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ABSTRACT: 
 
Phase unwrapping is a key issue for PSP (Permanent Scatters Pairs) time series analysis. In this paper, the LLL method and grid 
search method are applied for determining elevation error and velocity difference in LOS for each PSP, and the RMS is used to 
assess the correctness of the solution. The Delaunay triangulation is used to formulate PSPs, which are used to unwrap elevations and 
velocities of all PSs with respect to a given reference point. The simulation examples with real SAR satellite orbits show that if the 
atmosphere noise is less than 2 radians and the random noise is less than 10 degrees, LLL method can obtain correct solution while 
grid search can obtain solution with a small error probability. 
 

1. INTRODUCTION 

Differential synthetic aperture radar interferometry (DInSAR) 
can detect large-scale surface deformation with millimeter 
accuracy (Goldstein et al.1989). DInSAR is widely used in the 
field of earth sciences such as monitoring deformation of 
seismic fault, ground subsidence, volcanic activity, land slide 
and so on (Colesanti et al. 2006; Zebker et al. 1994; Motagh et 
al. 2007; Pepe et al. 2008; Prati et al. 2010). 
    Time series analysis of interferometric phases provides a 
new idea to avoid the temporal decorrelation and atmospheric 
inhomogeneities during the DInSAR procedure (Ferretti et al. 
2001; Kampes 2006). The time series method concentrates on 
those points maintaining good coherence during a long time 
called coherent targets or persistent scatters (PS). Based on the 
credible interferometric phase information of PSs, subsidence 
information can be obtained accurately (Ferretti et al. 2001; 
Kampes 2006). 

Phase unwrapping is a key issue for PSP (Permanent 
Scatters Pairs) time series analysis. Phase obtained from the 
interferogram is wrapped, varying in [－π, π).The procedure of 
finding the lost 2kπ, getting the continuously changing real 
phase, is called unwrapping. Once the wrapped phase is 
unwrapped, the change of range in Line of Sight (LOS) can be 
obtained, then the height and subsidence velocities of PS points 
can be obtained. 
    Phase unwrapping appeared in the late 1960s, which is in 
one-dimensional. Since the late 1970s, two-dimensional phase 
unwrapping gradually flourished. Especially in 1988, Goldstein 
et al proposed branch-cut method (Branch-Cut), since then, 
various unwrapping algorithm emerged. These algorithms can 
be roughly divided into two categories: the first category is 
based on the path tracking algorithms, mainly including 
branch-cut method, quality map guidance algorithm, mask 
cutting (Mask-cut) algorithm and Flynn minimum discontinuity 
method, etc; the second category is based on the minimum norm 
algorithm, including non-weighted least-squares algorithm, 
preconditioned conjugate gradient (PCG) algorithm, weighted 

multi-grid algorithm, minimum LP norm algorithm, etc. Path 
tracking method can get the unique integer solution with high 
precision, but sometimes its continuity is so poor that there may 
be some wrapped islands; minimum norm unwrapping method 
has a strong continuity, but it may cause gross error be 
distributed to every point.  
    In this paper, we focus on the phase unwrapping of PSP 
time series by using the LLL method and grid search method. 
At first, the methods of the LLL and grid search are introduced, 
the simulation examples are then used to demonstrate the 
effectiveness of the methods, and some conclusions are given at 
last.  
 

2. METHOD FOR PSP TIME SERIES ANALYSIS 

2.1 LLL algorithm 

2.1.1 Basic principle of LLL algorithm 

The LLL algorithm, proposed by Lenstra, Lenstra and Lovász 
(Lenstra et al. 1982) as a lattice space compute algorithm, can 
effectively reduce the search radius and narrow the search area. 
It has been applied to a variety of aspects such as integer 
programming (Finck et al. 1984), cryptography (Lagarias, 1984; 
Coppersmith, 1997) and number theory (Kaltofen et al. 
1991 ).In GNSS and InSAR, a mixed integer least squares 
problem has to be solved in order to fix integer ambiguities and 
calculate positions. The basic idea of LLL algorithm is to 
separate the unknowns into integer part and real part, so as to 
solve integer first and float second. As a result, it is proved that 
LLL algorithm can provide fast and numerically reliable 
routines to a mixed integer least squares problem. 

