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ABSTRACT: 
 
In this paper, we present an extrapolation approach, which uses minimum weighted norm constraint and minimum 
variance spectrum estimation, for improving synthetic aperture radar (SAR) resolution. Minimum variance method is a 
robust high resolution method to estimate spectrum. Based on the theory of SAR imaging, the signal model of SAR 
imagery is analyzed to be feasible for using data extrapolation methods to improve the resolution of SAR image. The 
method is used to extrapolate the efficient bandwidth in phase history field and better results are obtained compared 
with adaptive weighted norm extrapolation (AWNE) method and traditional imaging method using simulated data and 
actual measured data. 

 
 

I. INTRODUCTION 

One of the driving forces in the development of SAR 
image formation has been to obtain better and better 
image resolution. Conventional radar imaging methods 
based on Fourier transform provide good resolution as 
long as the backscattered data is available over a large 
bandwidth and a sufficient aspect region (Curlander, 
1991). Wider transmitted bandwidth achieves higher 
range resolution. Either a higher center frequency or 
wider aspect angle variation will improve azimuth 
resolution. But in many practical applications only 
limited frequency and aspect bands are available. This 
leads to radar images with limited resolution. Recently, 
modern spectral estimation technologies have become a 
kind of new methods to enhance the image quality by 
obtaining better space resolution and lower sidelobe. 
Several modern spectral estimation methods are 
discussed by DeGraaf (DeGraaf, 1998) to enhance 
resolution of SAR, including adaptive sidelobe reduction 
(ASR), minimum variance method (MVM), and 
autoregressive (AR) model, etc. Improvements in image 
are shown in results, including resolution of prominent 
scatterers, and CFAR detectability of targets in clutters, 
etc. An one-dimensional (1-D) adaptive weighted norm 
extrapolation (AWNE) method is brought forward by 
Cabrera (1991), which has been used in ISAR (1994) and 
spotlight SAR (Barbarossa, 1996). Two-dimensional 
(2-D) AWNE method is put forward by Brito (Brito, 
1999) used in spotlight SAR. This kind of AWNE is the 

iterative method and proved efficient in SAR resolution 
enhancement. 

The paper provides an efficient bandwidth 
extrapolation algorithm to reach higher resolution in 
SAR imaging, which is based on minimum weighted 
norm constraint and minimum variance spectrum 
estimation. Unlike AWNE, the method in this paper 
exploits no iteration. The detailed derivation is given 
about the new method and better results prove the 
validation of the new method, compared with the results 
of AWNE and traditional algorithms. 

The remainder of this paper is organized as follows. 
The signal model is presented in Section II. The detailed 
derivation is described in Section III. Numerical and 
experimental results are provided in Section IV. Finally, 
Section V concludes the whole paper. 

 

II. SIGNAL MODEL 

Based on the theory of synthetic aperture radar 
imaging, the signal model of SAR imagery is analyzed to 
be feasible by using data extrapolation methods to 
improve SAR image resolution in this section. Generally, 
SAR systems use linear FM signal as transmitted signal. 
The geometrical relationship of SAR sensor and target 
can be described as Fig.1 under the strip-map SAR 
condition. 
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Fig.1. geometrical relationship of SAR sensor and target 

 
After imaging processing, the form of scene echo can 

be represented (Curlander, 1991) as 
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where rt  and at  represent time in slant range and 
azimuth direction, respectively; ,r nx  and ,a nx  
represent targets location in slant range and azimuth 
direction, respectively; rB  and aB  represent transmit 
signal bandwidth and Doppler bandwidth in azimuth, 
respectively; N  is the number of scatter centers. 
Transforming (1) into phase history domain, we can see a 
rectangle support domain in the following expression 
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From the expression, we can see that SAR image 
signal model in phase history domain is a band-pass 
function with a main frequency support domain. Thus, 
the problem of superresolution SAR imaging is 
transformed to solve the efficient bandwidth 
extrapolation. 

