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ABSTRACT: 

 

Semi-Global Matching (SGM) is a widespread algorithm for image matching which is used for very different applications, reaching 

from real-time applications (e.g. for generating 3D-data for driver assistance systems) to aerial image matching. Originally developed 

for stereo-image matching, several extensions have been proposed to use more than two images within the matching process (multi-

baseline matching, multi-view stereo). Most of these extensions still perform the image matching in (rectified) stereo images and 

combine the pairwise results afterwards to create the final solution. This paper proposes an alternative approach which is suitable for 

the introduction of an arbitrary number of images into the matching process and utilizes image matching by using non-rectified 

images within a closed solution. The proposed approach differs from the original SGM method in two major aspects: Firstly, the cost 

calculation is formulated in object space within a dense voxel raster by using the grey- (or colour-) values of all images instead of 

pairwise cost calculation in image space. Secondly, the semi-global (path-wise) minimization process is transferred into object space 

as well, so that the result of semi-global optimization leads to index-maps (instead of disparity maps) which directly indicate the 3D 

positions of the best matches. The paper provides a detailed description of the approach and it discusses its advantages and 

disadvantages. Further on, first results and accuracy analysis are presented. 

 

 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Since its introduction by Hirschmüller (2005) Semi-Global 

Matching (SGM) has become a widespread matching algorithm 

which is used for very different applications, reaching from 

close-range applications in the fields of robotics and computer 

vision to remote sensing (e.g. for surface model generation from 

aerial images). SGM offers several advantages in comparison to 

other image matching approaches: It is a dense image matching 

technique which can be implemented by using pixel-wise cost 

functions and therefore yields to good results especially in areas 

of sharp object boundaries (discontinuities on the object 

surface). Further on, it is not sensitive to the choice of task-

dependent parameters and the structure of the algorithm allows 

for the use of highly paralleling hardware (GPU and FPGA) 

which is important for the implementation of real-time 

applications (Banz et al., 2010)(Buder, 2012)(Ernst & 

Hirschmüller, 2008)(Michael et al., 2013).  

For a number of applications it is sufficient to use stereo-

cameras for image matching. This is especially true for many 

applications in computer vision (e.g. stereo-cameras in 

assistance systems) in which the need for real-time results is 

more important than high accuracies. On the other hand, various 

tasks focus on the accurate and complete 3D reconstruction of 

complex scenes (e.g. for aerial image matching, in fields of 

cultural heritage, archaeology, industrial measurements and so 

on). For these purposes, dense surface matching has been 

extended to so-called multi-baseline matching as proposed e.g. 

in (Hirschmüller, 2005, 2008) or multi-view stereo algorithms 

as proposed e.g. in (Rothermel et al., 2013)(Wenzel et al., 

2013). Multi-baseline matching performs stereo matching by 

SGM between a base image and all match images. Further on, it 

removes invalid disparities by consistency check (left-right 

check) and combines all stereo matching results by selecting the 

median value of all disparities for each pixel. Afterwards, it is 

suggested to calculate a weighted mean of all correct disparities 

(which are e.g. all disparities within a 1 pixel interval around 

the median) to increase the accuracy.  

The multi-view stereo algorithm in (Rothermel et al., 2013) 

performs stereo matching for all overlapping image pairs or at 

least for a selection of overlapping image pairs. After removing 

outliers by left-right consistency check additional outlier 

elimination is performed by checking for geometric consistency 

in object space under consideration of uncertainty ranges that 

have been derived by error propagation. Finally, all 

corresponding image coordinates for each object point are used 

for triangulation to calculate the final 3D coordinates. 

However, these approaches are working well but show several 

disadvantages. For example, SGM in image pairs is typically 

performed in rectified images, aiming at the simplification of 

the semi-global optimization to a 2.5D problem with the 2D 

image coordinates x', y' and one disparity D (or respectively one 

parallax px') for each pixel. Hence, for a bundle of n images 

(n·(n-1)) images have to be rectified to create (n·(n-1))/2 image 

pairs (e.g. with n=5, twenty images have to be rectified). 

Especially the last may increase the computation time 

significantly. Besides, the image rectification process induces 

always a loss of information due to the need of grey- (colour-) 

value interpolation. Further on, for all subsequently steps the 

results of pair-wise image matching (which are disparity maps) 

cannot directly be joined together but have to be fused before. 

