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ABSTRACT: 
 
The aim of this study was to compare the estimation capability of two different process-based NPP models (CASA and LPJ-
GUESS) in a Mediterranean watershed. Remotely sensed data and climate time series (temperature, precipitation and solar 
radiation) were input to these models in the example of Goksu River Basin which is located in the Eastern Mediterranean Part of 
Turkey. 
The comparison of these models was based on output variables. These variables were divided into three groups; i) spatially-
interpolated total NPP estimations, ii) NPP distribution of land cover classes, iii) annual and monthly based NPP variations. 
Different model approaches were evaluated within their capability to prove the relationship between annual / monthly NPP and 
major climatic variables. The effect of vegetation distribution on the accuracy of models was examined. The uncertainities of the 
CASA and LPJ-GUESS model were evaluated by incorporating remotely sensed data, percent tree cover and ground 
measurements. The differences between model outputs were guided to enhance modelling strategies by means of remotely sensed 
data and other input parameters.   
 

1. INTRODUCTION 

Net primary productivity (NPP) is defined as the net flux of 
carbon from the atmosphere into green plants per unit time. It 
has significant importance for the carbon cycle and an critical 
indicator of ecosystem sustainability. Accurate estimate of NPP 
is critical to understanding the carbon dynamics within the 
atmosphere–vegetation–soil continuum and the response of 
terrestrial ecosystem to future climate warming. 

The models to estimate NPP are groupped in three major 
categories: i) remote sensing based models that use data from 
different sensors as their major inputs (CASA, GLOPEM, 
TURC),  ii) process-based models that simulate carbon fluxes 
using vegetation structure (BIOME, LPJ-GUESS), iii) models 
simulate carbon using both vegetation structure and carbon 
fluxes (DOLY, HYBRID) 
    
Those models are used to estimates NPP in global and regional 
scales. However, NPP estimates show significant differences 
among different models in different data sources. The 
differences of the model estimations cause many uncertainties 
that reduce the precisions and reliability of the models. Hence, 
the comparison of different model estimations are needed to 
evaluate different model performances to improve the accuracy 
of the models by varying input parameters. Inter-comparison of 
NPP models provides an effective tool to realize capability of 
each model to represent NPP patterns under climatic 
variations. 
 

The aim of this study were to compare and evaluate two 
different approaches (CASA and LPJ-GUESS) by modelling 
mean annual NPP and its spatial distribution in a semi-arid 
Mediterranean watershed. The comparison of these approaches 
was carried out on the basis of their time steps, data inputs and 
spatially distributed outputs. The relationship between model 
outputs were analysed to examine the linear trends in 
representation of NPP. 

2.MATERIAL and METHODS 

2.1. Study Area 
 
The study area selected for this study is Goksu Watershed 
located in the Eastern Mediterranean region of Turkey (Figure 
1). 

 
Figure 1. Location of the Goksu Watershed. 
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The basin covers approximately 10000 km2. The land cover 
types of the region comprise Mediterranean evergreen needleaf 
forests with Turkish pine (Pinus brutia) and Juniper (Juniperus 
excelsa), grasslands and bare grounds. The climate is 
characterized by prevailing Mediterranean with mild and rainy 
winters and hot and dry summers with a mean annual 
precipitation of approximately 800 mm. Mean annual 
temperature is 19 oC. 
 
2.2. Material 

Two sets of remotely sensed images were utilized for the 
CASA model simulation; i) a LANDSAT TM/ETM data set 
comprising five scenes from 1999-2003, ii) Three sub-scenes 
of Geo-EYE imagery representing different types of forest 
cover were used as training and testing data for percent tree 
cover. The topographic maps in 1:25.000 scale were used to 
derive Digital Elevation Model (DEM). The forest maps were 
utilized in land cover mapping process. 

LPJ model required time series data and soil texture 
information. The time series data comprise precipitation, 
temperature and solar radiation on daily basis. Soil information 
was obtained by field campaigns and expert opinions and 
mapped in GIS environment. Time series and soil information 
were converted available model input format and integrated 
into LPJ modelling process. 

2.3. Methods 

The method used in this study consisted three phases; i) 
Modelling NPP using the CASA model, ii) Modelling NPP 
using LPJ-GUESS, iii) comparison of the model outputs. 
 
