space within a dense voxel raster by using the grey- (or colour-) values of all images instead of
pairwise cost calculation in image space. Secondly, the semi-global (path-wise) minimization process is transferred into object space
as well, so that the result of semi-global optimization leads to index-maps (instead of disparity maps) which directly indicate the 3D
positions of the best matches. The paper provides a detailed description of the approach and it discusses its advantages and

disadvantages. Further on, first results and accuracy analysis are presented.

1. INTRODUCTION

Since its introduction by Hirschmdiller (2005) Semi-Global
Matching (SGM) has become a widespread matching algorithm
which is used for very different applications, reaching from
close-range applications in the fields of robotics and computer
vision to remote sensing (e.g. for surface model generation from
aerial images). SGM offers several advantages in comparison to
other image matching approaches: It is a dense image matching
technique which can be implemented by using pixel-wise cost
functions and therefore yields to good results especially in areas
of sharp object boundaries (discontinuities on the object
surface). Further on, it is not sensitive to the choice of task-
dependent parameters and the structure of the algorithm allows
for the use of highly paralleling hardware (GPU and FPGA)
which is important for the implementation of real-time
applications (Banz et al., 2010)(Buder, 2012)(Ernst &
Hirschmuller, 2008)(Michael et al., 2013).

For a number of applications it is sufficient to use stereo-
cameras for image matching. This is especially true for many
applications in computer vision (e.g. stereo-cameras in
assistance systems) in which the need for real-time results is
more important than high accuracies. On the other hand, various
tasks focus on the accurate and complete 3D reconstruction of
complex scenes (e.g. for aerial image matching, in fields of
cultural heritage, archaeology, industrial measurements and so
on). For these purposes, dense surface matching has been
extended to so-called multi-baseline matching as proposed e.g.
in (Hirschmiiller, 2005, 2008) or multi-view stereo algorithms
as proposed e.g. in (Rothermel et al., 2013)(Wenzel et al.,
2013). Multi-baseline matching performs stereo matching by
SGM between a base image and all match images. Further on, it
removes invalid disparities by consistency check (left-right

* Corresponding author

check) and combines all stereo matching results by selecting the
median value of all disparities for each pixel. Afterwards, it is
suggested to calculate a weighted mean of all correct disparities
(which are e.g. all disparities within a 1 pixel interval around
the median) to increase the accuracy.

The multi-view stereo algorithm in (Rothermel et al., 2013)
performs stereo matching for all overlapping image pairs or at
least for a selection of overlapping image pairs. After removing
outliers by left-right consistency check additional outlier
elimination is performed by checking for geometric consistency
in object space under consideration of uncertainty ranges that
have been derived by error propagation. Finally, all
corresponding image coordinates for each object point are used
for triangulation to calculate the final 3D coordinates.

However, these approaches are working well but show several
disadvantages. For example, SGM in image pairs is typically
performed in rectified images, aiming at the simplification of
the semi-global optimization to a 2.5D problem with the 2D
image coordinates x', y' and one disparity D (or respectively one
parallax px') for each pixel. Hence, for a bundle of n images
(n-(n-1)) images have to be rectified to create (n-(n-1))/2 image
pairs (e.g. with n=5, twenty images have to be rectified).
Especially the last may increase the computation time
significantly. Besides, the image rectification process induces
always a loss of information due to the need of grey- (colour-)
value interpolation. Further on, for all subsequently steps the
results of pair-wise image matching (which are disparity maps)
cannot directly be joined together but have to be fused before.
The extended approach for multi-image dense 3D surface
matching, which is proposed in this paper, eliminates these
disadvantages. It allows for the integration of an arbitrary
number of (non-rectified) images into the matching process.
The images can either be correlated pair-wise or by using n

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-93-2014 93



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 — 25 June 2014, Riva del Garda, Italy

images. The results of the new approach are index maps
(instead of disparity maps) which directly indicate the 3D
position of the best matches which simplifies subsequent
processing steps (e.g. consistency checks between the results of
pair-wise matching) because the index maps are directly
comparable to each other. Further advantages of the new
approach will be discussed in the following sections. First
results are presented in chapter 3.

