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ABSTRACT: 

 

Standard interferometry poses a challenge in non-urban areas due to temporal and spatial decorrelation of the radar signal, where 

there is high signal noise.  Techniques such as Small Baseline Subset Algorithm (SBAS) have been proposed to make use of multiple 

interferometric combinations to alleviate the problem. However, the interferograms used in SBAS are multilooked with a boxcar 

(rectangle) filter to reduce phase noise, resulting in a loss of resolution and signal superstition from different objects. In this paper, 

we proposed a modified adaptive spatial filtering algorithm for accurate estimation of interferogram and coherence without 

resolution loss even in rural areas, to better support the deformation monitoring with time series interferometric synthetic aperture 

radar (InSAR) technique. The implemented method identifies the statistically homogenous pixels in a neighbourhood based on the 

goodness-of-fit test, and then applies an adaptive spatial filtering of interferograms. Three statistical tests for the identification of 

distributed targets will be presented, applied to real data. PALSAR data of the yellow river delta in China is used for demonstrating 

the effectiveness of this algorithm in rural areas. 
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1. INTRODUCTION 

InSAR is a microwave remote sensing technique that uses 

satellite images to measure surface deformation over large areas 

with millimetre precision (Rosen, Hensley et al., 2000). With 

the availability of various synthetic aperture radar (SAR) 

images and continual observations over the same area, long time 

deformation can be extracted by using stacking techniques such 

as Persistent Scatterer Interferometry (PSI) (Ferretti, Prati et al., 

2000; 2001) and Small Baseline Subset Algorithm SBAS 

(Berardino, Fornaro et al., 2002; Mora, Lanari et al., 2002). PSI 

processes differential interferograms with respect to a common 

master image, aims to identify coherent targets exhibiting high 

phase stability during the whole time period of observation. 

These phase stable points, slightly affected by temporal and 

geometrical decorrelation, are called persistent scatterers (PSs). 

They often correspond to one or two dominant scatterers in a 

resolution cell and are typically characterized by high 

reflectivity values created by dihedral reflection or simple 

single-bounce scattering (Perissin and Ferretti, 2007). PSI is 

powerful in urban areas where there are a lot of man-made 

structures which behave as good PS. While in non-urban areas, 

characterized by vegetated or low reflectivity homogenous 

regions, such as cropland, volcanoes, mines, reservoirs, the 

spatial density of PSs extracted by PSI is low (< 10 PS/sqkm), 

which is a key limitation for its application in rural areas 

(Ferretti, Fumagalli et al., 2011). Therefore, the deformation 

exploiting of distributed scatterers (DSs, or Gaussian scatterers) 

is gathering more and more attention. DS belongs to areas of 

moderate coherence in some interferometric pairs of stack, 

where there is sufficiently high number of random small 

scatterers within a resolution cell with no dominant scatterer, 

and follows the complex circular Gaussian distribution (Bamler 

and Hartl, 1998). Various techniques, such as SBAS and 

SqueeSAR (Ferretti, Fumagalli et al., 2011) have been proposed 

to process DS, which are widespread in rural areas. 

 

SBAS implements a combination of the multilooked differential 

interferograms, which are properly selected in order to minimize 

the temporal and spatial baselines, hence extenuating the 

decorrelation phenomena (Lanari, Casu et al., 2007). The 

multilooking filters the interferogram with a rectangle window 

to increase the Signal-to-Noise Ratio (SNR), and also brings out 

several drawbacks. First is the lower resolution. Secondly, 

superposition of different objects mixes various radar signals 

from scatterers with different properties, which results in 

severer temporal decorrelation. In addition, undulating terrain 

and abrupt changes in deformation are smoothed out, which 

cause spatial decorrelation. All of these break the stationary 

random condition of Gaussian distribution and lead to 

inaccurate estimation of interferogram and coherence (Bamler 

and Hartl, 1998; Jiang, Ding et al., 2013). While, new technique 

has been developed to select scatterers with stable signals and to 

compensate the topographic phase (Goel and Adam, 2012). 

