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ABSTRACT:

The increasing availability of very high resolution (VHR) remotely sensed images makes it possible to detect and assess urban
building damages in the aftermath of earthquake disasters by using these data. However, the accuracy obtained using spectral
features from VHR data alone is comparatively low, since both undamaged and collapsed buildings are spectrally similar. The height
information provided by airborne LiDAR (Light Detection And Ranging) data is complementary to VHR imagery. Thus,
combination of these two datasets will be beneficial to the automatic and accurate extraction of building collapse. In this study, a
hierarchical multi-level method of building collapse detection using bi-temporal (pre- and post-earthquake) VHR images and post-
event airborne LiDAR data was proposed. First, buildings, bare ground, vegetation and shadows were extracted using post-event
image and LiDAR data and masked out. Then building collapse was extracted using the bi-temporal VHR images of the remaining
area with a one-class classifier. The proposed method was evaluated using bi-temporal VHR images and LiDAR data of Port au
Prince, Haiti, which was heavily hit by an earthquake in January 2010. The method was also compared with some existing methods.
The results showed that the method proposed in this study significantly outperformed the existing methods, with improvement range
of 47.6% in kappa coefficient. The proposed method provided a fast and reliable way of detecting urban building collapse, which can

also be applied to relevant applications.

1. INTRODUCTION

Timely and accurate post-earthquake damage information is of
great importance to disaster assessment and management. With
the development of remote sensing technology, the availability
of very high resolution (VHR) satellite imagery makes it
possible to detect and assess building damage in the aftermath
of earthquakes.

Many studies have been focused on building damage detection
these years. The fundamental principle of building damage
detection is to automatically detect changes between bi-
temporal (pre- and post- earthquake) images of the quaked
region. Therefore, traditional change detection methods can be
applied directly (e.g. Al-Khudhairy et al. 2005, Huyck et al.
2002, Matsumoto et al. 2006, Pagot and Pesaresi 2008).
However, existing methods have some defects. There is much
spectral similarity between damaged and undamaged (intact)
buildings, as well as buildings and other man-made structures
with impervious surface. As a consequence, accuracy of the
detection is relatively low when using spectral bands alone.
Aimed at solving the problem discussed above, other than using
spectral bands, some researchers use texture to improve the
detection accuracy (Coburn and Roberts 2004) and some use
landscape Metrics to aid the detection (Eva. S. M. 2011). In
these years, many studies have used LiDAR data and VHR
images to extract building (e.g. Vu, etal. 2009) and have had
many good results. But few studies have used LiDAR data and
VHR images to detect building collapse. So, in this study, we
used Light Detection And Ranging (LiDAR) data to distinguish
collapsed buildings, undamaged buildings and bare ground
which have spectral similarities, as they have different heights.

2. METHODS

In this study, a hierarchical multi-level method of building
collapse detection using bi-temporal (pre- and post-earthquake)
VHR images and post-event airborne LiDAR data was proposed.
Since there are many types and extents of building damage, with
building collapse being the most severe one, this study mainly
focused on detection of building collapse. As the object-based
analysis methods generally showed better performance than
pixel-based methods (e.g. Al-Khudhairy et al. 2005, Matsumoto
et al. 2006), all the classifications in this study were
implemented after image segmentation. After the segmentation,
buildings, bare ground, vegetation and shadow were extracted
using post-event image and LiDAR data and masked out in
order to diminish the spectral confusion among different ground
features. Then In order to improve the accuracy, we created a
new image by adding texture bands which were calculated from
VHR images to the remaining area of the bi-temporal VHR
images. Lastly, we extracted building collapse from the new
image with the One-Class Support Vector Machine (OCSVM)
classifier. We also used a comparative method to extract
building collapse. First, building collapse was extracted using
the bi-temporal VHR images with the OCSVM classifier.
Secondly, buildings, bare ground were extracted using LiDAR
data. Thirdly, buildings, bare ground were removed from
building collapse result. The proposed method and comparative
method were showed in Figure 1. The whole procedure adopted
in this study is described in detail in the following section.

2.1 Image segmentation

Image segmentation was applied to bitemporal data using
Fractal Net Evolution Approach (FNEA) (Yu et al., 2006)
algorithm in the eCognition software package. By comparing
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Figure 1. (a)Building collapse detection method proposed in this paper (b) Comparative method

detection results produced by using different levels of
segmentation, it was indicated that a compact and dense
segmentation at a relatively low level of segmentation tends to
produce higher accuracy. As earthquake resulted in deformation
from original shapes as well as dense and irregular edges,
smaller segments could better delineate post-event features of
land cover.

