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ABSTRACT: 

 

The increasing availability of very high resolution (VHR) remotely sensed images makes it possible to detect and assess urban 

building damages in the aftermath of earthquake disasters by using these data. However, the accuracy obtained using spectral 

features from VHR data alone is comparatively low, since both undamaged and collapsed buildings are spectrally similar. The height 

information provided by airborne LiDAR (Light Detection And Ranging) data is complementary to VHR imagery. Thus, 

combination of these two datasets will be beneficial to the automatic and accurate extraction of building collapse. In this study, a 

hierarchical multi-level method of building collapse detection using bi-temporal (pre- and post-earthquake) VHR images and post-

event airborne LiDAR data was proposed. First, buildings, bare ground, vegetation and shadows were extracted using post-event 

image and LiDAR data and masked out. Then building collapse was extracted using the bi-temporal VHR images of the remaining 

area with a one-class classifier. The proposed method was evaluated using bi-temporal VHR images and LiDAR data of Port au 

Prince, Haiti, which was heavily hit by an earthquake in January 2010. The method was also compared with some existing methods. 

The results showed that the method proposed in this study significantly outperformed the existing methods, with improvement range 

of 47.6% in kappa coefficient. The proposed method provided a fast and reliable way of detecting urban building collapse, which can 

also be applied to relevant applications. 

 

 

1. INTRODUCTION 

Timely and accurate  post-earthquake damage information is of 

great importance to disaster assessment and management. With 

the development of remote sensing technology, the availability 

of very high resolution (VHR) satellite imagery makes it 

possible to detect and assess building damage in the aftermath 

of earthquakes. 

Many studies have been focused on building damage detection 

these years. The fundamental principle of building damage 

detection is to automatically detect changes between bi-

temporal (pre- and post- earthquake) images of the quaked 

region. Therefore, traditional change detection methods can be 

applied directly (e.g. Al-Khudhairy et al. 2005, Huyck et al. 

2002, Matsumoto et al. 2006, Pagot and Pesaresi 2008). 

However, existing methods have some defects. There is much 

spectral similarity between damaged and undamaged (intact) 

buildings, as well as buildings and other man-made structures 

with impervious surface. As a consequence, accuracy of the 

detection is relatively low when using spectral bands alone. 

Aimed at solving the problem discussed above, other than using 

spectral bands, some researchers use texture to improve the 

detection accuracy (Coburn and Roberts 2004) and some use 

landscape Metrics to aid the detection (Eva. S. M. 2011). In 

these years, many studies have used LiDAR data and VHR 

images to extract building (e.g. Vu, etal. 2009) and have had 

many good results. But few studies have used LiDAR data and 

VHR images to detect building collapse. So, in this study, we 

used Light Detection And Ranging (LiDAR) data to distinguish 

collapsed buildings, undamaged buildings and bare ground 

which have spectral similarities, as they have different heights.  

 

 

2. METHODS 

In this study, a hierarchical multi-level method of building 

collapse detection using bi-temporal (pre- and post-earthquake) 

VHR images and post-event airborne LiDAR data was proposed. 

Since there are many types and extents of building damage, with 

building collapse being the most severe one, this study mainly 

focused on detection of building collapse. As the object-based 

analysis methods generally showed better performance than 

pixel-based methods (e.g. Al-Khudhairy et al. 2005, Matsumoto 

et al. 2006), all the classifications in this study were 

implemented after image segmentation. After the segmentation, 

buildings, bare ground, vegetation and shadow were extracted 

using post-event image and LiDAR data and masked out in 

order to diminish the spectral confusion among different ground 

features. Then In order to improve the accuracy, we created a 

new image by adding texture bands which were calculated from 

VHR images to the remaining area of the bi-temporal VHR 

images. Lastly, we extracted building collapse from the new 

image with the One-Class Support Vector Machine (OCSVM) 

classifier. We also used a comparative method to extract 

building collapse. First, building collapse was extracted using 

the bi-temporal VHR images with the OCSVM classifier. 