2. OBJECT-BASED MULTI-IMAGE SEMI-GLOBAL
MATCHING (OSGM)

Within this chapter the method for object-based multi-image
Semi-Global Matching (OSGM) will be described in detail
(section 2.2 to 2.7). In advance, a short review of SGM will be
given in section 2.1.

2.1 Review of SGM

The SGM method as originally described in (Hirschmdiller,
2005) proposes an intelligent solution for the approximate
minimization of global 2D energy functions as they are used
e.g. within global image matching methods. SGM uses the
following energy function:

E(D)=>.C(p,Dp)+ D RT-[| Dy -Dq =1
p geN,
+ YPRT-[Dy Dy 1] @)
qeN,

The first term of (1) sums the matching costs C between a pixel
p in image 1 and a potential corresponding pixel in image 2 (at
a specific disparity D). The second term adds a penalty P, for
the current disparity Dp to the cost value C if the difference
between Dp and the disparity D, at a neighbouring pixel g is 1
(the function T returns 1 if [D,—Dgl=1 and 0 in all other cases).
The second term adds a larger penalty to the cost value C if the
difference between the disparity D, to the disparity D, at a
neighbouring pixel g is higher than one (the function T returns 1
if [Dp-Dg>1 and 0 in all other cases).

First step in SGM is the cost calculation to build up the
structure C(p, D) in equation (1).
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Figure 1. Cost calculation in Stereo SGM

For this, the matching costs between every pixel p in image 1
and all potential corresponding pixels in image 2 (at disparities
D) have to be calculated. Since SGM is typically initialized in
rectified image pairs the maximum number of possible
disparities D is equal to the width of the rectified image 2 (due
to horizontal epipolar lines). The cost calculation can be
realized by using different cost functions reaching from very
simple ones (e.g. differences of absolute intensity values
(SAD)) to sophisticated ones (e.g. mutual information as
described in (Hirschmuller, 2005)). An analysis of different cost
functions is not addressed in this paper but can be found e.g. in
(Hirschmiller and Scharstein, 2007).

Second step in SGM is cost aggregation. The main idea of SGM
is to utilize cost aggregation not in all directions (which would
be necessary for a strength global solution) but in the direction
of 16 or at least 8 paths L, (to perform a “semi-global”
solution). Cost aggregation can be done recursively and
separately for every path L, with

L (p,D) =C(p,D)+min( L (p-r,D),
Le(p—r,D-D+PR)
L (p—-r,D+D)+R),
minL,(p—r,i)+P,))
1

—TinLr(p—r,k) 2

In equation (2) p is used as substitution for the x',y' coordinates
of a pixel in image 1:

L (p.D) =L (X,y", D)
C(p.D)=C(x,y". D). @)

The positions of adjacent pixels are defined separately for each
path with p-r:

L (p—r,D) =L (x-u-1y-v-1D) 4)
(e.g. with u=1, v=0 for a path in x-direction).

The expression in (2) searches the minimum path costs
inclusive possibly added penalties P, and P, at the position of
the previous pixel in path direction (p-r) and adds this minimum
to the cost value C(p, D)) at the current pixel p and the disparity
D. The last term of (2) subtracts the minimum path cost of the
previous pixel to avoid very large values in L,.

The paths of minimum costs are illustrated for a pixel p at
disparity D=2 exemplarily for 4 paths in Figure 2:
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Figure 2. Paths with minimum costs
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The results of the cost aggregation for 8 (or 16) paths can be
fused with

8,16
S(p,D)= Y L, (p,D) ®)

r=1

The final disparity D can then be derived from (3) by searching
the minimum in S(p,D) for each pixel p with:

minS(p, D) (6)
D

The final disparity is equal to the position D for each pixel p on
which S(p,D) reaches a minimum. D is stored for each pixel p
which leads to the dense disparity map D(p).

2.2 Cost calculation in object space

As already mentioned above the new approach (OSGM) differs
in two major aspects from standard SGM. Firstly, cost
calculation is formulated in object space instead of cost
calculation in image space. Therefore, the object space is
subdivided into a voxel raster in a first step. Each voxel may be
a cube or a cuboid. The size of the cuboids (AX, AY, AZ)
defines the resolution in object space (in X-, Y-, Z- direction of
the global coordinate system, see Figure 3). The definition of
the cuboids’ size should be done under consideration of the
mean GSD to ensure an adequate sampling rate. In order to
provide hierarchical approaches the resolution of the images
may be reduced (image pyramids).