The extended approach for multi-image dense 3D surface 

matching, which is proposed in this paper, eliminates these 

disadvantages. It allows for the integration of an arbitrary 

number of (non-rectified) images into the matching process. 

The images can either be correlated pair-wise or by using n 
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images. The results of the new approach are index maps 

(instead of disparity maps) which directly indicate the 3D 

position of the best matches which simplifies subsequent 

processing steps (e.g. consistency checks between the results of 

pair-wise matching) because the index maps are directly 

comparable to each other. Further advantages of the new 

approach will be discussed in the following sections. First 

results are presented in chapter 3. 

 

2. OBJECT-BASED MULTI-IMAGE SEMI-GLOBAL 

MATCHING (OSGM) 

Within this chapter the method for object-based multi-image 

Semi-Global Matching (OSGM) will be described in detail 

(section 2.2 to 2.7). In advance, a short review of SGM will be 

given in section 2.1. 

 

2.1 Review of SGM 

The SGM method as originally described in (Hirschmüller, 

2005) proposes an intelligent solution for the approximate 

minimization of global 2D energy functions as they are used 

e.g. within global image matching methods. SGM uses the 

following energy function: 
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The first term of (1) sums the matching costs C between a pixel 

p in image 1 and a potential corresponding pixel in image 2 (at 

a specific disparity D). The second term adds a penalty P1 for 

the current disparity DP to the cost value C if the difference 

between DP and the disparity Dq at a neighbouring pixel q is 1 

(the function T returns 1 if |Dp–Dq|=1 and 0 in all other cases). 

The second term adds a larger penalty to the cost value C if the 

difference between the disparity Dp to the disparity Dq at a 

neighbouring pixel q is higher than one (the function T returns 1 

if |Dp-Dq|>1 and 0 in all other cases).  

First step in SGM is the cost calculation to build up the 

structure C(p, D) in equation (1).  

 

 

Figure 1. Cost calculation in Stereo SGM 

For this, the matching costs between every pixel p in image 1 

and all potential corresponding pixels in image 2 (at disparities 

D) have to be calculated. Since SGM is typically initialized in 

rectified image pairs the maximum number of possible 

disparities D is equal to the width of the rectified image 2 (due 

to horizontal epipolar lines). The cost calculation can be 

realized by using different cost functions reaching from very 

simple ones (e.g. differences of absolute intensity values 

(SAD)) to sophisticated ones (e.g. mutual information as 

described in (Hirschmüller, 2005)). An analysis of different cost 

functions is not addressed in this paper but can be found e.g. in 

(Hirschmüller and Scharstein, 2007). 

Second step in SGM is cost aggregation. The main idea of SGM 

is to utilize cost aggregation not in all directions (which would 

be necessary for a strength global solution) but in the direction 

of 16 or at least 8 paths Lr (to perform a “semi-global” 

solution). Cost aggregation can be done recursively and 

separately for every path Lr with 
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In equation (2) p is used as substitution for the x',y' coordinates 

of a pixel in image 1: 

 

),','(),( DyxLDpL rr   

),','(),( DyxCDpC  .    (3) 

 

The positions of adjacent pixels are defined separately for each 

path with p-r: 

 

),1',1'(),( DvyuxLDrpL rr     (4) 

 

(e.g. with u=1, v=0 for a path in x'-direction).  

 

The expression in (2) searches the minimum path costs 

inclusive possibly added penalties P1 and P2 at the position of 

the previous pixel in path direction (p-r) and adds this minimum 

to the cost value C(p, D)) at the current pixel p and the disparity 

D. The last term of (2) subtracts the minimum path cost of the 

previous pixel to avoid very large values in Lr. 

The paths of minimum costs are illustrated for a pixel p at 

disparity D=2 exemplarily for 4 paths in Figure 2: 

 

 

Figure 2. Paths with minimum costs 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-93-2014 94



 

The results of the cost aggregation for 8 (or 16) paths can be 

fused with 
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The final disparity D can then be derived from (3) by searching 

the minimum in S(p,D) for each pixel p with: 

 

),(min DpS
D

      (6) 

 

The final disparity is equal to the position D for each pixel p on 

which S(p,D) reaches a minimum. D is stored for each pixel p 

which leads to the dense disparity map D(p). 