Secondly, buildings, bare ground were extracted using LiDAR 

data. Thirdly, buildings, bare ground were removed from 

building collapse result. The proposed method and comparative 

method were showed in Figure 1. The whole procedure adopted 

in this study is described in detail in the following section. 

 

2.1 Image segmentation 

Image segmentation was applied to bitemporal data using 

Fractal Net Evolution Approach (FNEA) (Yu et al., 2006) 

algorithm in the eCognition software package. By comparing 

 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-7/W1, 3rd ISPRS IWIDF 2013, 20 – 22 August 2013, Antu, Jilin Province, PR China

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 127



 

   
(a)                                                                                                     (b) 

 

Figure 1. (a)Building collapse detection method proposed in this paper (b) Comparative method 

 

detection results produced by using different levels of 

segmentation, it was indicated that a compact and dense 

segmentation at a relatively low level of segmentation tends to 

produce higher accuracy. As earthquake resulted in deformation 

from original shapes as well as dense and irregular edges, 

smaller segments could better delineate post-event features of 

land cover. 

 

2.2 Multiband texture by Multivariate Variogram  

In order to improve the accuracy of bitemporal classification, 

image texture was also included. A multiband texture measured 

using Multivariate Variogram was used. Multivariate 

Variogram (MV) is a geostatistic tool, which is derived from the 

Univariate Variogram (UV) function defined in equation (1).  
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Where h is the distance vector, E is the mathematical 

expectation, andγ (h) is half of the second moment of the 

increments between the pixel pair, x and x+h . 

The experimental UV can be computed as: 
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where N (h) is the number of pixel pairs with a certain distance 

vector h, dn(.) is the digital numbers of pixel xi and xi+h. 

Therefore, γexp(h) is the semivariance of digital values between 

the pixel pairs, measuring the spatial variability of radiometric 

data within a single band. 

As for multispectral images, MV is derived to quantify the joint 

spatial variability of two or more bands. For an image of p 

bands, MV is defined as: 
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where DN(x) is the p-dimension row vector, I is a p×p identity 

matrix, T is the transpose of the matrix. AVG[.] is the arithmetic 

average of the Euclidean distance in the p-dimension space. G(h) 

characterizes the joint autocorrelation of the p bands of a 

multispectral images. In this study, MV was used as a 

multiband texture measure derived from spectral bands of 

multispectral images. If the spectral signatures within a certain 

region share much similarity, a low MV value will be produced, 

and vice versa.  

The experimental MV (equation 3) can be used to calculate 

multiband texture and multitemporal texture. An appropriate 

window size and a lag distance h are first determined. For a 

specific lag distance h, the average of the function values, 

considered as the multiband texture, is assigned to the central 

pixel of the moving window. Thus, two crucial parameters 

should be carefully considered: window size and lag distance h 

(including size and direction). 

As for window size, a large window might contain several 

adjacent land cover types, thus reducing the classification 

accuracy. On the other hand, a small window might fail to 

correctly characterize the spatial structures. In this study, the 

selection of window size was done by trial and error. The size 

that could maximize the classification accuracy was chosen as 

the optimal window size.  

The size of lag distance can be from 1 up to half of the window 

size. However, the value of the lag distance of multiband texture 

was assigned as 1 in this study, for it has been proved to be the 

best distance to describe the spatial correlation of the adjacent 

pixels (Chica-Olmo and Arbarca-Hernandez 2000). 

