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ABSTRACT: 
 
The research on coupling both data source is very important for improving the accuracy of Image information interpretation and 
target recognition. In this paper a classifier is presented, which is based on integration of both active and passive remote sensing data 
and the Maximum Likelihood classification for inversion of soil moisture and this method is tested in Heihe river basin, a semi-arid 
area in the north-west of china. In the algorithm the wavelet transform and IHS are combined to integrate TM3, TM4, TM5 and 
ASAR data. The method of maximum distance substitution in local region is adopted as the fusion rule for prominent expression of 
the detailed information in the fusion image, as well as the spectral information of TM can be retained. Then the new R, G, B 
components in the fusion image and the TM6 is taken as the input to the Maximum Likelihood classification, and the output 
corresponds to five different categories according to different grades of soil moisture. The field measurements are carried out for 
validation of the method. The results show that the accuracy of completely correct classification is 66.3%, and if the discrepancy 
within one grade was considered to be acceptable, the precision is as high as 92.6%. Therefore the classifier can effectively be used 
to reflect the distribution of soil moisture in the study area.  
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1. INTRODUCTION 

Water is the foremost material for human's survival and 
sustainable development, and also is a key variable in 
describing the water and energy exchanges between the land 
surface and atmosphere interfaces. According to the incomplete 
statistics, serious drought occurred on average once every two 
years in China since 1949, an annual average of 303,210,000 
acres were affected by aridity, which accounted for 59.3% of 
the total area affected by all kinds of climate disasters1. 
Therefore it is extremely significant to develop a method of soil 
moisture monitoring and it is meaningful for drought disaster 
reduction, national economic and social sustainable 
development.    
Remote sensing is a technology based on the theory of objects 
electromagnetic wave of emission and reflection. It can be used 
to collect the long-term and dynamic land surface information 
and monitor the changes of environment. Most often, it is 
considered that data from NOAA-AVHRR, Landsat TM and 
Radarsat are used to retrieve the soil moisture by traditional 
remote sensing models. These models can be divided into 
several categories: Thermal Inertia Method, Anomaly 
Vegetation Index, Vegetation Temperature Vegetation Dryness 
Index and some models developed by microwave remote 
sensing etc. Different models have their own application 
conditions and limitations. There are many optical remote 
sensing sensors and images used to get the land surface 
information, but it is vulnerable by effect of atmosphere 
condition, cloud coverage and solar radiation conditions；
Microwave remote sensing has the characteristics of all-day, all-
weather and strong penetration, but it is strongly influenced by 

vegetation coverage, surface roughness, surface heterogeneity 
and so on.   
This paper presents a method based on integration of both 
active and passive remote sensing data for inversion of soil 
moisture. The experiment is carried out in Heihe river basin, a 
semi-arid area in the north-west of china. This method takes 
good use of the advantages from both optical and microwave 
remote sensing. In the algorithm the wavelet transform and IHS 
are used to integrate TM3, TM4, TM5 and ASAR data. Then, 
the Maximum likelihood is used to classify and extract soil 
moisture information. The new R, G, B components in the 
fusion image and the TM6 are used as the input of the classifier, 
and the output corresponds to five different categories 
according to different levels of soil moisture values.  
 

2. EXPERIMENTAL DATASET AND STUDY AREA 

2.1 Study area description  

The study area locates in Grass Station of Lanzhou University 
in Zhang Ye district, Gansu province with a central 
geographical coordinates of 39.25043°N, 100.005871°E, and 
altitude of 1385 meters. Land in the study area is dominantly 
covered by sparse grassland, some agricultural fields and 
seriously bare salinization land2. The soil texture in the study 
area is nearly constant: sand 16.7%, slob 74.8%, clay 8.5%. The 
measures and reports used in this study are conducted during 
the Watershed Airborne Telemetry Experiment in 2008. 
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2.2 Ground observation 

The mean surface gravimetric moisture content is collected from 
587 sites of surface layer (0 ～ 5cm). The field measured 
gravimetric moisture content are mostly between 20% and 36%, 
but it is below 5% in the Desert Experimental Station and as 
high as 60.9% in some humid area (A point in the Grass Station 
covered with reed). 
 
2.3 Satellite data 

The satellite data used in the study are TM and ASAR 
(Advanced Synthetic Aperture Radar) acquired on 07/07/2008 
and 11/07/2008 respectively. ASAR is one of the sensors 
carried by ENVISAT-1, this instrument is a C-band radar 
(central wavelength 5.357cm) with multi-polarization, seven 
observation angle and five operation modes.  

In the study, we use the ASAR with code-name 
ASAR_APP_1P and Alternating Polarisation mode 
corresponding to high resolution data (12.5m*12.5m by pixel) 
and two polarizations of VV and VH. Fig. 1 illustrates the false 
color composite image (Fig. 1(a)) composed by TM3, 4, 5 and 
ASAR image in VV polarization (Fig. 1(b)).  