 

2.2 Cost calculation in object space 

As already mentioned above the new approach (OSGM) differs 

in two major aspects from standard SGM. Firstly, cost 

calculation is formulated in object space instead of cost 

calculation in image space. Therefore, the object space is 

subdivided into a voxel raster in a first step. Each voxel may be 

a cube or a cuboid. The size of the cuboids (ΔX, ΔY, ΔZ) 

defines the resolution in object space (in X-, Y-, Z- direction of 

the global coordinate system, see Figure 3). The definition of 

the cuboids’ size should be done under consideration of the 

mean GSD to ensure an adequate sampling rate. In order to 

provide hierarchical approaches the resolution of the images 

may be reduced (image pyramids). 

In a second step, the central coordinate of each voxel is re-

projected into all images by using the collinearity equations. 

Further on, the grey (or colour) values of the corresponding 

image coordinates are used for cost calculation. Thus, the 

structure C(p,D) in (1) which equals to the more detailed 

description C(x',y',D) with the image coordinates x',y', is 

modified to C(X,Y,Z) in which the coordinates X,Y,Z indicate 

the 3D position of a voxel. By doing so, the matching costs for 

each voxel can be calculated. Figure 3 illustrates the cost 

calculation in object space exemplarily for 3 images: 

 

 

Figure 3. Multi-image cost calculation 

 

Since the re-projection of the voxel coordinates X,Y,Z leads to 

sub-pixel coordinates within the images it is necessary to use 

interpolated grey- (or colour-) values for cost calculation. 

Therefore, the cost values in C(X,Y,Z) belong to sub-pixel 

image coordinates. Hence, the subsequently described SGM in 

object space (see section 2.4) leads directly to 3D points with 

sub-pixel accuracy (see section 3.5). This is one advantage 

compared to the standard SGM in which sub-pixel accuracy is 

typically achieved by interpolating between neighbouring cost-

values in disparity space, e.g. by quadratic curve fitting as 

suggested in (Hirschmüller, 2008). 

 

2.3 Cost calculation for n images 

Most of the common cost or similarity functions (e.g. Census or 

normalized cross-correlation (NCC)) are designed for the 

calculation of the (dis)similarity between two signals (or 

respectively two images) and therefore well-suited for pair-wise 

image matching. Thus, for a combined cost calculation for n 

images it is necessary to think about sensibly extensions of cost 

or similarity functions for multi-image correlation. However, 

since pair-wise image matching in multi-image bundles can be 

used for consistency checks and can therefore be regarded as an 

important tool for the reliable detection of occlusions and other 

disturbances, both strategies (pair-wise image-matching and 

combined multi-image matching) should be considered within 

the new approach. We distinguish three possible procedures for 

cost calculation: 

 

 (A): Pair-wise cost calculation for all possible image pairs 

and initialization of one structure C(X,Y,Z) with the 

minimum cost value 

 (B): Pair-wise cost calculation for all possible image pairs 

and initialization of one structure Ci(X,Y,Z) for each image 

pair i  

 (C): One structure Cj(X,Y,Z) for every possible number of 

rays to one voxel but minimum of 2 rays (e.g. j=4 for 5 

images) and initialization of Cj(X,Y,Z) with the combined 

costs out of 2..j images 

 

Procedure (A) describes the simplest way of cost calculation for 

multi-image bundles. Its main advantage is that the structure 

C(X,Y,Z) has to be built up only for one time. Further on, a 

consistency check is done implicitly by searching the minimum 

cost value between all image pairs. A disadvantage of (A) is that 

it is impossible to detect voxels that are not visible or visible 

just in one image so that a possibly high number of outliers may 

remain in the data.  

To reduce the number of outliers strategy (B) can be used. 

Compared with (A), the main advantage of (B) is the possibility 

of extensive consistency checks because (n·(n-1))/2 matching 

results can be compared to each other (with n= number of 

images). A disadvantage of (B) is its memory consumption 

because the structure C(X,Y,Z) has to be generated for (n·(n-

1))/2 times (for every possible image pair). But since the 

matching can be done one after another for every image pair, 

the latter argument is not a criterion for exclusion.  

For multi-view stereo approaches sophisticated strategies for 

selecting sufficient image pairs for the pair-wise matching has 

been described e.g. in (Wenzel et al., 2013). These strategies 

can be adapted for OSGM to reduce efforts in pair-wise cost 

calculation with strategy (B). 