2.2 Multiband texture by Multivariate Variogram

In order to improve the accuracy of bitemporal classification,
image texture was also included. A multiband texture measured
using Multivariate Variogram was used. Multivariate
Variogram (MV) is a geostatistic tool, which is derived from the
Univariate Variogram (UV) function defined in equation (1).

7/(h)=%E[DN(X)—DN(x+h)]Z ()

Where h is the distance vector, E is the mathematical
expectation, and » (h) is half of the second moment of the
increments between the pixel pair, x and x+h .
The experimental UV can be computed as:
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where N (h) is the number of pixel pairs with a certain distance
vector h, dn(.) is the digital numbers of pixel x; and x;+h.
Therefore, 7 q(h) is the semivariance of digital values between
the pixel pairs, measuring the spatial variability of radiometric
data within a single band.
As for multispectral images, MV is derived to quantify the joint
spatial variability of two or more bands. For an image of p
bands, MV is defined as:
26/(h) = AVG| (DN (x)~ DN (x+)) I (DN (x)~ DN (x+h))' | = AvG[d (n)’]
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where DN(x) is the p-dimension row vector, | is a pxp identity
matrix, T is the transpose of the matrix. AVGI.] is the arithmetic
average of the Euclidean distance in the p-dimension space. G(h)
characterizes the joint autocorrelation of the p bands of a
multispectral images. In this study, MV was used as a
multiband texture measure derived from spectral bands of
multispectral images. If the spectral signatures within a certain
region share much similarity, a low MV value will be produced,
and vice versa.

The experimental MV (equation 3) can be used to calculate
multiband texture and multitemporal texture. An appropriate
window size and a lag distance h are first determined. For a
specific lag distance h, the average of the function values,
considered as the multiband texture, is assigned to the central
pixel of the moving window. Thus, two crucial parameters

should be carefully considered: window size and lag distance h
(including size and direction).

As for window size, a large window might contain several
adjacent land cover types, thus reducing the classification
accuracy. On the other hand, a small window might fail to
correctly characterize the spatial structures. In this study, the
selection of window size was done by trial and error. The size
that could maximize the classification accuracy was chosen as
the optimal window size.

The size of lag distance can be from 1 up to half of the window
size. However, the value of the lag distance of multiband texture
was assigned as 1 in this study, for it has been proved to be the
best distance to describe the spatial correlation of the adjacent
pixels (Chica-Olmo and Arbarca-Hernandez 2000).

Since collapsed buildings usually have unsmooth surfaces, the
pixels located in each building tend to have low spatial
correlation spectrally, which leads to a high MV value. Yet MV
values are also high on boundaries of adjacent land covers,
regardless of the earthquake. That will reduce the effectiveness
of multiband texture on the detection of damaged buildings. In
order to minimize the effects of edges and boundaries, we
calculated MV values on all directions and chose the minimum
one as the final MV value. In this way, MV values of pixels on
edges and boundaries became relatively low, for their values
usually had a big change only in a certain direction, while MV
values of pixels in damaged buildings remained high in all
directions. Suppose the directions of lag distance hy, h,, h; and
h4 are east-west (E-W), south-north (S-N), southeast-northwest
(SE-NW) and southwest-northeast (SW-NE) in turn, then the
MV value for multiband texture used in this study is:

(4)

G(h)= min{% AVG[d (hl)z]é AVG|d (hz)z]%AVG[d (hg)z]%AVG[d (hA)Z]}

2.3 Removal of Vegetation, building, bare ground

In order to remove vegetation, building and bare ground, we
first extracted them from post-event image and LiDAR data and
then masked out. After image segmentation, average values of
height and NDVI for each object (segment) were separately
calculated. A NDVI threshold was set to distinguish between
vegetation and non-vegetation.

In this study, we supposed that the heights of collapsed
buildings were higher than bare ground and lower than
uncollapsed buildings. So, two height thresholds h; and h, were
set to separate objects into 3 height levels (h<hl, hi<h<h2,
h>h2).

Bare ground was identified as the segments with the heights
lower than h; and the NDVI values lower than the specified
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threshold (i.e. non-vegetation). And buildings were identified as
the segments with the heights higher than h, and the NDVI
values lower than the specified threshold (i.e. non-vegetation).
After detection, vegetation, building, bare ground were removed
from VHR bi-temporal images.

2.4 Removal of shadows

In order to remove shadows, we first extracted them from post-
event image then masked out.