 

 
 Figure 1(a) the false color composite image   

   
       Figure 1 (b) ASAR image in VV polarization 

Figure 1 The images used in the paper 
  

3. FUSION OF TM AND ASAR DATA 

3.1 Analysis of the integration strategy 

The research aims to extract the information of soil moisture. 
There is a strong relationship between soil moisture and land 
surface reflectivity and temperature, so people start from the 
analysis of objects’ spectrum features and use many methods to 
monitor soil moisture, such as varies of humidity index, 
vegetation index, temperature index, temperature-vegetation 
index and so on3, 4, 5. The TM3 and TM4 were adopted to 
describe the characters of vegetation because of their strong 

absorption of plant chlorophyll and high reflection of plants; 
TM6 reflecting the information of objects’ temperature, has a 
close relationship to soil moisture; The wavelength of TM5 
(1.55μm-1.75μm) is in the water absorption band (1.4μm -
1.9μm), so TM5 is very sensitive to soil moisture and humidity. 
Although these optical bands can be combined as varies of 
remote sensing index to obtain the information of soil moisture, 
they are easily limited by atmospheric condition, cloud 
coverage and solar radiation conditions. Microwave remote 
sensing has the characteristics of all-day, all-weather and strong 
penetration, and can be used as the significant 
complementarities of optical remote sensing. The backscattering 
coefficient of radar can be written as the function of soil 
moisture6:  

0 ( )f Veg Sr mvσ = ，，                      (1) 
Where  σ0 is the backscattering coefficient; Veg is the parameter 
of vegetation; Sr is the surface roughness and mv is the soil 
moisture. With the changes of soil moisture, the dielectric 
constant of soil alters obviously and makes the change of radar 
echo around 20~80db. Contemporarily the radar signal is also 
affected by vegetation coverage, surface roughness, surface 
heterogeneity and so on6. 
Consequently, in order to extract the information of soil 
moisture precisely, we take good use of the advantages of both 
optic and microwave remote sensing in reflecting soil moisture, 
and fuse the optic data of TM3, 4, 5, 6 and microwave data 
ASAR. More useful information and better precision can be 
gained by the data fusion.    
 
3.2 Fusion method 

Wavelet transform and HIS color transform are used to 
syncretize the TM3, 4, 5 and ASAR in this paper.  
Comparing to normal wavelet transform, wavelet packet 
transform is a more accurate method for signal decomposition 
based on the multi-resolution wavelet analysis, it can further 
decompose the signal on the high-frequency and transform the 
signal to any frequency domain. 
The basic formula of wavelet packet transform is defined as7: 
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Where kh
 is a high-pass filter, kg

 is a low-pass filter, their 

length is 2N. 2 ( )n tϕ
 is the scaling function, and 2 1( )n tφ +  is 

the mother wavelet function.  
The main steps of image fusion are as follows: 
1) Taking TM5, 4, 3 as R, G, B in the HIS color transform, 
intensity (I) , hue, saturation can be gotten after the transform. 
2) At first, histogram matching of the backscattering coefficient 
of ASAR and I is carried out. Then a kind of wavelet called 
Harr based on multi-resolution wavelet analysis is built up to 
decompose the ASAR and I respectively, the number of the 
decomposition layer is 3. So we can obtain the low-frequency 
part and the high-frequency part of each image. At last, the low-
frequency part of I is reserved at each layer, and the low-
frequency part of two images are integrated to one image by a 
certain algorithm. 
3) The fusion algorithm is described as follows: 

 (1 )* *F A Bα α= − +                      (3) 
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Where A and B are the high-frequency part of intensity and 
ASAR respectively, α  is the weight, F is the high-frequency 
part of the image fused. In the certain layer of the wavelet 
decomposition, an array of 3*3 pixels is used to calculate the 
mean square variance between the central pixel and its 
surrounding eight pixels then a can be written as: 

 
* B

BA

K S
S S

α =
+

                      （4） 

Where SA and SB are the mean square variance of image A and 
B respectively, K is the alterable coefficient, it can be increased 
when we need more details and edge information of B. K is 
determined by a, and the value of a is between 0 and 1.  
4) When the fusion of high-frequency part is accomplished, we 
can use it and the low-frequency part of I to rebuild the new 
intensity (I’) by inverse wavelet transform on every layer of the 
decomposition. Then, I’, H, S are used to inverse HIS transform 
and the new R’, G’, B’ can be obtained. 
Presently, the radar data is often used to substitute I of the HIS 
transforms in the integration of optic and radar data8. The 
details of fusion images can be enhanced by this way, but lots of 
spectral information will be lost, which causes the image 
distortion, and is not conductive to extract the information of 
soil moisture in next steps. In this study, the ASAR and I are 
integrated by (3) and (4). The algorithm can not only reserve the 
details of ASAR, but also retain the multi-spectral information 

of TM to some extent. It is propitious to extract the information 
of soil moisture.     
 