In a second step, the central coordinate of each voxel is re-
projected into all images by using the collinearity equations.
Further on, the grey (or colour) values of the corresponding
image coordinates are used for cost calculation. Thus, the
structure C(p,D) in (1) which equals to the more detailed
description C(x'y',D) with the image coordinates x'\y', is
modified to C(X,Y,Z) in which the coordinates X,Y,Z indicate
the 3D position of a voxel. By doing so, the matching costs for
each voxel can be calculated. Figure 3 illustrates the cost
calculation in object space exemplarily for 3 images:

Image n

matching cost at Position X, Y, Z

Figure 3. Multi-image cost calculation

Since the re-projection of the voxel coordinates X,Y,Z leads to
sub-pixel coordinates within the images it is necessary to use
interpolated grey- (or colour-) values for cost calculation.

Therefore, the cost values in C(X,Y,Z) belong to sub-pixel
image coordinates. Hence, the subsequently described SGM in
object space (see section 2.4) leads directly to 3D points with
sub-pixel accuracy (see section 3.5). This is one advantage
compared to the standard SGM in which sub-pixel accuracy is
typically achieved by interpolating between neighbouring cost-
values in disparity space, e.g. by quadratic curve fitting as
suggested in (Hirschmiiller, 2008).

2.3 Cost calculation for n images

Most of the common cost or similarity functions (e.g. Census or
normalized cross-correlation (NCC)) are designed for the
calculation of the (dis)similarity between two signals (or
respectively two images) and therefore well-suited for pair-wise
image matching. Thus, for a combined cost calculation for n
images it is necessary to think about sensibly extensions of cost
or similarity functions for multi-image correlation. However,
since pair-wise image matching in multi-image bundles can be
used for consistency checks and can therefore be regarded as an
important tool for the reliable detection of occlusions and other
disturbances, both strategies (pair-wise image-matching and
combined multi-image matching) should be considered within
the new approach. We distinguish three possible procedures for
cost calculation:

e (A): Pair-wise cost calculation for all possible image pairs
and initialization of one structure C(X,Y,Z) with the
minimum cost value

e (B): Pair-wise cost calculation for all possible image pairs
and initialization of one structure C;(X,Y,Z) for each image
pair i

e (C): One structure C;(X,Y,Z) for every possible number of
rays to one voxel but minimum of 2 rays (e.g. j=4 for 5
images) and initialization of C;(X,Y,Z) with the combined
costs out of 2..j images

Procedure (A) describes the simplest way of cost calculation for
multi-image bundles. Its main advantage is that the structure
C(X,Y,Z) has to be built up only for one time. Further on, a
consistency check is done implicitly by searching the minimum
cost value between all image pairs. A disadvantage of (A) is that
it is impossible to detect voxels that are not visible or visible
just in one image so that a possibly high number of outliers may
remain in the data.

To reduce the number of outliers strategy (B) can be used.
Compared with (A), the main advantage of (B) is the possibility
of extensive consistency checks because (n-(n-1))/2 matching
results can be compared to each other (with n= number of
images). A disadvantage of (B) is its memory consumption
because the structure C(X,Y,Z) has to be generated for (n-(n-
1))/2 times (for every possible image pair). But since the
matching can be done one after another for every image pair,
the latter argument is not a criterion for exclusion.

For multi-view stereo approaches sophisticated strategies for
selecting sufficient image pairs for the pair-wise matching has
been described e.g. in (Wenzel et al., 2013). These strategies
can be adapted for OSGM to reduce efforts in pair-wise cost
calculation with strategy (B).

The strategies of (A) and (B) both just combine the grey- or
colour values of two images and can therefore not really be
regarded as multi-image matching. However, especially (B) can
be used in a first step to create a robust result and get
information about which voxel is visible in which image. The
results of (B) can afterwards be used to initialize a sophisticated
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matching with (C) by re-calculating the costs for all voxels that
are visible in pairs, triples, quadruples and so on.