Since collapsed buildings usually have unsmooth surfaces, the 

pixels located in each building tend to have low spatial 

correlation spectrally, which leads to a high MV value. Yet MV 

values are also high on boundaries of adjacent land covers, 

regardless of the earthquake. That will reduce the effectiveness 

of multiband texture on the detection of damaged buildings. In 

order to minimize the effects of edges and boundaries, we 

calculated MV values on all directions and chose the minimum 

one as the final MV value. In this way, MV values of pixels on 

edges and boundaries became relatively low, for their values 

usually had a big change only in a certain direction, while MV 

values of pixels in damaged buildings remained high in all 

directions. Suppose the directions of lag distance h1, h2, h3 and 

h4 are east-west (E-W), south-north (S-N), southeast-northwest 

(SE-NW) and southwest-northeast (SW-NE) in turn, then the 

MV value for multiband texture used in this study is: 
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2.3 Removal of Vegetation, building, bare ground  

In order to remove vegetation, building and bare ground, we 

first extracted them from post-event image and LiDAR data and 

then masked out. After image segmentation, average values of 

height and NDVI for each object (segment) were separately 

calculated. A NDVI threshold was set to distinguish between 

vegetation and non-vegetation.  

In this study, we supposed that the heights of collapsed 

buildings were higher than bare ground and lower than 

uncollapsed buildings. So, two height thresholds h1 and h2 were 

set to separate objects into 3 height levels (h<h1, h1≤h≤h2, 

h>h2). 

Bare ground was identified as the segments with the heights 

lower than h1 and the NDVI values lower than the specified 
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threshold (i.e. non-vegetation). And buildings were identified as 

the segments with the heights higher than h2 and the NDVI 

values lower than the specified threshold (i.e. non-vegetation). 

After detection, vegetation, building, bare ground were removed 

from VHR bi-temporal images. 

 

2.4 Removal of shadows 

In order to remove shadows, we first extracted them from post-

event image then masked out. 

We applied a histogram thresholding method for shadow 

detection, which has been successfully used in many previous 

studies (e.g., Shu & Freeman, 1990; Shettigara & Sumerling, 

1998; Dare, 2005; Chen et al., 2007). The principle of a 

histogram thresholding method is based on the intensity 

difference of shaded and non-shaded areas. It assumes the 

histogram of the image is bimodal, with shadows (or dark 

objects in general) occupying the lower end of the histogram, 

and non-shadows being located at the other end of the 

histogram. 

 
 

Figure 2. The histogram of brightness (i.e., the mean of the 

three bands, NIR, red and green), calculated using pixels as 

statistical units. A bimodal histogram splitting method was used 

to determine the optimum threshold value of 185 for separation 

of shaded pixels from non-shaded pixels. 

 

In this study, we used the brightness, which was defined as the 

mean of the three bands–NIR, red, and green–to determine the 

threshold value for shadows and non-shadows. Figure 2 shows 

the histogram of brightness for the study site, using pixels as 

statistical units. The optimum threshold value of 185 was 

determined by a bimodal histogram splitting method, which 

provides a simple, but robust way for threshold level selection 

by identifying the value at the valley between the two peaks in 

the histogram as the threshold for shadows and non-shadows 

(Dare, 2005; Chen et al., 2007). 

We also examined the histogram of brightness based on objects 

generated from image segmentation, as opposed to pixels, and 

did not find an obvious threshold value between shaded and 

non-shaded objects. Therefore, we applied the threshold value 

of 185, as determined from the pixel-based histogram for 

segmented objects, and compared it with other threshold values. 

Finding that the threshold value of 185 provided the optimum 

threshold for the segmented objects, we chose to use a threshold 

value of 185 to distinguish shaded objects from non-shaded 

objects. A comparison of the pixel-based and object-based 

shadow detection was conducted. The overall accuracy of 

results for shadow detection from the object-based method was 

slightly higher than that of the pixel-based one.  

After detection, shadows were removed from VHR bi-temporal 

images. 

 

2.5 Bitemporal classification using One Class Support 

Vector Machine 

In this study, direct bi-temporal classification was adopted and 

One Class Support Vector Machine (OCSVM) was selected as 

the classifier to effectively detect the building damage using 

combined spectral and texture information. As a recently 

developed one-class classifier, OCSVM has two main 

attractions: first, it requires training samples from one class only, 

which is called the target class or the class of interest. Second, it 

produces results that extract only the target class, rather than all 

classes extracted by conventional classifiers. 