 

In contrast, SqueeSAR detects DSs based on their amplitude 

statistics (adaptive spatial filtering), exploits all possible 

interferograms and estimates the optimal wrapped phase of each 

DS with phase triangulation algorithm (temporal filtering), 

which is based on the error theory. Then the DSs are processed 

with conventional PSI chain jointly with the PSs. However, the 

Kolmogorov-Smirnov test used in SqueeSAR is too simple and 

not suitable for the long tail distribution which applies in radar 

signal. The linear model assumption is not always the case, and 

improper for the highly non-linear deformation. Besides, the 

phase triangulation algorithm can be computationally expensive 

(Ferretti, Fumagalli et al., 2011), which should be taken into 

consideration in practice. 
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The main objective of this work is to find a proper method to 

identify and make use of DSs, which behave as statistically 

homogenous pixels (SHP) under the assumption that their radar 

signal and geophysical parameters of interest are linear 

correlated. The paper is organized as follows. Section 2 

describes the statistics theory for SHP identification, and the 

algorithm for adaptive spatial phase filtering. Experimental 

results for a test scene located at Yellow River Delta and the 

comparison of different statistics are drawn in Section 3. Finally, 

we wrap-up our findings and propose further steps in the 

conclusion. 

 

 

2. METHODOLOGY 

Suppose we have a stack of N complex SAR images 

coregistered to subpixel accuracy and M single look differential 

interferograms available. The adaptive spatial filtering involves 

the following steps: 

 

2.1 Identification of statistically homogenous pixels 

For each pixel, we wish to identify the surrounding pixels 

which present similar statistical behaviour. Assuming the 

process is stationary and continuous over time, we can get N 

observations by sampling the process temporally, to test the 

degree of similarity between pixels. Since the radar signal of 

distributed scatterers follows the complex circular Gaussian 

distribution with unknown parameters according to the central 

limit theorem, the identification algorithm detects SHP by 

testing if the two corresponding random processes belong to the 

same distribution in statistics, where it is referred to a 

nonparametric goodness-of-fit (GOF) test, and many methods 

have been developed (Conover, 1980). Then the problem can be 

defined as a null hypothesis test,
0 : p qH F F , that the two 

distribution Fp and Fq are the same, versus the alternative, 

1 : p qH F F , that they are not (Parizzi and Brcic, 2011). 

Considering the uncertainty of the radar signal’s distribution, 

we choose three statistical tests based on the amplitude of 

coregistered and calibrated stack of SAR images, namely: the 

Kolmogorov-Smirnov (KS) test, the Cramer-von Mises (CVM) 

test and the Anderson-Darling (AD) test. These tests are 

nonparametric, i.e. the samples are not assumed to follow any 

defined probability distribution.  

 

Kolmogorov-Smirnov Test 

 

The Kolmogorov-Smirnov test is the first goodness-of-fit test 

for general distribution (Kvam and Vidakovic, 2007; Stephens, 

1970). For two-sample version with the same sample size, the 

test statistics DN is defined as the maximum vertical distance 

between the cumulative distribution functions (cdfs):  

 

 max ( )- ( )N p q
x

D F x F x                            (1) 

 

where ( )pF x and ( )qF x are the empirical cdfs of the amplitude 

at pixel p and q, respectively. The null hypotheses H0 will be 

rejected at significant level  if the test statistics DN 

exceeds K
, where K

 is the 1- quantile of the two-sided KS 

test for two samples of equal size N (Conover, 1980). 

 

 

 

Cramer-von Mises Test 

 

The Cramer-von Mises test is another nonparametric GOF test. 

It measures the weighted distance between the empirical cdfs 

based on a squared-error function (Conover, 1980; Kvam and 

Vidakovic, 2007). In our two samples with equal size case, the 

test statistics is defined as 
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where ( )pR i and ( )qR i are the ranks, in the combined ordered 

sample, of the ith smallest of the amplitudes at point p and q, 

respectively. Reject H0 at the significant level if 2

N exceeds 

the 1-  quantile
1w  , the quantiles based on asymptotic 

distribution are given by Anderson and Darling (Anderson and 

Darling, 1952), the exact quantiles for 8N  are given by Burr 

(Burr, 1963). 

 

Anderson-Darling Test 

 

Anderson-Darling test is a specification of CVM test with the 

weighted functional 1 1( ) (1 )x x x    . Compared to KS test, 

AD test puts more weight on the tails of the distributions, which 

is very important in radar application where the distribution’s 

tail plays an important role, leading to a lower rate of the 

second kind of error in the hypotheses (Kvam and Vidakovic, 

2007). The test statistics is defined as 
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where ( )pqF x  is the empirical cdf of the pooled distribution of 

the two samples. Like the CVM test, the null hypotheses will be 

rejected at level  if test statistics 2

,N NA  exceeds the 1-

 quantile 
,

2

N N
A

of the two-sample AD test. The asymptotic 

distribution was given by Anderson (Anderson and Darling, 

1954) for N  , while the quantiles’ approximations for 

finite sample size are given by Pettitt (Pettitt, 1976).  