2.4 Cost aggregation in object space

The second essential difference of our approach compared to
standard SGM s that the cost aggregation as well as the cost
calculation is transferred to the object space. The global energy
function of SGM in (1) is extended to

E(Z)=Y.C(X.Y,Zp)+ X PT-[Z,-Zql=1]
p geN,

+ Y PTZy 24 1] @)
geNp

The equation (7) can be interpreted in analogy to (1) but with
the difference that changes in Z-direction of the global
coordinate system are penalised with P, and P, for adjacent
voxels instead of penalising disparity changes between adjacent
pixels. Hence, the smoothness constraint controls the
smoothness in Z-direction of the global coordinate system and
therefore equation (7) can be regarded as a 2.5D realization of
object-based SGM.

For the minimization of (7) by adapting the semi-global
approach the path-wise cost aggregation can be done
recursively for every path L, with

Le(v,Z2)=C(v,Z)+min( L, (v-r,2Z),
L (v—-r,Z-AZ)+P),
L (v—r,Z+AZ)+PR),
minL, (v—r,i-AZ)+P,))
I

—mkinLr(v—r,k~AZ)+P2)) (8)

The expression in (8) is an extension of (2) in which v is used as
substitution for the X,Y-coordinate of a voxel:

L (v,Z) =L, (X,Y,2)
C(v,Z) =C(X,Y,Z). )

The X,Y-position of adjacent voxels are defined separately for
each path with v-r:

Lr(v—r,Z) =L (X —u-AX,Y —V-AY,Z) (10)
(e.g. with u=1, v=0 for path r=1, see Figure 4).

The expression in (8) searches the minimum path costs
including possibly added penalties P, and P, at the position of
the previous voxel in path direction (v-r) and adds this
minimum to the cost value C(X,Y,Z)) of the current voxel. The
penalty P, is added if the difference in Z-direction between the
current voxel and the adjacent voxel is equal to AZ and P, is
added if the difference in Z-direction is larger than AZ. The last
term of (8) subtracts the minimum path cost of the previous
voxel to avoid very large values in L,.

The paths of minimum costs are illustrated for a voxel with
Z=2-0Z exemplarily for 8 paths in Figure 4.
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Figure 4. Paths with minimum costs

Analogue to (5) the results of the cost aggregation for 8 (or 16)
paths can be fused with

S(v,2) =8’§l?|_r v,2) (11)
r=1

The matching result can then be derived from (11) by searching
the minimum in S(v,Z) for each v:

mzin S(v,2) 12)

The final Z-coordinate for each voxel v is equal to the position
Z on which S(v,Z) reaches a minimum. The final value can then
be stored in a index map Z(v) for each voxel v (instead of a
disparity map D(p)).

2.5 Consistency checks

If pair-wise cost calculation has been performed so that the
structure C;(X,Y,Z) has been built up for i times (see section 2.3)
the semi-global minimization of (7) can be done for i times as
well (with i=(n"(n-1))/2 and n=number of images). Hence, i
index maps Z;(v) can be calculated and afterwards be fused e.g.
by testing the differences Z;(v)-Z;j(v) against a threshold t and
calculating a mean value Zen(v) if the test is positive for all
pairs:

Ziean(¥) 1 1Z10) = Zo () £t Zy (V) - Z (V) IS
z(v)=

invalid otherwise

A consistency check with (13) eliminates all voxels which are
not visible in all images and therefore object areas which are
partly occluded would be removed. To avoid this, enhanced
consistency checks are possible, e.g. clustering all index maps
which lead to equal Z-values and choose the Z-value which has
been estimated most frequently.

Generally, the more complex the object surface the more
sophisticated the consistency check should be. Sophisticated
strategies for pair-wise image selection are proposed e.g. in
(Wenzel et al., 2013).
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2.6 Discontinuities in X- and Y-direction

The approach for OSGM as described in section 2.4 is a 2.5D
solution because for every raster-node X,Y exactly one Z-value
can be estimated. For a lot of applications in which objects with
low geometric complexity have to be reconstructed a 2.5D
solution is sufficient. For more complex object geometries it
may be necessary to develop a 3D solution. Therefore, the cost
aggregation can principally be adapted for applying the
smoothness constraint in X- or respectively in Y-direction
instead of in Z-direction. Hence, the equations (7) to (12) can
be modified by changing Z and X (or Z and Y).