The strategies of (A) and (B) both just combine the grey- or 

colour values of two images and can therefore not really be 

regarded as multi-image matching. However, especially (B) can 

be used in a first step to create a robust result and get 

information about which voxel is visible in which image. The 

results of (B) can afterwards be used to initialize a sophisticated 
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matching with (C) by re-calculating the costs for all voxels that 

are visible in pairs, triples, quadruples and so on. 

 

2.4 Cost aggregation in object space 

The second essential difference of our approach compared to 

standard SGM is that the cost aggregation as well as the cost 

calculation is transferred to the object space. The global energy 

function of SGM in (1) is extended to  
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The equation (7) can be interpreted in analogy to (1) but with 

the difference that changes in Z-direction of the global 

coordinate system are penalised with P1 and P2 for adjacent 

voxels instead of penalising disparity changes between adjacent 

pixels. Hence, the smoothness constraint controls the 

smoothness in Z-direction of the global coordinate system and 

therefore equation (7) can be regarded as a 2.5D realization of 

object-based SGM.  

For the minimization of (7) by adapting the semi-global 

approach the path-wise cost aggregation can be done 

recursively for every path Lr with 
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The expression in (8) is an extension of (2) in which v is used as 

substitution for the X,Y-coordinate of a voxel: 

  

),,(),( ZYXLZvL rr   

),,(),( ZYXCZvC  .    (9) 

 

The X,Y-position of adjacent voxels are defined separately for 

each path with v-r: 

 

),,(),( ZYvYXuXLZrvL rr    (10) 

 

(e.g. with u=1, v=0 for path r=1, see Figure 4).  

 

The expression in (8) searches the minimum path costs 

including possibly added penalties P1 and P2 at the position of 

the previous voxel in path direction (v-r) and adds this 

minimum to the cost value C(X,Y,Z)) of the current voxel. The 

penalty P1 is added if the difference in Z-direction between the 

current voxel and the adjacent voxel is equal to ΔZ and P2 is 

added if the difference in Z-direction is larger than ΔZ. The last 

term of (8) subtracts the minimum path cost of the previous 

voxel to avoid very large values in Lr. 

The paths of minimum costs are illustrated for a voxel with 

Z=2·ΔZ exemplarily for 8 paths in Figure 4. 

 
Figure 4. Paths with minimum costs 

 

Analogue to (5) the results of the cost aggregation for 8 (or 16) 

paths can be fused with 
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The matching result can then be derived from (11) by searching 

the minimum in S(v,Z) for each v: 

 

),(min ZvS
Z

      (12) 

 

The final Z-coordinate for each voxel v is equal to the position 

Z on which S(v,Z) reaches a minimum. The final value can then 

be stored in a index map Z(v) for each voxel v (instead of a 

disparity map D(p)). 

 

2.5 Consistency checks 

If pair-wise cost calculation has been performed so that the 

structure Ci(X,Y,Z) has been built up for i times (see section 2.3) 

the semi-global minimization of (7) can be done for i times as 

well (with i=(n·(n-1))/2 and n=number of images). Hence, i 

index maps Zi(v) can be calculated and afterwards be fused e.g. 

by testing the differences Z1(v)-Zi(v) against a threshold t and 

calculating a mean value Zmean(v) if the test is positive for all 

pairs: 
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A consistency check with (13) eliminates all voxels which are 

not visible in all images and therefore object areas which are 

partly occluded would be removed. To avoid this, enhanced 

consistency checks are possible, e.g. clustering all index maps 

which lead to equal Z-values and choose the Z-value which has 

been estimated most frequently. 

Generally, the more complex the object surface the more 

sophisticated the consistency check should be. Sophisticated 

strategies for pair-wise image selection are proposed e.g. in 

(Wenzel et al., 2013). 
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2.6 Discontinuities in X- and Y-direction 

The approach for OSGM as described in section 2.4 is a 2.5D 

solution because for every raster-node X,Y exactly one Z-value 

can be estimated. For a lot of applications in which objects with 

low geometric complexity have to be reconstructed a 2.5D 

solution is sufficient. For more complex object geometries it 

may be necessary to develop a 3D solution. Therefore, the cost 

aggregation can principally be adapted for applying the 

smoothness constraint in X- or respectively in Y-direction 

instead of in Z-direction. Hence, the equations (7) to (12) can 

be modified by changing Z and X (or Z and Y).  

 

2.7 Hierarchical computation 

As described in section 2.2 the matching costs have to be 

calculated for every voxel within the voxel raster (Figure 3). 