 

Based on the GOF tests, SHP was selected to mitigate the 

temporal decorrelation phenomenon. However, the radar returns 

of distributed scatterers are still affected by atmospheric phase 

delay, which is spatially smooth with a correlation length of 

1~3km (Hanssen, 2001). It is necessary to limit the scale of the 

identified SHP, according to the geometric resolution of the 

image. 

 

The identification algorithm of SHP was designed as follows: 

1) For each pixel P, define an estimation window centred on P. 

2) Apply the two-sample GOF test between every pixel within 

the estimation window and centre pixel P at a given level of 

significance; select all the pixels that can be considered as 

statistically homogenous. 

3) Abandon the statistically homogenous image pixels that are 

not connected to P directly or through other SHP. 

4) Connect SHP to pixel P for the pixelwise post processing, 

such as interferometric phase filtering and coherence 

estimation. 
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Fig. 1.  Identification results of statistically homogenous pixels (SHP) (in red) for the green pixel with a detection window of 23×23 

pixels by goodness-of-fit test. (a) is 1×5 multilooked interferogram enclosed in black rectangle, (b) is a zoom-in of the black 

rectangle with SHP identified by Kolmogorov-Smirnov test, (c) Cramer-von Mises test, (c) Anderson-Darling test. 

 

 
Fig. 2.  Two examples of Coherence matrix of the PALSAR data stack on the tested distributed scatterers in Yellow River Delta, 

China. It shows the average coherence of all interferometric combination. (a) is a rice field, shows low coherence, (b) is the low bank 

of earth between rice-fields, which shows higher coherence and tendency of coherence loss affected by temporal decorrelation.  

 

2.2 Improved interferogram and coherence estimation 

Based on the SHP identified in the step above, we estimate the 

M filtered interferograms and their coherence. This step was 

performed pixelwise with an adaptive filter by using the SHP 

identified. The adaptive filtered interferogram value 
, ( )j kI P  

from the jth SAR image Sj and the kth SAR image Sk on pixel 

point P was estimated as (Goel and Adam, 2012): 
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where * indicates the conjugation,  is the set of SHP 

identified and 
ref

 is the reference phase, i.e. the topographic 

phase, the orbit phase, etc.  

 

The coherence ,j kr  corresponding to 
,j kI at pixel P is 

estimated as: 
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For identified SHP of pixel P, we estimated its covariance 

matrix C(P) given by (Ferretti, Fumagalli et al., 2011): 
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where H indicates Hermitian conjugation and T indicates 

transposition, ( )d P is the N temporal complex SAR data 

vector, ( )id P is the complex reflectivity value of the ith image 

on pixel P. 

 

The covariance matrix C transferred to a coherence matrix 

 after the normalization with amplitude data. The off-diagonal 

elements of  are an estimation of the complex coherence 

value for all possible interferograms of data stack, while the 

phase values of the matrix correspond to the adaptive filtered 

interferometric phase 
,j k  (Ferretti, Fumagalli et al., 2011): 
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Fig. 3.  Comparison of boxcar multilooking and adaptive spatial filtering algorithm, applied on the interferometric data pair acquired 

on August 13th, 2013 and September 28th, 2013. (a) is Landsat TM image and its 1×5 multilooked interferogram, (b) is coherence and 

interferogram estimate after 4×40 pixels boxcar multilooking, (c) is coherence and interferogram estimate after 4×20 pixels adaptive 

spatial filtering based on Anderson-Darling test. The vertical interferometric phase change within the paddy field was caused by 

irrigation. 