2.7 Hierarchical computation

As described in section 2.2 the matching costs have to be
calculated for every voxel within the voxel raster (Figure 3).
Since the number of voxels may increase especially for large
objects, the process of cost calculation may increase the
computation time significantly. To reduce this loss of
performance the algorithm can be implemented hierarchically
by using image pyramids. A convenient approach for a
hierarchical implementation of SGM has been proposed by
(Rothermel et al., 2012) which can be adapted for the new
approach as well. It is proposed to initialize the matching in a
high level of an image pyramid (images with low resolution)
and to use the matching result to limit the number of possible
disparities for the next pyramid level by searching the minimum
and maximum disparity for each pixel e.g. within a 7x7
neighbourhood. Since the new approach estimates Z-values
directly instead of disparities the approach for hierarchical
computation have to be adapted to limit the range of possible Z-
values rather than limiting the disparity range from one pyramid
level to the next.

Further on, in (Rothermel et al., 2012) decreases the number of
possible disparities implicitly by reducing the resolution of the
images (since the disparity map has the same size as the
rectified image). In the OSGM the interval AZ has to be
decreased e.g. by using the main GSD for the images with
reduced resolution.

3. EXPERIMENTS AND RESULTS

Sections 3.1 and 3.2 describe the test object and used image
data for first investigations on the new approach. In section 3.3
different the cost functions which were used for the first
implementations are discussed. Finally, in section 3.5 first
results are presented.

3.1 Test object

For the investigations a test object with a sinusoidal surface was
chosen which was originally developed for investigations of
optical measurement systems for area scanning. The surface was
designed by using a 2.5D sinus function which leads to an
object surface of continuous curvature. Since the SGM should
be well-suited also for the robust measurement of depth
discontinuities, the original shape of the test object was
extended by adding a wedge (see Figure 5). On the one hand,
the wedge allow for the investigation of the algorithms’
behaviour at sharp object boundaries. On the other hand, the
limits of the achievable spatial resolution can be investigated by
analysing the matching results at the peak of the wedge. The
latter one is of special interest for the comparison of pixel-wise
cost functions to window-based cost functions.

The object surface was textured with a stochastic pattern which
is assumed to be well-suited for image matching. Since the
SGM should lead to robust matching results also in areas with
no or low texture two areas without any texture were added: one
in a valley and one on a plane on top of the wedge (Figure 5).

Figure 5. Test object

For the generation of 3D-reference data the test object was
measured with a fringe projection system. This was done for the
white surface (before texturing the surface). The accuracy of the
fringe projection system was determined before by applying the
VDI/VDE 2634 guideline part 2 and can be specified with a
probing error R=0.08mm and a sphere-spacing error
Al=0.05mm.

3.2 Image data

The object was captured with a Nikon D2x camera with 24mm
lens. The images were orientated by bundle block adjustment
and the camera was calibrated simultaneously. For first
investigations three images out of the bundle were selected
(Figure 6) which are used for image matching.

1 2 3

b,=110mm

b,=210mm

Figure 6. Images of the image triple and camera positions in 3D
space

The configuration in Figure 6 yields to an approximate GSD on
the object surface of around 0.1mm (with a distance to the
object of h=400mm, a camera constant of c=24mm, a pixel size
of px=0.0055mm).

3.3 Cost functions

Since the first aim of the investigation is to test the new
matching approach, until now the focus was set on the
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development of the matching more than on implementing
sophisticated cost functions (e.g. like mutual information).

A simple cost function which is often used for SGM is given by
census (Zabih and Woodfill, 1994). Census is highly invariant
against radiometric differences between the images and
therefore leads to robust matching results. The cost parameter of
census is given by the hamming distance between two image
windows. Hence, the maximum number of distinguishable cost
values is equal to the maximum hamming distance h;,,, which
depends on the window size (e.g. for a 5x5 window h;,,,=25).
Since changes of the centre coordinates of the voxels in Z-
direction by small increments AZ (see Figure 7) lead to sub-
pixel movements of the matching windows within the images, it
is necessary to use a cost function that allows for the distinction
between these sub-pixel movements. First investigations by
using census have shown that it does not fulfil this requirement
due to its limited resolution as described above.