Since the number of voxels may increase especially for large 

objects, the process of cost calculation may increase the 

computation time significantly. To reduce this loss of 

performance the algorithm can be implemented hierarchically 

by using image pyramids. A convenient approach for a 

hierarchical implementation of SGM has been proposed by 

(Rothermel et al., 2012) which can be adapted for the new 

approach as well. It is proposed to initialize the matching in a 

high level of an image pyramid (images with low resolution) 

and to use the matching result to limit the number of possible 

disparities for the next pyramid level by searching the minimum 

and maximum disparity for each pixel e.g. within a 7x7 

neighbourhood. Since the new approach estimates Z-values 

directly instead of disparities the approach for hierarchical 

computation have to be adapted to limit the range of possible Z-

values rather than limiting the disparity range from one pyramid 

level to the next.  

Further on, in (Rothermel et al., 2012) decreases the number of 

possible disparities implicitly by reducing the resolution of the 

images (since the disparity map has the same size as the 

rectified image). In the OSGM the interval ΔZ has to be 

decreased e.g. by using the main GSD for the images with 

reduced resolution. 

 

3. EXPERIMENTS AND RESULTS 

Sections 3.1 and 3.2 describe the test object and used image 

data for first investigations on the new approach. In section 3.3 

different the cost functions which were used for the first 

implementations are discussed. Finally, in section 3.5 first 

results are presented. 

 

3.1 Test object 

For the investigations a test object with a sinusoidal surface was 

chosen which was originally developed for investigations of 

optical measurement systems for area scanning. The surface was 

designed by using a 2.5D sinus function which leads to an 

object surface of continuous curvature. Since the SGM should 

be well-suited also for the robust measurement of depth 

discontinuities, the original shape of the test object was 

extended by adding a wedge (see Figure 5). On the one hand, 

the wedge allow for the investigation of the algorithms’ 

behaviour at sharp object boundaries. On the other hand, the 

limits of the achievable spatial resolution can be investigated by 

analysing the matching results at the peak of the wedge. The 

latter one is of special interest for the comparison of pixel-wise 

cost functions to window-based cost functions. 

The object surface was textured with a stochastic pattern which 

is assumed to be well-suited for image matching. Since the 

SGM should lead to robust matching results also in areas with 

no or low texture two areas without any texture were added: one 

in a valley and one on a plane on top of the wedge (Figure 5). 

 

 
Figure 5. Test object 

 

For the generation of 3D-reference data the test object was 

measured with a fringe projection system. This was done for the 

white surface (before texturing the surface). The accuracy of the 

fringe projection system was determined before by applying the 

VDI/VDE 2634 guideline part 2 and can be specified with a 

probing error R=0.08mm and a sphere-spacing error 

Δl=0.05mm. 

 

3.2 Image data 

The object was captured with a Nikon D2x camera with 24mm 

lens. The images were orientated by bundle block adjustment 

and the camera was calibrated simultaneously. For first 

investigations three images out of the bundle were selected 

(Figure 6) which are used for image matching. 

 

 
Figure 6. Images of the image triple and camera positions in 3D 

space 

 

The configuration in Figure 6 yields to an approximate GSD on 

the object surface of around 0.1mm (with a distance to the 

object of h≈400mm, a camera constant of c≈24mm, a pixel size 

of px≈0.0055mm). 

 

3.3 Cost functions 

Since the first aim of the investigation is to test the new 

matching approach, until now the focus was set on the 
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development of the matching more than on implementing 

sophisticated cost functions (e.g. like mutual information).  

A simple cost function which is often used for SGM is given by 

census (Zabih and Woodfill, 1994). Census is highly invariant 

against radiometric differences between the images and 

therefore leads to robust matching results. The cost parameter of 

census is given by the hamming distance between two image 

windows. Hence, the maximum number of distinguishable cost 

values is equal to the maximum hamming distance hmax which 

depends on the window size (e.g. for a 5x5 window hmax=25).  

Since changes of the centre coordinates of the voxels in Z-

direction by small increments ΔZ (see Figure 7) lead to sub-

pixel movements of the matching windows within the images, it 

is necessary to use a cost function that allows for the distinction 

between these sub-pixel movements. First investigations by 

using census have shown that it does not fulfil this requirement 

due to its limited resolution as described above.  