First, let’s state our problem,  
 
 
                 y＝Ax + Bz + δ                 (1) 
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where x is a real unknown, ݔ א ܴ௞, z is an integer unknown, 
ݖ א ܼ௡, the coefficient matrix ܣ א ܴ௠כ௞, ܤ א ܴ௠כ௡, assuming 
that A, B are with full column rank. Observation ݕ א ܴ௠כଵ. Z 
represents the set of integers, R represents the set of real 
numbers, δ is noise vector. Our aim is to solve the unknowns x 
and z by known matrix A, B, and observations y. We want 
solutions to minimize the 2-norm of vector y－Ax－Bz, that 
means, 
 
 
              min௫אோೖ，௭א௓೙ԡݕ െ ݔܣ െ ԡଶݖܤ

ଶ          (2) 
 
 
If the matrix A has the QR factorization, then 
 
 

ሾܳ஺＝ܣ                 തܳ஺ሿ ቂܴ஺
0

ቃ                  (3) 

 
 
where ሾܳ஺ തܳ஺ሿ א ܴ௠כ௠  is orthogonal and ܴ஺ א ܴ௞כ௞  is 
nonsingular upper triangular. Then we have  
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If z is fixed, there must be a appropriate ݔ א ܴ௞כଵ that enable 
the first term in (4) is zero, therefore the problem can be 
decomposed into the following two small problems: 
 
A. An ordinary integer least squares problem to calculate ̂ݖ 
 
 

             min௭א௓೙ฮ തܳ
஺
ݕ் െ തܳ

஺
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ଶ
                (5) 

 
 
Specifically, a reduction algorithm and a search algorithm are 
presented to get the integer z which satisfies (5). With z known, 
(2) becomes a least squares problem. 
 
B. With ̂ݖ back into (4) and let the first term be zero, we get 

 ො fromݔ
 
 
                   ܴ஺ݔ＝ܳ஺

ݕ் െ ܳ஺
 (6)               ݖ̂ܤ்

 
 
For simplicity, we note the above problem A as: 
 
 
                  min௭א௓೙ԡݕ െ ԡଶݖܤ

ଶ                (7) 
 
 
Obviously, y is a known vector, z is the least squares solution 
required, Bz is a vector in the grid, thus seeking the solution in 
(7) is of searching the nearest grid vector to y in fact. This is a 
CVP(Closest Vector Problem) problem and has been proven to 
be an NP-hard problem. To make the search process simple and 
efficient, a lot of reduction methods are proposed. The LLL 
method is an outstanding one of them. 
Reduction: 

First, with the minimum main-element method, do QRZ 
decomposition to matrix B to turn it into an upper triangular 
matrix R and an orthogonal matrix Q. Second, reduce the 
non-diagonal elements in R using integer Gaussian transform, 
so as to remove correlation and enable efficient search. Third, 
rearrange columns using minimum main elements principles to 
meet the LLL conditions. 
Search: 
After reduction, we need to search the optimal integer solution 
ݖ א ܼ௡ to satisfy  min௭ҧא௓೙ԡݕത െ ҧԡଶݖܴ

ଶ . Given a threshold β, 
assuming optimal integer solution z satisfies: 
 
 
                             ݂ሺݖሻ ؜ ԡݕ െ ԡଶݖܴ

ଶ ൏  (8)             ߚ
 
 
This corresponds to search the optimal solution within an 
ellipsoid. 
Then decompose R[rij] into first n-1 order sub-matrix and the 
last line, y into the (n-1) dimensional sub-vector and the last 
element. So,  
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To satisfy (8), there should be: 
 
 
                    ሺݕ௡ െ ௡ሻଶݖ௡௡ݎ ൏  (10)               ߚ

and, ฮ൫ݕଵ െ ଵ:௡ିଵ,௡൯ݎ௡ݖ െ ܴଵݖଵฮ
ଶ

ଶ
൏ ߚ െ ሺݕ௡ െ  ௡ሻଶ  (11)ݖ௡௡ݎ

 
 
(11) is then an n-1 dimensional integer least squares problem, 
and the corresponding search radius  is 

ߩ ൌ ඥሺߚ െ ሺݕ௡ െ  ௡ሻଶሻ. The integer solution to (10) falls inݖ௡௡ݎ
ሾሺݕ௡ െ ,௡௡ݎ/ሻߚ ሺݕ௡ ൅  ,௡௡ሿ. Recursively using this algorithmݎ/ሻߚ
we can solve the upper triangular integer least squares problem. 