4. THE EXTRACTION OF SOIL MOISTURE BY 
MAXIMUM LIKELIHOOD CLASSIFICATION. 

4.1 Experiments  

The R’, G’, B’obtained by the fusion of TM and ASAR, and 
TM6 are taken as the 4 input bands for the maximum likelihood 
classification. The 587 field measurements of soil moisture are 
divided to five grades: less than 10%, 10%-20%, 20%-30%, 
30%-40% and beyond 40%. According to geographical 
coordinates of the field measurements, various grades of 
training data sets and validation data sets can be selected 
respectively. Because there is obvious difference of the 
spectrum between the bare soil and the vegetation coverage area, 
it is not conducive to put them together when extracting the soil 
moisture information. We need to process the bare soil and the 
vegetation coverage area separately. The training data set and 
validating data set in this study is as follows (Tab 1): When the 
training data is chosen, the Maximum Likelihood Classification 
is used to classify and the distribution image of soil moisture 
can be obtained in the bare soil and vegetation coverage area 
separately. Their mosaic image is given in Fig. 2. 
 

Classification 10% or less 10%-20% 20%-30% 30%-40% 40% or more 

Training data set in bare soil 60 10 26 89 30 
Validating data set in bare soil 26 16 20 29 7 
Training data set in vegetation coverage area 0 21 87 53 21 
Validating data set in vegetation coverage area 0 12 48 27 5 
total 86 59 181 198 63 

Table 1. The training data set and validating data set 
 

 
Figure 2. The distribution image of soil moisture in Zhang Ye 

 
4.2 Results and discussions 

The validating data set is used to verify the effectiveness of the 
distribution image of soil moisture in bare soil and vegetation 

coverage area. The precision analysis is shown in the Tab 2 and 
Tab 3.   It is shown in Tab 2 that there are 98 validating samples 
in bare soil area, 61 samples are adjudged rightly, so the 
accuracy is 62.2%; in the vegetation coverage area 92 samples 
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have 65 good judgments, which accounts for 70.6%. The overall classification result is shown in Tab 4: 
 

   Validating data 
Classes 10% or less 10%-20% 20%-30% 30%-40% 40% or more 

10% or less 25 0 0 0 0 
10%-20% 0 7 0 4 1 
20%-30% 1 8 10 7 1 
30%-40% 0 1 9 16 2 
40% or more 0 0 1 2 3 

total 26 16 20 29 7 
Table 2. The precision analysis in bare soil 

 

   Validating data 
Classes 10%-20% 20%-30% 30%-40% 40% or more 

10%-20% 9 0 3 0 
20%-30% 1 35 5 0 
30%-40% 2 13 16 0 
40% or more 0 0 3 5 

total 12 48 27 5 
             Table 3. The precision analysis in vegetation coverage area 

 
error Bare soil area Vegetation coverage area All samples 

Completely right 61 65 126 

Discrepancy of one grade 28 22 50 

Discrepancy of two grade 8 5 13 

Discrepancy of three grade 1 0 1 

Discrepancy of four grade 0 0 0 

total  98 92 190 
Table 4. The overall analysis of classification 

 
The overall precision for classification, presented in Tab 4, is 
66.3%, and the accuracy is significantly higher in bare soil area 
than it in vegetation coverage area. If the discrepancy within 
one grade was considered to be acceptable, the precision is as 
high as 92.6%. Therefore, the algorithm in this article is 
comparatively accurate in extraction of the information of soil 
moisture.    
 

5. CONCLUSION  
A Maximum Likelihood classifier based on integration of TM 
and ASAR data is presented to extract the information of soil 
moisture. In the algorithm the wavelet and IHS transform are 
combined to integrate TM3, TM4, TM5 and ASAR data. Then 
the new R, G, B components in the fusion image and the TM6 
are taken as the input to the Maximum Likelihood classification, 
and the output corresponds to five different categories 
determined by different grades of soil moisture. From the 
validation by field measurements, the following conclusions can 
be made: 
1) The fusion algorithm combined wavelet and IHS transform 
can not only increase the information and definition of the 
images integrated, but also improve the sensitivity of images to 
the information of soil moisture. This can be an effective 
approach to obtain the information of soil moisture. 

2) The Maximum Likelihood classification based on fusion of 
both active and passive remote sensing data can be well used to 
obtain the distribution of soil moisture in some areas. 
3) Although the method proposed in this paper can only extract 
the regional distribution of soil moisture, it cannot calculate the 
exact value of soil moisture. The method is easy and practical to 
apply, without any complicated physical processes. Only some 
field measurements of soil moisture are needed to support the 
method, and no other ground ancillary data are required in 
addition. This paper presents a new method to effectively and 
quickly acquire the information of soil moisture in a certain 
region. Revised November 2012 
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