Li et al. (2010) used OCSVM for change detection of one 

specific land cover class and validated its effectiveness for 

change detection. Therefore, it was used in this study to detect 

post-earthquake building collapse.  After the removal of 

vegetation, buildings, bare ground, shadows, the remaining 

areas of bi-temporal images acquired before and after 

earthquake and texture bands calculated from the bi-temporal 

images were used in classification. The only target class was the 

collapsed building class. Since inclusion of samples from the 

outlier class (non-target class) could improve the classification 

accuracy (Li et al, 2010), besides training samples from the 

target class, some outlier samples, mainly from non-damage 

class, were also selected and used for classification. 

 
 

3. STUDY AREA AND DATA 

The study area is Port au Prince, Haiti (Figure 3), a densely 

populated urban area. The area was heavily hit by the 

earthquake that occurred on 12 January 2010. A large number 

of buildings in the urban area were damaged and collapsed. 

 
 

Figure 3. Location map of the study area 

 

The dataset used in this study includes pre-event Worldview-2 

data acquired on 09 January 2010 and post-event QuickBird 

data acquired on 15 January 2010. The Worldview-2 data 

consist of eight multispectral bands with 2.0 m resolution and a 

panchromatic band with 0.5 m resolution. The QuickBird data 

consist of four multispectral bands with 2.4 m resolution and a 

panchromatic band with 0.6 m resolution. 

The parameters of the data acquisition are shown in Table 1.  

The multispectral and panchromatic images of both datasets 

were fused to produce pan-sharpened multispectral images with 

a pixel size of 0.6 m and 0.5 m, respectively, using the Gram-

Schmidt pan-sharpening transformation procedure (Laben and 

Brower, 2000) implemented in the ENVI software package. The 

two-date images were then co-registered with a root mean 

square error of less than 0.5 pixels and were resampled to a 

common pixel size of 0.5 m. 

A portion of the pan-sharpened image of 3,100 × 2,800 pixels 

was finally used in the study (Figure 4). 
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Table 1. DATA CHARACTERISTICS AND SATELLITE POSITION INFORMATION FOR BOTH DATASETS 

WV: WorldView; QB: QuickBird; MS: multispectral; PAN: panchromatic. 

 

       
(a)                                                                      (b)                                                                      (c) 

 

Figure 4. (a) Pre- and (b) post event pan-sharpened multispectral VHR images of the study area. The image size is 3,100 × 2,800 

pixel of 0.5 × 0.5m each. (c) post event nDSM of study area  

 

For building damage detection, 12,085 pixels from the building 

damage were selected for training the classifier (i.e., OCSVM) 

through visual interpretation.  

For accuracy assessment, 12469 pixels were directly selected as 

test samples for target class (building damage class) through 

visual interpretation, while 40170 pixels were randomly 

generated as test samples for outlier class. The real classes of all 

test samples were ensured after check. 

LiDAR data was acquired on January 21st, with a height 

accuracy of 1m. The normalized Digital Surface Model (nDSM) 

was first generated. The obtained nDSM was then co-registered 

with pan-sharpened Quickbird image. Like the VHR images, 

3,100 × 2,800 pixels of nDSM were finally used in the study 

(Figure4. (c)). 

 

 

4. RESULTS AND DISCUSSION 

Figure 5 shows the selected segmentation result overlapped on 

pre-event imagery. Most buildings and vegetation areas were 

over segmented on purpose. The mean value of each band of 

pixels within each segment was computed and then used as 

spectral and textural features of the segment in direct 

multitemporal classification by the OCSVM. 

The results of building collapse detection by different methods 

are listed in table 2. From the table, using comparative method 

only obtained an overall accuracy of 46.11% and a kappa 

coefficient of 14.56%. The kappa coefficient was particularly 

low, which indicated the indiscernibility of the use of this 

method. 