Another popular and well-known similarity function which is
invariant against radiometric differences, is normalized cross
correlation (NCC) which is able to detect sub-pixel movements
within certain limits. Hence, for the following investigations
NCC was used. The correlation coefficient is defined by

LT (i - g -9 (14)

019 S (-2 /T (g -9)%/n

In (14) oty is the covariance between the grey-values within the
two image windows f and g and o; and ¢ are the variances of
the grey-values in the image windows. Since the coefficient py,
is a measure of the similarity and SGM typically uses cost
values for the description of the dissimilarity, (14) is modified
with

p=1-pg (15)

In (15) p is the cost parameter which leads to cost values within
the interval 0.0 (low matching costs, high similarity) to 2.0
(high matching costs, low similarity). One disadvantage of NCC
compared to census is the need for a higher bit depth for
representing the real numbers in p (e.g. by using 32bit floating
point data types). Since for census a depth of 8 bit (which
allows for the use of matching windows up to 16x16 pixels) is
sufficient for a lot of applications, the use of 32 bit data types
for NCC leads to a four times larger memory requirement to
build up the cost structure C(X,Y,Z) in (7) as well as for each
structure L(X,Y,Z) in (9) for the aggregated costs.

Another issue concerning the NCC is that it is not invariant
against image rotations and different image scales. To achieve
invariance for rotations and scales the matching window is
defined in object space instead of in image space by defining a
squared point raster around each voxel centre. The point raster
is oriented parallel to the XY-plane of the global coordinate
system.

AXNCC

X
Figure 7. Correlation with vertical line locus

Thus, cost calculation is similar to the well-known vertical line
locus approach for image correlation. A disadvantage of this
approach is that for object areas that are sloped with respect to
the XY-plane the correlation coefficient may decrease
significantly.

Further on, NCC as described in (14) allows for the correlation
of image pairs and is therefore suitable for cost calculation with
procedure (A) or (B) as described in section 2.3 but not for real
multi-image correlation.

3.4 Parameter settings

For all subsequently presented matching results the following
parameters were used (if not otherwise specified): The size of
the measurement volume is adapted to the size of the test object
which is about 120mm in X- and Y-direction and about 30mm
in Z-direction, starting in the origin of the coordinate system
(see Figure 6). The voxel size which also defines the spatial
resolution of the measurement was set to AX=AY=1.0mm and
AZ=0.025mm. This leads to about 9 million voxels within the
measurement volume. If 32 bit data types for the cost values in
C(X,Y,Z) and the aggregated costs in L.(X,Y,Z) are used (as
described in the foregoing section) the required memory for
each structure C(X,Y,Z) is about 35 Mbytes and for the 8
structures L(X,Y,Z) about 280 MByte (=8-35MByte) which is
far away from hardware limits.

The window size for NCC is 40x40 points with a point distance
of AXnec=AY nee=0.1mm (see Figure 7) which is adapted to the
mean GSD (section 3.2). Hence, the window size on the object
surface is about 4x4mm.

The penalties P, and P, for SGM are not tuned automatically by
using gradient information as proposed in Hirschmiiller (2008)
but set to fixed values with P;=0.1 and P,=0.6. The cost
aggregation is done by using 8 paths.

All subsequently presented matching results were generated
without any pre-processed image filtering and no post-process
filtering of the resulting index maps.

For the comparison of the matching results with respect to the
fringe projection measurement best fit transformations were
applied by using the software Geomagic Qualify.

3.5 Results

The cost structure C(X,Y,Z) in (7) can be analysed by searching
the minimum cost value in Z-direction (“the winner takes it all”
approach) denoted as NCC result in the following sections. The
first investigation focusses on the comparison of the NCC result
to the OSGM result. The point clouds for both results overlaid
with the TIN of the fringe projection measurement are displayed
in Figures (8) and (9):

Figure 8. NCC result
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Figure 9. OSGM result