We applied a histogram thresholding method for shadow
detection, which has been successfully used in many previous
studies (e.g., Shu & Freeman, 1990; Shettigara & Sumerling,
1998; Dare, 2005; Chen et al., 2007). The principle of a
histogram thresholding method is based on the intensity
difference of shaded and non-shaded areas. It assumes the
histogram of the image is bimodal, with shadows (or dark
objects in general) occupying the lower end of the histogram,
and non-shadows being located at the other end of the
histogram.

87185 315 1743

Figure 2. The histogram of brightness (i.e., the mean of the
three bands, NIR, red and green), calculated using pixels as
statistical units. A bimodal histogram splitting method was used
to determine the optimum threshold value of 185 for separation
of shaded pixels from non-shaded pixels.

In this study, we used the brightness, which was defined as the
mean of the three bands—NIR, red, and green—to determine the
threshold value for shadows and non-shadows. Figure 2 shows
the histogram of brightness for the study site, using pixels as
statistical units. The optimum threshold value of 185 was
determined by a bimodal histogram splitting method, which
provides a simple, but robust way for threshold level selection
by identifying the value at the valley between the two peaks in
the histogram as the threshold for shadows and non-shadows
(Dare, 2005; Chen et al., 2007).

We also examined the histogram of brightness based on objects
generated from image segmentation, as opposed to pixels, and
did not find an obvious threshold value between shaded and
non-shaded objects. Therefore, we applied the threshold value
of 185, as determined from the pixel-based histogram for
segmented objects, and compared it with other threshold values.
Finding that the threshold value of 185 provided the optimum
threshold for the segmented objects, we chose to use a threshold
value of 185 to distinguish shaded objects from non-shaded
objects. A comparison of the pixel-based and object-based
shadow detection was conducted. The overall accuracy of
results for shadow detection from the object-based method was
slightly higher than that of the pixel-based one.

After detection, shadows were removed from VHR bi-temporal
images.

2.5 Bitemporal classification using One Class Support
Vector Machine

In this study, direct bi-temporal classification was adopted and
One Class Support Vector Machine (OCSVM) was selected as
the classifier to effectively detect the building damage using
combined spectral and texture information. As a recently
developed one-class classifier, OCSVM has two main
attractions: first, it requires training samples from one class only,
which is called the target class or the class of interest. Second, it
produces results that extract only the target class, rather than all
classes extracted by conventional classifiers.

Li et al. (2010) used OCSVM for change detection of one
specific land cover class and validated its effectiveness for
change detection. Therefore, it was used in this study to detect
post-earthquake building collapse.  After the removal of
vegetation, buildings, bare ground, shadows, the remaining
areas of bi-temporal images acquired before and after
earthquake and texture bands calculated from the bi-temporal
images were used in classification. The only target class was the
collapsed building class. Since inclusion of samples from the
outlier class (non-target class) could improve the classification
accuracy (Li et al, 2010), besides training samples from the
target class, some outlier samples, mainly from non-damage
class, were also selected and used for classification.

3. STUDY AREA AND DATA
The study area is Port au Prince, Haiti (Figure 3), a densely
populated urban area. The area was heavily hit by the

earthquake that occurred on 12 January 2010. A large number
of buildings in the urban area were damaged and collapsed.

prar] Dominican
Republic
= Cuba
aiti

>z

Port-au-Prince

Figure 3. Location map of the study area

The dataset used in this study includes pre-event Worldview-2
data acquired on 09 January 2010 and post-event QuickBird
data acquired on 15 January 2010. The Worldview-2 data
consist of eight multispectral bands with 2.0 m resolution and a
panchromatic band with 0.5 m resolution. The QuickBird data
consist of four multispectral bands with 2.4 m resolution and a
panchromatic band with 0.6 m resolution.

The parameters of the data acquisition are shown in Table 1.
The multispectral and panchromatic images of both datasets
were fused to produce pan-sharpened multispectral images with
a pixel size of 0.6 m and 0.5 m, respectively, using the Gram-
Schmidt pan-sharpening transformation procedure (Laben and
Brower, 2000) implemented in the ENV1 software package. The
two-date images were then co-registered with a root mean
square error of less than 0.5 pixels and were resampled to a
common pixel size of 0.5 m.

A portion of the pan-sharpened image of 3,100 %< 2,800 pixels
was finally used in the study (Figure 4).
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Table 1. DATA CHARACTERISTICS AND SATELLITE POSITION INFORMATION FOR BOTH DATASETS

Sensor Spatial resolution (m) Acquisition Acquisition time (GMT)  Off-nadir view angle Satellite Satellite elevation
date azimuth
WV-2 MS 2.0 9-Jan 15:43:33-15: 25.2° 321.4° 61.6°
WV-2 PAN 0.5 2010 43:38
QB MS 2.4 15-Jan 15:23:9-15: 20.6° 46.2° 68.1°
QB PAN 0.6 2010 23:17

WV: WorldView; QB: QuickBird; MS: multispectral; PAN: panchromatic.