By using hierarchical multi-level method proposed in this study, 

both overall accuracy and kappa coefficient were largely 

improved. Overall accuracy increased 38% and kappa 

coefficient increased 47.6%, which indicated that commission 

and omission errors for the collapse class were significantly 

reduced. The producer’s accuracy attained 88.64%, which 

indicated that this method could detect most of the collapsed 

buildings without wrongly identifying many uncollapsed areas 

as collapsed ones. For the class collapsed or uncollapsed, it 

produced both high producer’s and user’s accuracy. This 

implies that the commission and omission errors for the target 

class have significantly declined.  

 
 

Figure 5 A portion of the segmentation result (black lines) 

overlapped on the false colour composite image (band 3, 4, 2 as 

R, G, B). 

 

 

 

Sensor Spatial resolution (m) Acquisition 

date 

Acquisition time (GMT) Off-nadir view angle Satellite 

azimuth 

Satellite elevation 

WV-2 MS 2.0 9-Jan 15:43:33-15: 25.2° 321.4° 61.6° 

WV-2 PAN 0.5 2010 43:38    

QB MS 2.4 15-Jan 15:23:9-15: 20.6° 46.2° 68.1° 

QB PAN 0.6 2010 23:17    
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Table 2. Building collapse detection results by OCSVM using different methods 

methods 
collapsed uncollapsed 

OA Kappa 
PA（%） UA（%） PA（%） UA（%） 

comparative method 44.46 57.89 44.75 83.22 46.11% 0.1456 

hierarchical multi-level method proposed in this study 88.64 61.67 82.9 95.92 84.26% 0.6216 

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy 

 

           
(a)                                                                                                 (b) 

 

Figure 6 detection result by using (a) comparative method (b) hierarchical multi-level method proposed in this study. 

 

Figure 6 shows the detection result by using comparative 

method and hierarchical multi-level method proposed in this 

study. The white areas represent detected building damage class 

(target class).  

    
(a)                                                         (b) 

   
(c)                                                (d) 

 

Figure 7 A close-up look of the building damage detection 

result by the OCSVM using different methods: (a) a local 

neighborhood on pre-quake imagery; (b) the neighborhood on 

post-quake imagery; (c) detection result, using comparative 

method; (d) using hierarchical multi-level method proposed in 

this study; Color assignments: white: building collapsed, black: 

uncollapsed. Within red circle: collapsed, within blue circle: 

uncollapsed. 

To further compare the detection results obtained by using 

different methods, a close-up view of a damaged neighborhood 

is presented in Figure 7. According to (a) and (b), areas within 

red circles are collapsed buildings while areas within blue 

circles are uncollapsed buildings. By comparison of the area 

within red circles, many collapsed buildings were not fully 

detected using comparative method (see (c)), while most of the 

collapsed buildings were detected accurately by using proposed 

method (see (d)).  By comparison of the area within blue circles, 

many uncollapsed buildings were wrongly detected as collapsed 

buildings using comparative method (see (c)), while less and 

less area of uncollapsed buildings were wrongly detected by 

using proposed method (see (d)). This close-up view is 

consistent with analyses of table 2. 

 

 

5. CONCLUSIONS 

In this study, a hierarchical multi-level method of building 

collapse detection using bi-temporal (pre- and post-earthquake) 

VHR images and post-event airborne LiDAR data was proposed. 

The proposed method was evaluated using bi-temporal VHR 

images and LiDAR data of Port au Prince, Haiti, which was 

heavily hit by an earthquake in January 2010. The method was 

also compared with some existing methods. The results showed 

that the method proposed in this study significantly 

outperformed the existing methods with improvement of 8% in 

overall accuracy and 47.6% in kappa coefficient. The proposed 

method provided a fast and reliable method to detect urban 

building collapse, which can also be applied to relevant 

applications. 
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