 

 

3. RESULTS AND DISCUSSION 

To assess the improvements related to the new algorithm, we 

selected Yellow River Delta located in northeast Shandong 

Province of China as test site. Yellow River Delta is a typical 

fan-shaped delta, with natural slope 1/8000~1/12000. The 

widespread tidal flats and seasonal inundated wetlands with 

73.6% coverage of reeds made it a unique estuary ecosystem 

(Xie, Shao et al., 2013). The test site is visualized in Landsat 

TM image in Fig. 4a. 13 ALOS PALSAR images in fine mode 

acquired from June, 2007 to October, 2009 with an incident 

angle of 38.73 ° and HH polarization were used. The 

wavelength of PALSAR is 23.6 cm, longer than X or C band 

microwave, resulting in a higher penetration depth, which have 

advantage in rural areas. An area of approximately 20 km×25 

km has been processed. The image resolutions in range and 

azimuth directions are 9.39 m and 3.14 m respectively.  

 

The data stack was pre-processed with Gamma software. All 

algorithms have been implemented in Matlab for the experiment. 

Fig. 1 shows the identification results of SHP (in red) for the 

point (in green) based on three goodness-of-fit tests according 

to Eq.  (1), (2), (3). For a detect window of 23×23 pixels (in 

black), 106 pixels were selected as SHP based on KS test and 

CVM test, as shown in Fig. 1b and Fig. 1c, 105 pixels were 

selected as SHP based on AD test, as shown in Fig. 1d. We can 

see that the identified SHPs lay on the same paddy field, and 

there is no significant difference among these GOF tests’ 

identification results. The coherence matrix on two identified 

DSs are illustrated in Fig. 2, calculated according to Eq. (6), (7), 

(8). It depicts all the possible combinations of the acquisitions 

we have, with color coded according to its average coherence. 

Compared to paddy field, earth bank shows higher average 

coherence, which are mainly affected by temporal decorrelation 

and present a seasonal behaviour due to annual planting and 

irrigation. The matrix can be a good reference for 

interferometric data pairs’ combination. 

 

In order to test the effectiveness of algorithm, an area 

distributed with small paddy fields and citizen buildings was 

chosen and adaptive spatial filtering algorithm was performed 

according to Eq. (4), (5), in comparison with the conventional 

boxcar multilooking. Fig. 3a illustrates the Landsat TM image 

of this area and the 1×5 multilooked interferogram formed with 

the data acquisitions of August 13th, 2013 and September 28th, 

2013. Since there was rice field irrigation with water drawn 

from Yellow River between the acquisitions dates, water level 

changes along the azimuth direction and interferometric fringe 

was detected within the single rice field. Fig. 3b is the 

coherence and interferogram after conventional 4×20 pixels 

boxcar multilooking. Fig. 3c is the coherence and interferogram 

after the 4×20 pixels adaptive spatial filtering based on AD test. 

We can clearly distinguish the rice fields from the bank of earth 

between them (on the upper part of image); building’s outline 

was retained with sharp edge, along with the road connected to 

it (on the lower part of image). And the object resolution was 

preserved.  

 

In Fig. 4 and Fig. 5, the full area results are presented. 3114121 

pixels have been selected as SHP, account for 92.68% of all 

pixels in the site. Fig. 4a is the corresponding Landsat TM 

image; Fig. 4b shows the coherence map, with an average value 

of 0.2805, higher than the average coherence after boxcar 

multilooking 0.2676. Fig. 5a is 1×5 multilooked interferogram, 

which has subtracted DEM interferometric phase. The adaptive 

filtered interferogram id depicted in Fig. 5b.  

 

Because of the pixelwise filtering, the computational 

complexity is increased with the estimation window size. There 

is a slight reduction of resolution due to the adaptive filtering, 

but the object resolution was preserved. 
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Fig. 4. (a) is Landsat TM image of Yellow River Delta, (b) is the coherence after the 4×20 pixels adaptive spatial filtering based on 

Anderson-Darling test 

 

 
Fig. 5. (a) is 1×5 multilooked interferogram of Yellow River Delta, (b) is the interferogram estimate after adaptive spatial filtering. 

 

 

4. CONCLUSION 

In this paper, we developed an adaptive spatial filtering 

algorithm oriented to the distributed scatterers, which are 

widely distributed in rural areas. The identification of 

statistically homogenous pixels by using three different 

goodness-of-fit tests on real SAR data proved its effectiveness. 

Compared with the typical rectangle multilooking, this new 

technique improves the interferogram and coherence estimation 

with an adaptive spatial filter, preserves the detailed information 

and increased the average coherence.  

 

Future work will be devoted to the optimization of 

interferometric pairs’ combination and more robust and 

computationally cheap DS identification technique. 
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