Another popular and well-known similarity function which is 

invariant against radiometric differences, is normalized cross 

correlation (NCC) which is able to detect sub-pixel movements 

within certain limits. Hence, for the following investigations 

NCC was used. The correlation coefficient is defined by 

 

 
nggnff

nggff

ii

ii

gf

fg
fg















22 )()(

))((   (14) 

 

In (14) σfg is the covariance between the grey-values within the 

two image windows f and g and σf  and σg are the variances of 

the grey-values in the image windows. Since the coefficient ρfg 

is a measure of the similarity and SGM typically uses cost 

values for the description of the dissimilarity, (14) is modified 

with 

 

fg 1       (15) 

 

In (15) ρ is the cost parameter which leads to cost values within 

the interval 0.0 (low matching costs, high similarity) to 2.0 

(high matching costs, low similarity). One disadvantage of NCC 

compared to census is the need for a higher bit depth for 

representing the real numbers in ρ (e.g. by using 32bit floating 

point data types). Since for census a depth of 8 bit (which 

allows for the use of matching windows up to 16x16 pixels) is 

sufficient for a lot of applications, the use of 32 bit data types 

for NCC leads to a four times larger memory requirement to 

build up the cost structure C(X,Y,Z) in (7) as well as for each 

structure Lr(X,Y,Z) in (9) for the aggregated costs. 

Another issue concerning the NCC is that it is not invariant 

against image rotations and different image scales. To achieve 

invariance for rotations and scales the matching window is 

defined in object space instead of in image space by defining a 

squared point raster around each voxel centre. The point raster 

is oriented parallel to the XY-plane of the global coordinate 

system. 

 
Figure 7. Correlation with vertical line locus 

Thus, cost calculation is similar to the well-known vertical line 

locus approach for image correlation. A disadvantage of this 

approach is that for object areas that are sloped with respect to 

the XY-plane the correlation coefficient may decrease 

significantly. 

Further on, NCC as described in (14) allows for the correlation 

of image pairs and is therefore suitable for cost calculation with 

procedure (A) or (B) as described in section 2.3 but not for real 

multi-image correlation. 

 

3.4 Parameter settings 

For all subsequently presented matching results the following 

parameters were used (if not otherwise specified): The size of 

the measurement volume is adapted to the size of the test object 

which is about 120mm in X- and Y-direction and about 30mm 

in Z-direction, starting in the origin of the coordinate system 

(see Figure 6). The voxel size which also defines the spatial 

resolution of the measurement was set to ΔX=ΔY=1.0mm and 

ΔZ=0.025mm. This leads to about 9 million voxels within the 

measurement volume. If 32 bit data types for the cost values in 

C(X,Y,Z) and the aggregated costs in Lr(X,Y,Z) are used (as 

described in the foregoing section) the required memory for 

each structure C(X,Y,Z) is about 35 Mbytes and for the 8 

structures Lr(X,Y,Z) about 280 MByte (=8·35MByte) which is 

far away from hardware limits. 

The window size for NCC is 40x40 points with a point distance 

of ΔXNCC=ΔYNCC=0.1mm (see Figure 7) which is adapted to the 

mean GSD (section 3.2). Hence, the window size on the object 

surface is about 4x4mm. 

The penalties P1 and P2 for SGM are not tuned automatically by 

using gradient information as proposed in Hirschmüller (2008) 

but set to fixed values with P1=0.1 and P2=0.6. The cost 

aggregation is done by using 8 paths. 

All subsequently presented matching results were generated 

without any pre-processed image filtering and no post-process 

filtering of the resulting index maps. 

For the comparison of the matching results with respect to the 

fringe projection measurement best fit transformations were 

applied by using the software Geomagic Qualify. 

 

3.5 Results 

The cost structure C(X,Y,Z) in (7) can be analysed by searching 

the minimum cost value in Z-direction (“the winner takes it all” 

approach) denoted as NCC result in the following sections. The 

first investigation focusses on the comparison of the NCC result 

to the OSGM result. The point clouds for both results overlaid 

with the TIN of the fringe projection measurement are displayed 

in Figures (8) and (9): 

 

 
Figure 8. NCC result 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014
ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-5-93-2014 98



 

 
Figure 9. OSGM result 

 

Both approaches lead to good results at the border of the wedge. 