 

III METHODOLOGY 

The paper proposes a data extrapolation method based 
on minimum weighted norm constraint and minimum 
variance spectrum estimation, which is classified as 
nonparameter method. The method extrapolates the 
efficient bandwidth in phase history field. In this section, 
the detailed description of the method is given. 

A. New Extrapolation Method of 1-D Case 
Define data vector x  as 

[ ]T(0) ( 1)x x N= −x L .              
A very general 1L×  data vector denotes the observed 

continuous discrete-time data samples, i.e.  

[ ]T
1( ) ( )Lx m x m=y L ,             

where { }k , 1m k L= L  is continuous integers and y  is 
the observed part of the whole data vector x . 

The observed data can be expressed by the whole data 
as 

=y Tx ,                 (3) 

where each row of T  is a vector of zeros with a 
nonzero elements 1 in observed position km . Thus the 
problem of extrapolation can be described to be an 
inverse problem using the observed data y  to solve the 
whole data x . 
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The extrapolated ˆ( )x n  is the result of an optimal 
spectral shape match of 2( )X f  to ( )P f . B is the 
spectral support scope, i.e. [ 0.5,0.5]− . Let 

( ) 0,P f f B> ∈ , and ( ) 0,P f f B= ∉ . ( )P f  is a 
prior frequency weighting function, i.e. estimated 
spectrum from the observed data. Then, we briefly 
introduce Capon’s minimum variance method [2] to form 
the frequency weighting function ( )P f  using the 
observed data { }1( ) ( )Lx m x mL .  

Since the output consists of desired and undesired 
energy, and since the signal passes with unit gain, MVM 
maximizes SIR by selecting to minimize the expected 
output energy with the constraint to insure that the signal 
returned from interesting scatterers is passed with unit 
gain 

( )Hmin ω ωh Rh   H          ( ) 1subject to ω ω =h a ,     

where ωh is the complex-valued space-variant weighting 

vector; R is the covariance matrix, which is obtained 
with the forward covariance matrix using the forward 
observation vector and the backward covariance matrix 
using the backward observation vector to obtain robust 

estimation; 
T( 1)( ) 1 j j pe eω ωω −⎡ ⎤= ⎣ ⎦a L . 

The optimal filter is 
1
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and the minimum variance spectrum[1] is 
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When the power spectrum of the observed data 
samples is obtained, the greater scale data can be 
achieved using exploration with minimum norm 
weighted constraint. 

In order to obtain { }ˆ( ), 0 1x n n N= −L , we should 
solve (4) subjecting to constraint (3) using the MVMP  as 
the prior frequency weighting function. This is an inverse 
problem in Hilbert space, so the minimum norm solution 
can be expressed as 

†ˆ =x T y ,                (7) 
where †T  is the generalized inverse of the transform 
matrix T , named 

( ) 1H H −+ =T PT TPT .              
P  is the weight coefficient matrix formed by the IDFT 
of MVMP , defining ( )ha n to be a Teoplitz matrix as 
follows 
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Considering the singular matrix, regularization can be 
done to obtain the regularized solution as  

( ) 1H Hˆ ρ
−

= +x PT TPT I y .         (8) 
The parameter ρ  is the minimum value to make (8) 
invertible. Let  

[ ] ( ) 1T H
1 2 Lw w w ρ

−
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then (8) can be written as Hˆ =x PT w , which is a linear 
combination of the column vector of P . Thus the 
optimal estimation can be expressed as 
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By taking DFT, the frequency domain solution can be 
obtained as  
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where ( )W k  is the DFT of a data sequence, which are 
kw  in n km=  and zeros in other positions. 