Figure 4. (a) Pre- and (b) post event pan-sharpened multispectral VHR images of the study area. The image size is 3,100 < 2,800

pixel of 0.5 <0.5m each. (c) post event nDSM of study area

For building damage detection, 12,085 pixels from the building
damage were selected for training the classifier (i.e., OCSVM)
through visual interpretation.

For accuracy assessment, 12469 pixels were directly selected as
test samples for target class (building damage class) through
visual interpretation, while 40170 pixels were randomly
generated as test samples for outlier class. The real classes of all
test samples were ensured after check.

LiDAR data was acquired on January 21%, with a height
accuracy of 1m. The normalized Digital Surface Model (nDSM)
was first generated. The obtained nDSM was then co-registered
with pan-sharpened Quickbird image. Like the VHR images,
3,100 = 2,800 pixels of nDSM were finally used in the study
(Figure4. (c)).

4. RESULTS AND DISCUSSION

Figure 5 shows the selected segmentation result overlapped on
pre-event imagery. Most buildings and vegetation areas were
over segmented on purpose. The mean value of each band of
pixels within each segment was computed and then used as
spectral and textural features of the segment in direct
multitemporal classification by the OCSVM.

The results of building collapse detection by different methods
are listed in table 2. From the table, using comparative method
only obtained an overall accuracy of 46.11% and a kappa
coefficient of 14.56%. The kappa coefficient was particularly
low, which indicated the indiscernibility of the use of this
method.

By using hierarchical multi-level method proposed in this study,
both overall accuracy and kappa coefficient were largely
improved. Overall accuracy increased 38% and kappa
coefficient increased 47.6%, which indicated that commission

and omission errors for the collapse class were significantly
reduced. The producer’s accuracy attained 88.64%, which
indicated that this method could detect most of the collapsed
buildings without wrongly identifying many uncollapsed areas
as collapsed ones. For the class collapsed or uncollapsed, it
produced both high producer’s and user’s accuracy. This
implies that the commission and omission errors for the target
class have significantly declined.

Figure 5 A portion of the segmentation result (black lines)
overlapped on the false colour composite image (band 3, 4, 2 as
R, G, B).
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Table 2. Building collapse detection results by OCSVM using different methods

collapsed uncollapsed
methods OA Kappa
PA (%) UA (%) PA (%) UA (%)
comparative method 44.46 57.89 44.75 83.22 46.11%  0.1456
hierarchical multi-level method proposed in this study 88.64 61.67 82.9 95.92 84.26%  0.6216

PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy

Figure 6 detection result by using (a) comparative method (b) hierarchical multi-level method proposed in this study.

Figure 6 shows the detection result by using comparative
method and hierarchical multi-level method proposed in this
study. The white areas represent detected building damage class
(target class).

Figure 7 A close-up look of the building damage detection
result by the OCSVM using different methods: (a) a local
neighborhood on pre-quake imagery; (b) the neighborhood on
post-quake imagery; (c) detection result, using comparative
method; (d) using hierarchical multi-level method proposed in
this study; Color assignments: white: building collapsed, black:
uncollapsed. Within red circle: collapsed, within blue circle:
uncollapsed.

To further compare the detection results obtained by using
different methods, a close-up view of a damaged neighborhood
is presented in Figure 7. According to (a) and (b), areas within
red circles are collapsed buildings while areas within blue
circles are uncollapsed buildings. By comparison of the area
within red circles, many collapsed buildings were not fully
detected using comparative method (see (c)), while most of the
collapsed buildings were detected accurately by using proposed
method (see (d)). By comparison of the area within blue circles,
many uncollapsed buildings were wrongly detected as collapsed
buildings using comparative method (see (c)), while less and
less area of uncollapsed buildings were wrongly detected by
using proposed method (see (d)). This close-up view is
consistent with analyses of table 2.

5. CONCLUSIONS

In this study, a hierarchical multi-level method of building
collapse detection using bi-temporal (pre- and post-earthquake)
VHR images and post-event airborne LiDAR data was proposed.
The proposed method was evaluated using bi-temporal VHR
images and LiDAR data of Port au Prince, Haiti, which was
heavily hit by an earthquake in January 2010. The method was
also compared with some existing methods. The results showed
that the method proposed in this study significantly
outperformed the existing methods with improvement of 8% in
overall accuracy and 47.6% in kappa coefficient. The proposed
method provided a fast and reliable method to detect urban
building collapse, which can also be applied to relevant
applications.
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