Once the unknown integer solution ̂ݖ is solved, we can 
use the following upper triangular matrix to solve the k 
corresponding real parameters: ܴ஺ݔො ൌ ܳ஺

்ሺ்݁ݕ െ ሻݖ̂ܤ , where 
݁ ൌ ሾ1, ڮ ,1ሿ்ܴ߳௞ 
 

2.1.2 LLL method used for InSAR 

Assume that there are N SAR images of the same area, obtained 
at time t1,⋯, tn. One image is chosen as the master and the other 
N-1 images are chosen as the slaves, so as to take N-1 
interferograms. The unwrapped phase between pixel i and pixel 
j in the interferogram k is represented as 
 
 
୧୨׎∆      

୩ ൌ α୩ כ v୧୨ ൅ β୩ כ h୧୨ ൅ a0୧୨ ൅ 2π כ z ൅ ൅ δ   (12) 
 
 
where v୧୨  and h୧୨  are the relative displacement rate and 
relative error of elevation respectively. β୩  changes with 
vertical baseline and α୩  changes with time baseline. a0୧୨  is 
initial phase difference due to hardware defects. z is the number 
of unknown circles and δ  is noise corresponding to 
decorrelation error, unmodeled nonlinear settlement, hardware 
defects and so on. Note that the atmosphere phase has been 
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considered to be spatial correlated which can be greatly reduced 
through near points differential 

We can assume relative error of elevation h୧୨, relative 
displacement rate v୧୨, an initial phase a0୧୨ and certain noise δ 
at the point i and j, generate a simulation phase with (12). Later 
wrap the phase and treat it as double differential phase 
observations. The LLL algorithm is then used to solve the 
integer least-squares problem for the parameters of v୧୨ , h୧୨, 
a0୧୨ and ambuguity integer z. The reliability and efficiency of 
the solution is done by comparing the solution obtained with the 
known simulated values. 

Suppose there are k +1 SAR images, generating k 
interferogram images. As one point in one interferogram has 
one ambiguity integer z, together with v୧୨ , h୧୨, a0୧୨, there are 
k+3 unknowns. As there are only k observations, hence the 
number of error equation is less than the number of unknowns 
and the coefficient matrix is rank-defect. For obtaining 
least-squares solution, we assume three initial values for the 
three unknown parameters as: 
 
 

                   ቐ
h୧୨＝0
௜௝＝0ݒ

ܽ0௜௝＝0
                      (13) 

 
 
to make the coefficient matrix full-rank. 

Of course, these initial values are unreasonable, but we 
can update these initial unknowns by iterations. The new 
observation equation can be expressed as follows: 
 
 

ݕ                           ൌ ቀ1ܣ
2ܣ

ቁ ݔ ൅ ቀ1ܤ
2ܤ

ቁ ݖ ൅ δ          (14) 

 
 
where A1 has k rows, its three columns are the elevation-phase 
conversion factor, the sedimentation-phase conversion factor 
and 1. A2 is a 3*3 identity matrix; Real unknown x represents 
v୧୨, h୧୨ and a0୧୨. B1 has k rows and it’s an identity matrix 
times 2π. B2 is a zero matrix. If signal to noise ratio of 
observations is high, the best solution can be found with a few 
iteration loops. 
 

2.2 Grid search algorithm 

The basic principle of multi-parameter grid search method is to 
divide possible variable range of each unknown parameter into 
a series of discrete values, ranging from small to large. By 
calculating the target function values of each possible parameter 
combinations, the parameter combinations with the minimum 
target function value is defined as the optimum solution. The 
grid search method can guarantee the solution is the global 
optimal, however, its accuracy is determined by limited search 
steps, and the computer load will increase dramatically when 
parameters are larger and the searching step becomes small.   

Grid search method can be used to solve the relative 
displacement rate and the error of elevation among PSPs. The 
target function of the grid search is defined as the root mean 
squares (RMS) of residuals of the warped double phase 
differences. So there is no need to do phase unwrapping for the 
grid search method, thus error during unwrapping process is 
avoided. What’s more, grid search method is relatively simple 
and easy to be implemented. 

 

3. SIMULATION EXPERIMENTS AND ANALYSIS 

3.1 Program reliability test 

The land subsidence of Shanghai is currently stabilized, 
sedimentation rate in general is less than 10mm/y. Assume that 
there are only small amount of high buildings in place of 
interest, so the relative error of elevation ranges from -30m to 
30m.  