B. 2-D Case Extension 
  SAR imaging is a 2-D data processing. From the 
model derived in section II, the problem of SAR imaging 
can be transformed to parameters estimation of 2-D 
complex sinusoid signal. Thus, the data model of the 
algorithm in radar imaging processing can be as follows 
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where ( , )x m n  is the data sample after preprocessing in 

the efficient support domain. The data samples after 

preprocessing are 10, , 1m L= −L  and 20, , 1n L= −L . 

rpω  is the range frequency of the scatterer p . apω  is 

the azimuth frequency of the scatterer p . ps  is the 

complex backscatter coefficient of the scatterer p . 

( , )w m n  is the additive noise. 
  According to the 1-D case, the 2-D optimal estimation 
can be written as follows 
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where { } 1 2

, 1 1

L L

i j i j
w

= =
 are the extrapolation coefficients; 

( , )ha n m  is the IDFT of 2-D MVMP . 

For computing efficiently, the 2-D data matrix should 
be rearranged to be a vector. Stack the observed data 
matrix y  and the extrapolated matrix x  in column to 
be ( )vec y  and ( )vec x . The same operation can be 
done to get P  using the IDFT of 2-D MVMP . The 
transform matrix T  can be formed by the position 
relationship between the observed data and the 
extrapolated data. Thus the efficient extrapolation 
solution can be obtained according to the 1-D case. 

Though the paper’s method and AWNE method both 
use the minimum weighted norm constraint, AWNE 
method is an iterative algorithm, and will also iterate the 
noise and sidelobes, which will lead to miss of targets 
and artificial targets. The paper’s method uses the high 
resolution spectral estimation without iterative process, 
which can avoid the data distortion. 

 

IV. RESULTS 

In this section, the performance of the proposed new 
algorithm is demonstrated via numerical and 
experimental results.  

First, we present a numerical example. The real part of 
64 samples observed signal in fig.2 is composed of three 
complex sinusoids at 0.1, 0.19 and 0.2 Hz with 10dB 
additive white Gaussian noise, whose amplitudes are 0.5, 
1 and 1, respectively. Fig.2(b) shows the result obtained 
via FFT over the original 64 point signal padding with 
zeros to be 512 point, from which it can be noted that the 
resolution is very poor and sidelobes are very high. 
Fig.2(c) shows the real part of actual 512 samples signal 
and (d) is the result of 512 point FFT. After extrapolating 
(a) using AWNE method with 3 iterations, (e) can be 
obtained to be 512 point signal and (f) is the result of 
FFT. The resolution in (f) is improved a lot than that of (b) 
and sidelobes are also lower. (g) shows the real part of 
extrapolating signal by the paper’s method. The main 
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lobe of (h) is much narrower than (f) and sidelobes are 
even lower, and the main lobe and sidelobes of (h) is 
close to those of (d), i.e. (h) achieves the performance of 
actual 512 samples signal. 
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(g)        (h) 

Fig.2. 1-D complex sinusoid example. (a) Original signal. 
(b) Frequency spectrum of (a). (c) Actual 512 samples 
signal. (d) Frequency spectrum of (c). (e) Extrapolated 
signal using AWNE method. (f) Frequency spectrum of 
(e). (g) Extrapolated signal using paper’s method. (h) 
Frequency spectrum of (g). 
 

In order to contrast the three methods using SAR data, 
fig.3 shows the results of simulated point scatterers using 
different methods. The locations of scatterers are denoted 
in (a). The scatterers are corrupted by additive white 
Gaussian noise with SNR of 20dB. The echo is 
256 256× . After selecting the efficient support domain, 
the extrapolation method can be done to obtain image of 
256 256× . (b) is the unwindowed Fourier image of 
256 256× . (c) is the imaging result using AWNE 
extrapolation after 3 iterations and it can be seen clearly 
that the resolution is improved, which separates the 

targets unseparated in (b). The more enhancement is 
shown in (d), which is the imaging result using the 
paper’s method. All of the targets can be separated in (d), 
which is better than (c). 