Both approaches lead to good results at the border of the wedge.
The NCC result shows a high number of outliers in areas with
no texture (on top of the wedge, in the “valley” and on the
right-hand side of the object). In contrast, the OSGM
expectedly leads to a more smooth result without outliers in un-
textured areas. For an extended accuracy evaluation both results
were compared to the fringe projection measurement. The
results of this comparison are illustrated in Figures (10) and
(11):
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Figure 10. Comparison of the NCC result to fringe projection
result

1.1

Figure 11. Comparison of the OSGM result (with P;=0.1,
P,=0.6) to fringe projection result

Apart from the areas with outliers the NCC result is more
accurate than the OSGM result. Most deviations are within the
interval of -0.2mm to 0.2 mm and the histogram of the
deviations equals the Gaussian distribution (Figure 10). In

contrast, the OSGM result shows systematic deviations in areas
with continuous curvature and a clearly wider distribution
within the histogram. This is caused by the smoothness
constraint of SGM which allow for changes in Z-direction
between adjacent voxels only if the cost value plus the penalty
P, (or P,) is lower than the cost values of the adjacent voxels.
However, the smoothness constraint induces a very robust result
in areas without any texture.

Since the smoothness constraint causes a smoothing in Z-
direction OSGM leads to a result with only small deviations in
non-textured areas that are parallel to the XY-plane of the
global coordinate system (e.g. in areas on top of the wedge or
on the right hand side of the object). In contrast, in the non-
textured areas of continuous curvature the smoothing of SGM
leads to significant systematic deviations up to 1.7 mm e.g. in
the valley on the left-hand side of the object (Figure 11).

The effect of smoothing can be reduced if the penalties for P,
and P, are modified. For example, if the penalties are modified
to P;=0 and P,=0.1 the matching result of OSGM can be
improved as illustrated in Figures (12) and (13).

Figure 12. OSGM result with P;=0 and P,=0.1

A penalty for P,=0.1 is obviously sufficient to avoid outliers in
non-textured areas (Figure 12). Further on, the modification of
the penalties reduces the smoothing and leads to less systematic
deviations in well-textured areas of continuous curvature
(Figure 13). Merely in the non-textured areas in the valley (on
the left-hand site of the object), the systematic deviations
remain due to missing information for correct matches. In this
area the smoothness constraint avoids outliers but the 3D points
deviate systematically from the correct shape of the object.

All in all the accuracy increases significantly due to the
modifications of the penalties.

Figure 13. Comparison of the OSGM result (with P;=0 and
P,=0.1) to fringe projection result
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4. SUMMARY AND OUTLOOK

The presented extension of SGM to Object-based Semi-Global
Matching (OSGM) is mainly characterized by transferring the
process of cost calculation and path-wise cost aggregation from
image space into the object space. Instead of estimating dense
disparity maps, index maps are generated which directly
indicate the best matches in 3D space.

The new approach was tested under laboratory conditions by
using a test object with reference data of a fringe projection
measurement. The tests show very promising results. OSGM
maintains the benefits of SGM (e.g. robustness in non-textured
areas, good result at sharp object boundaries) and adds several
advantages:

In opposite to most multi-baseline or multi-view stereo
approaches the new approach works without rectified images
and therefore reduces the efforts for pre-processing (no need for
image rectification) and for post-processing (no need for the
fusion of disparity maps). Further on, the new method allows
for the integration of more than two images into the matching
process and is therefore suitable for real multi-image
correlation. All in all, the OSGM algorithm has a clearly
simplified structure compared to SGM in multi-view stereo
approaches.

Further developments will focus on the implementation of
sophisticated pixel-wise cost functions to fully exploit the
advantages of SGM. Furthermore, the implementation should be
extended to a hierarchical approach (as described in section 2.7)
to increase the computational performance.

Based on proposals in Rothermel et al. (2012) further
investigations and developments should be carried out
concerning the strategies for an optimal selection of image-pairs
for a pair-wise cost calculations following strategy (B) as
described in section 2.3.

Furthermore, the new approach will be investigated by using
other (close-range- and aerial-) test datasets.

Since the structure of the new approach separates the process of
cost calculation from special properties of image sensors,
extensions for the integration of other sensors (e.g. aerial or
satellite sensors) should be considered. Furthermore, the
integration of colour- or multi-spectral information into the
matching should be considered which possibly may add helpful
information for stabilizing the matching process.
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