3.1.1 LLL program test 

Let, 
h୧୨: [-30, 30] m, sampling every one meter, total number of 
possible values is 61 ; 
v୧୨ : [-10, 10] mm/y, sampling every one millimeter, total 
number is 21 ; 
a0୧୨: [-1.5, 1.5] radian, sampling every 0.1rad, total number is 
31 . 

First, generate 61 * 21 * 31 =39711 samples. For each 
group (v୧୨, h୧୨, a0୧୨), a simulated interferometric phase time 
series is given with certain noise. Then the reliability of the 
program will be evaluated by whether the ambiguity integer z is 
solved correctly. It is proved that for all these 39711 
combinations, all z obtained by LLL are correct and the solution 
is very close to the true value. Figure 1 shows corresponding 
phase RMS of each combination test. 
 

 
Figure 1. Phase RMS of each combination 

 

 
Figure 2. Histogram of difference between the simulation 

sediment velocity and LLL solution 
 
The histogram of difference between the simulation 

relative sediment velocity and LLL solution is shown in Figure 
2 while the histogram of difference between the relative 
simulation elevation error and LLL solution is shown in Figure 
3. As a result, the phase standard deviation of all combinations 
are less than 2δ（δ is the phase error.）and it takes few minutes to 
work out all the 39711 combination tests. All the differences 
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between the simulation sediment velocity and LLL solution are 
less than 0.05mm/y while most of the differences between the 
simulation elevation error and LLL solution are less than 0.05m.  
Thus the program is reliable and efficient. 

 
Figure 3. Histogram of difference between the simulation 

elevation error and LLL solution 

3.1.2 Grid search program test 

Assume the searching step of sediment rate is 1mm / y while the 
step of elevation error is 1m. On the assumption that the ground 
subsidence is linear, then for arbitrary v୧୨ , h୧୨ , a0୧୨ 
combinations（v୧୨ :（ -30mm/y, 20mm/y） , h୧୨ :(-30m,30m), 
a0୧୨=0）, the histogram of difference between the simulation 
relative sediment velocity and grid search solution is shown in 
Figure 4 while the histogram of difference between the relative 
simulation elevation error and grid search solution is shown in 
Figure 5. 

From Figure 4 and Figure 5, we can see that most of the 
differences between the simulation sediment velocities and that 
that of grid search solutions are less than 1mm/y while most of 
the differences between the simulation relative elevation errors 
and that of grid search solutions are less than 2m. Thus the grid 
search program is reliable and efficient. 

 

3.2 Delaunay triangle net test with two methods 

In order to approximate the real data, the ENVISAT ASAR data 
from European Space Agency is used. There are 31 ASAR 
images of Shanghai area from February 2007 to May 2010. 
Image of August 2008 is selected as master image, resulting in 
30 interferograms with time and space baselines. The incident 
angle θ and distance from antenna to scattering target are the 
average of 31 images. Figure 6 shows the distribution of 
baseline (m). 
 

 
Figure 4 Histogram of difference between the simulation 

sediment velocity and grid search solution 

 

 
Figure 5 Histogram of difference between the simulation 

elevation error and grid search solution 
 

 
Figure 6 Distribution of baseline 

 
In an area of 10km*10km, 20 points are randomly 

generated and Delaunay triangle net is built by matlab software. 
Deformation phase and topography phase are function of 
vertical baseline and time baseline respectively. Gaussian noise 
is considered and the standard deviation of noise is simulated 
less than 10 degrees. The max atmosphere phase is set as 
2radian and maximum DEM error 20m, maximum sediment 
20mm. Figure 7 shows the Delaunay triangular net. 54 PSPs are 
formed. Table 1 shows the basic parameters in the simulation. 
 

 
Figure 7 The Delaunay triangle net 
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Table 1. The basic parameters in simulation 
Overview of parameters: 

Number of points 20 
Number of interferograms  30 
Width of area [km] 10 
Height of area [km] 10 
Span of Perpendicular baselines[m] 640.4116 
Span of Temporal baselines [y] 3.2603 
Max. DEM error [m] 11.0078 
Min. DEM error [m] -14.2247 
Max. Displacement rate [mm/y] 15.3828 
Min. Displacement rate [mm/y] -12.3324 
Standard noise level [deg] 10 

Figure 8 shows the elevation difference and sediment rate 
difference of all PSPs calculated by the LLL algorithm and the 
grid search method. Figure 9 shows the absolute elevation and 
sediment rate of PS points calculated by the two methods with 
respect to the last PS point. (Assume that the absolute elevation 
and sediment rate of 20th point are zero.) Table 2 shows the 
comparison of true relative elevation errors and sediment rate 
differences of 54 PSPs and their corresponding solutions. 
 