 

 

(a)   

 
(b) 

 

(c)     

 
(d) 

Fig.3. Simulated point scatters images. (a) The targets’ 
position. (b) Fourier imaging. (c) AWNE. (d) Method in 
the paper. 
 

The actual calibration SAR data is used to prove the 
feasibility of the paper’s method in actual measured SAR 
return. From fig.4 and table I, we can see better result can 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-7/W1, 3rd ISPRS IWIDF 2013, 20 – 22 August 2013, Antu, Jilin Province, PR China

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 196



be obtained using the paper’s method than that of AWNE 
after 3 iterations, not to mention the RD method. 
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(c) 
Fig.4. Actual measured SAR data. (a) RD method. (b) 
AWNE method. (c) The paper’s method. 
 

TABLE I Performance Analysis of Different Methods 

Performance Index 
RD 

Method
AWNE 

Paper’s 
Method 

Range 
resolution(m) 

2.5453 1.4941 0.8385 

Range PSLR(dB) -13.8265 -25.1351 -15.1513 

Range ISLR(dB) -15.3648 -10.9042 -15.9463 

Azimuth 
resolution(m) 

2.6184 1.4029 0.7600 

Azimuth PSLR(dB) -12.4227 -15.1043 -18.5147 

Azimuth ISLR(dB) -8.8912 -11.0321 -15.2571 

 

V. CONCLUSIONS 

The proposed algorithm combines minimum weighted 
norm constraint and minimum variance method, which is 
classified as nonparameter methods and more robust than 
the parametric approach. The simulated data and actual 
measured data are both used to show the validation of the 
algorithm. Compared with AWNE and the Fourier 
method, the proposed algorithm obtains better results. 
 

ACKNOWLEDGEMENT 

This work is supported by National Natural Science 
Foundation of China (61001196) and the National High 
Technology Research and Development Program (Grant 
Numbers 2011AA120403). 
 

REFERENCES 

Barbarossa, S., Marsili, L., and Mungari, G., 1996, SAR 
super-resolution imaging by signal subspace projection 
techniques. in Proceedings of EUSAR'96, Konigswinter, 
Germany, 267~270. 
 
Brito, A.E., Chan, S.H., and Cabrera, S.D., 1999, SAR 
Image Formation Using 2D ReWeighted Minimum Norm 
Extrapolation. in SPIE Conference on Algorithms for 
Synthetic Aperture Radar Imagery Ⅵ, Orlando, Florida, 
78-91. 
 
Cabrera, S.D., Flores, B.C., Thomas, G., and Vega-Pineda, 
J., 1994, Application of One-Dimensional Adaptive 
Extrapolation to Imrove Resolution in Range-Doppler 
Imaging. in SPIE's International Symposium on Optical 
Engineering and Photonics in Aerospace Sensing,  
International Society for Optics and Photonics, Orlando, 
FL, 135-145. 
 
Cabrera, S.D., and Parks, T.W., 1991, Extrapolation and 
spectral estimation with iterative weighted norm 
modification. IEEE Transactions on Signal Processing. 
39(4): 842-851. 
 
Curlander, J.C., and McDonough, R.N., 1991, Synthetic 
Aperture Radar Systems and Signal Processing. John 
Wiley & Sons, Inc. 
 
DeGraaf, S.R., 1998, SAR imaging via modern 2-D 
spectral estimation methods. IEEE Transactions on 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-7/W1, 3rd ISPRS IWIDF 2013, 20 – 22 August 2013, Antu, Jilin Province, PR China

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 197



Image Processing. 7(5): 729-761. 
Potter, L.C., and Arun, K.S., 1989, Energy concentration 
in band-limited extrapolation. IEEE Transactions on 
Acoustics, Speech and Signal Processing. 37(7): 
1027-1041. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
Volume XL-7/W1, 3rd ISPRS IWIDF 2013, 20 – 22 August 2013, Antu, Jilin Province, PR China

This contribution has been peer-reviewed. The peer-review was conducted on the basis of the abstract. 198