The NCC result shows a high number of outliers in areas with 

no texture (on top of the wedge, in the “valley” and on the 

right-hand side of the object). In contrast, the OSGM 

expectedly leads to a more smooth result without outliers in un-

textured areas. For an extended accuracy evaluation both results 

were compared to the fringe projection measurement. The 

results of this comparison are illustrated in Figures (10) and 

(11): 

 

 
Figure 10. Comparison of the NCC result to fringe projection 

result 

 

 
Figure 11. Comparison of the OSGM result (with P1=0.1, 

P2=0.6) to fringe projection result 

 

Apart from the areas with outliers the NCC result is more 

accurate than the OSGM result. Most deviations are within the 

interval of -0.2 mm to 0.2 mm and the histogram of the 

deviations equals the Gaussian distribution (Figure 10). In 

contrast, the OSGM result shows systematic deviations in areas 

with continuous curvature and a clearly wider distribution 

within the histogram. This is caused by the smoothness 

constraint of SGM which allow for changes in Z-direction 

between adjacent voxels only if the cost value plus the penalty 

P1 (or P2) is lower than the cost values of the adjacent voxels. 

However, the smoothness constraint induces a very robust result 

in areas without any texture.  

Since the smoothness constraint causes a smoothing in Z-

direction OSGM leads to a result with only small deviations in 

non-textured areas that are parallel to the XY-plane of the 

global coordinate system (e.g. in areas on top of the wedge or 

on the right hand side of the object). In contrast, in the non-

textured areas of continuous curvature the smoothing of SGM 

leads to significant systematic deviations up to 1.7 mm e.g. in 

the valley on the left-hand side of the object (Figure 11). 

The effect of smoothing can be reduced if the penalties for P1 

and P2 are modified. For example, if the penalties are modified 

to P1=0 and P2=0.1 the matching result of OSGM can be 

improved as illustrated in Figures (12) and (13). 

 

 
Figure 12. OSGM result with P1=0 and P2=0.1 

 

A penalty for P2=0.1 is obviously sufficient to avoid outliers in 

non-textured areas (Figure 12). Further on, the modification of 

the penalties reduces the smoothing and leads to less systematic 

deviations in well-textured areas of continuous curvature 

(Figure 13). Merely in the non-textured areas in the valley (on 

the left-hand site of the object), the systematic deviations 

remain due to missing information for correct matches. In this 

area the smoothness constraint avoids outliers but the 3D points 

deviate systematically from the correct shape of the object. 

All in all the accuracy increases significantly due to the 

modifications of the penalties. 

 

 
Figure 13. Comparison of the OSGM result (with P1=0 and 

P2=0.1) to fringe projection result 
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4. SUMMARY AND OUTLOOK 

The presented extension of SGM to Object-based Semi-Global 

Matching (OSGM) is mainly characterized by transferring the 

process of cost calculation and path-wise cost aggregation from 

image space into the object space. Instead of estimating dense 

disparity maps, index maps are generated which directly 

indicate the best matches in 3D space. 

The new approach was tested under laboratory conditions by 

using a test object with reference data of a fringe projection 

measurement. The tests show very promising results. OSGM 

maintains the benefits of SGM (e.g. robustness in non-textured 

areas, good result at sharp object boundaries) and adds several 

advantages:  

In opposite to most multi-baseline or multi-view stereo 

approaches the new approach works without rectified images 

and therefore reduces the efforts for pre-processing (no need for 

image rectification) and for post-processing (no need for the 

fusion of disparity maps). Further on, the new method allows 

for the integration of more than two images into the matching 

process and is therefore suitable for real multi-image 

correlation. All in all, the OSGM algorithm has a clearly 

simplified structure compared to SGM in multi-view stereo 

approaches. 

Further developments will focus on the implementation of 

sophisticated pixel-wise cost functions to fully exploit the 

advantages of SGM. Furthermore, the implementation should be 

extended to a hierarchical approach (as described in section 2.7) 

to increase the computational performance. 

Based on proposals in Rothermel et al. (2012) further 

investigations and developments should be carried out 

concerning the strategies for an optimal selection of image-pairs 

for a pair-wise cost calculations following strategy (B) as 

described in section 2.3.  

Furthermore, the new approach will be investigated by using 

other (close-range- and aerial-) test datasets. 

Since the structure of the new approach separates the process of 

cost calculation from special properties of image sensors, 

extensions for the integration of other sensors (e.g. aerial or 

satellite sensors) should be considered. Furthermore, the 

integration of colour- or multi-spectral information into the 

matching should be considered which possibly may add helpful 

information for stabilizing the matching process.  
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