 
 
 
 

 
 

 
Figure 8 Elevation difference and sediment rate difference of arcs calculated by two methods before adjustment 

 

 
Figure 9 Elevation and sediment rate of PS points calculated by two methods before adjustment 
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Table 2. Comparison of true relative elevation errors and sediment rate differences of PSPs with solutions 

Comparison of true v୧୨, h୧୨ with solutions by the two methods 
Start point ID End point ID True values LLL Grid search 

h୧୨ v୧୨ h୧୨ v୧୨ RMS h୧୨ v୧୨ RMS 
1 3 -1.425 -7.332 -1.62 -7.103 0.353 -3 -7 0.397 
1 10 7.994 -0.608 7.802 -0.179 0.365 8.3 0 0.454 
1 12 3.948 -6.214 4.001 -6.508 0.317 3.5 -7 0.491 
2 1 -4.846 8.848 -4.988 8.708 0.364 -2.2 9 1.005 
2 3 -6.271 1.516 -6.608 1.605 0.216 -6.4 2 0.302 
3 4 4.893 -1.528 5.621 -2.373 0.401 8.3 -4 0.653 
3 5 8.032 8.576 8.278 8.079 0.433 4.9 8 1.542 
3 7 -6.193 1.523 -6.179 1.232 0.445 -6.2 1 0.448 
3 10 9.419 6.724 9.425 6.924 0.412 5.7 8 1.175 
4 2 1.378 0.012 0.987 0.768 0.394 0.4 0 0.598 
4 5 3.14 10.104 2.657 10.452 0.431 3.1 11 1.361 
4 6 -6.387 13.173 -6.998 13.948 0.432 -8.3 14 1.089 
4 8 -10.972 15.383 -11.909 15.693 0.403 -13.3 15 1.044 
4 9 -4.355 14.905 -5.073 15.242 0.391 19.7 3 1.531 
5 3 -8.032 -8.576 -8.278 -8.079 0.433 -4.9 -8 1.542 
5 7 -14.225 -7.053 -14.46 -6.847 0.349 -13.8 -8 0.445 
7 3 6.193 -1.523 6.179 -1.232 0.445 6.2 -1 0.448 
7 8 0.113 12.332 -0.112 12.089 0.239 0.5 12 0.256 
7 13 6.176 6.598 6.296 6.593 0.382 2.7 4 1.274 
8 7 -0.113 -12.332 0.112 -12.089 0.239 -0.5 -12 0.256 
8 9 6.617 -0.478 6.839 -0.453 0.267 6.4 -1 0.454 
8 13 6.063 -5.734 6.409 -5.496 0.348 5.6 -6 0.428 
9 6 -2.032 -1.732 -1.925 -1.294 0.387 -1.2 -1 0.631 
9 16 2.3 -7.547 2.429 -7.836 0.364 4.5 -7 0.583 

10 3 -9.419 -6.724 -9.425 -6.924 0.412 -5.7 -8 1.175 
10 11 -5.839 -7.014 -6.026 -7.414 0.214 -5.7 -8 0.422 
10 12 -4.046 -5.606 -3.805 -6.329 0.294 -7.1 -7 1.166 
10 13 -9.436 1.397 -9.307 0.9 0.459 -12.2 1 0.807 
11 12 1.793 1.408 2.221 1.084 0.343 1.8 1 0.457 
11 14 -9.594 -1.46 -9.966 -2.379 0.494 -10 -2 0.5 
11 18 -7.667 4.672 -7.416 4.422 0.46 -8.3 4 0.562 
12 15 -3.964 4.794 -3.705 4.324 0.3 -3.4 4 0.355 
12 18 -9.46 3.265 -9.636 3.338 0.314 -9.7 3 0.321 
13 9 0.554 5.256 0.434 5.044 0.346 0.2 5 0.373 
13 11 3.597 -8.411 3.286 -8.314 0.481 4.5 -7 0.611 
13 14 -5.998 -9.87 -6.679 -10.693 0.515 -7.4 -11 1.037 
13 16 2.854 -2.29 2.862 -2.793 0.513 3.3 -3 0.581 
14 11 9.594 1.46 9.966 2.379 0.494 10 2 0.5 
14 16 8.852 7.58 9.542 7.9 0.488 8.9 8 0.497 
14 19 11.008 3.018 11.567 3.276 0.478 10 2 0.908 
15 17 1.308 2.287 1.078 2.181 0.357 2 3 0.737 
16 6 -4.332 5.815 -4.353 6.543 0.471 -4.3 7 0.491 
16 13 -2.854 2.29 -2.862 2.793 0.513 -3.3 3 0.581 
16 14 -8.852 -7.58 -9.542 -7.9 0.488 -8.9 -8 0.497 
16 20 -8.05 5.528 -8.186 5.596 0.279 -7.9 6 0.299 
17 20 -7.93 3.159 -8.204 3.529 0.468 -9.6 3 0.711 
18 12 9.46 -3.265 9.636 -3.338 0.314 9.7 -3 0.321 
18 15 5.496 1.529 5.931 0.985 0.29 6.3 1 0.345 
18 17 6.804 3.816 7.009 3.166 0.305 8.2 4 0.883 
18 19 9.08 -3.115 9.017 -3.525 0.366 9.6 -3 0.402 
18 20 -1.126 6.975 -1.194 6.696 0.433 -0.9 8 0.579 
19 16 -2.156 4.563 -2.026 4.623 0.473 -1.8 5 0.507 
19 20 -10.206 10.09 -10.212 10.22 0.524 -7.7 11 1.01 
20 16 8.05 -5.528 8.186 -5.596 0.279 7.9 -6 0.299 

Note: Red row in the table shows the only wrong solution in the grid search method. h୧୨ represents the relative elevation error of 
PSP and v୧୨ represents sediment rate difference of PSP. 
 

 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-7/W1, 3rd ISPRS IWIDF 2013, 20 – 22 August 2013, Antu, Jilin Province, PR China

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 142



From Figure 8, among 54 PSPs, the LLL method can 
always obtain correct solution with decimeter elevation 
difference and 0.1mm/y sediment rate difference while grid 
search method can almost get correct solution except for one 
wrong solution. As a whole, the accuracy of the LLL method is 
better than that of grid search method. See from Figure 9, all 
the differences between true absolute elevations and that 
calculated by the LLL method is less than 1m while the 
differences between true absolute elevations and that calculated 
by the grid search method is mostly less than 5m. All the 
differences between true absolute deformation rate and that 
calculated by LLL method is less than 1mm/y while the 
differences between true absolute deformation rate and that 
calculated by grid search method is less than 3mm/y. Taking 
the accuracy of the existing InSAR technique into account, 
both results are acceptable.  

From Table 2, we can see that both LLL method and grid 
search method can reach accurate solutions. However, the grid 
search method makes great mistake at dealing with the 14th 
PSP. In fact, the grid search method cannot give integer 
ambiguity because its assumption on search is that the phase 
difference between arbitrary point pairs is within [-π,π). For 
example, if the true phase difference value is 2.8rad, with 
certain noise (e.g.,0.4rad) added, the simulation phase 
difference observation will be 2.8+0.4-2*π=-3.04rad, 
unwrapping using -3.04rad will lead to great error, thus double 
phase difference values near –π or π should be preprocessed. In 
this paper, -3.04rad is mirrored to be 3.04rad which is closer to 
the true value. For the 14th PSP in Table 2, after the preprocess, 
grid search method gives correct solution (dH=-4.2m, 
dv=19mm/y) finally. 
 

4. CONCLUSION 

This paper presents two methods for PSP (Permanent Scatters 
Pairs) time series analysis, namely, LLL algorithm and grid 
search method. 31 SAR images of the Shanghai area from 
ENVISAT are used for taking simulation test. The results show 
that both methods can obtain correct elevation and sediment 
rate of PSPs with acceptable accuracy if the noise including 
atmosphere noise and random noise is less than 20 degrees. The 
LLL method has greater dependence on initial unknowns but 
can obtain accurate solution if iteration process is convergent. 
The grid search method is relatively simple but is 
time-consuming if search step is small, and preprocess should 
be take for observations which values are close to  –π or π. 
We plan to combine these two methods together for PSP 
unwrapping in the future.  
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