2.3.1.The CASA Model Application 
 
The CASA model computes the monthly NPP flux as net 
fixation of CO2 by vegetation on the basis of light-use 
efficiency. Thus, calculates NPP is calculated as a function of 
the driving energy for photosynthesis, the absorbed 
photosynthetically active (400 to 700 nm) solar radiation 
(APAR), and an average light utilization efficiency (ε) (Potter 
et al., 2003). The fundamental relation in the CASA model is 
 

NPP = APAR × ε 

NPP=f(NDVI) × PAR × ε × g(T) × h(W) 

where APAR (in megajoules per square meter per month) is a 
function of Normalized Difference Vegetation Index (NDVI) 
and downwelling photosynthetically active solar radiation 
(PAR) and ε (in grams of C per megajoule) is a function of the 
maximum achievable light utilization efficiency ε adjusted by 
functions that account for effects of temperature g(T) and water 
h(W) stress. Whereas previous versions of the CASA model 
(Potter et al, 1993, 2004) used a normalized difference 
vegetation index (NDVI) to estimate FPAR, the current model 
version instead relies upon canopy radiative transfer algorithms 
(Knyazikhin et al. 1998), which are designed to generate 
improved FPAR products as inputs to carbon flux calculations. 
The model was utilized to predict annual regional fluxes in 
terrestrial net primary production at variable degrees of C, 
depending on the yearly conditions, with terrestrial net 
production.  

Several diverse datasets were used in this research. Calculation 
of annual terrestrial NPP is based on the concept of light-use 
efficiency, modified by temperature, rainfall values and solar 
radiation scalars. In addition, percentage of tree cover, land 
cover map of the region, soil texture and NDVI (normalized 
difference vegetation index) were used to constitute this model. 
 
Climate Data 
 
Monthly precipitation, air temperature and solar radiation were 
used as the climate data sets. These variables were based on 9 
years (2000-2009) records from the meteorological stations in 
and around the study region. Climate variables were 
interpolated together with DEM using co-kriging method and 
mapped on monthly basis. 
 
Mapping Land Cover 
 
A comprehensive land cover map was used as one of the inputs 
of the CASA model. This map was derived from two data 
sources: LANDSAT ETM image acquired in 2003, ground 
truth data from field surveys. Image classification was carried 
out using maximum likelihood algorithm with supervised 
training. The classifier was provided with the spectral 
reflectance properties of each class in the form of the mean 
reflectance for each spectral waveband and the associated 
covariance matrix. This data was generated from a selection of 
sample training pixels for each class provided from ground 
data. The output comprised the land cover classes with 30 m 
spatial resolution initially. Accuracy analysis was carried out 
by comparing the classification map and ground truth data. 
 
Soil texture 
 
The soil texture data file is based on FAO soil texture 
classification which has 7 classes. The dominant soil type in a 
soil unit, the designation "coarse", "medium", "fine", or a 
combination of these based on the relative amounts of clay, 
silt, and sand present in the top 30 cm of soil. The regional soil 
maps in 25.000 scale was utilized for this study and soil 
texture classes were assigned on the basis of estimated clay 
content according to FAO (Potter et al. 2003). 
 
NDVI 
 
Monthly NDVI images derived from 20 LANDSAT scenes 
recorded in between May 2001 and November 2002. Four 
images were combined to comprise the study region.  The 
monthly composites were created and bands 4 and 3 were used 
to produce NDVI. Monthly NDVI images ranging between 0 
and 1 were the input to CASA model. 
 
Percent Tree Cover 
 
Percent tree cover map was one of the most significant input of 
the CASA model. The Regression Tree (RT) algorithm was 
utilised to predict percent tree cover within a Mediterranean 
type forest using LANDSAT data. RT is a piecewise constant 
or piecewise linear estimate of a regression function, 
constructed by recursively partitioning the data (Loh, 2002). 
The methodology for deriving percent tree cover with RT 
consisted of five steps for this study (Figure 6) (Donmez et al., 
2011): i) generate reference percentage tree cover data, ii) 
derive metrics from LANDSAT data, iii) select predictor 
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variables, iv) fit RT models, v) undertake accuracy assessment 
and produce final model and map. 
 
2.3.2.The LPJ-GUESS Application 
 
LPJ-GUESS is a flexible, modular modelling platform for 
simulating vegetation dynamics and biogeochemical cycles at 
local to global scales. It includes the widely used Lund-
Potsdam-Jena Dynamic Global Vegetation Model (LPJ-
DGVM; Sitch et al., 2003), but vegetation dynamics (tree 
establishment and mortality, as well as tree size distribution, 
canopy structure and disturbance) can also be represented in 
more detail, adopting a forest gap model approach (Shugart 
and West, 1980). The global parameterization of the model 
version formed the basis of the regional parameterisation for 
Turkey.  However, the plant functional types (PFTs) were 
modified by the exclusion of tropical tree and tropical grass 
PFTs and the inclusion of three Mediterranean PFTs. The 
Mediterranean PFTs comprise a deep-rooted evergreen 
Mediterranean shrub, a shallow-rooted raingreen 
Mediterranean shrub and a temperate needle-leaved evergreen 
tree. These PFTs are based on the vegetation of Hickler et al. 
2012 but with bio-climactic limits derived from measured cold-
tolerances of Mediterranean vegetation and visual comparison 
of growing degree days on a 5̊ C base with the known limits of 
Mediterranean vegetation. A location in the model is 
represented as a stand, i.e. an area with identical 
environmental conditions, defined by soil texture and a set of 
climatic variables. The spatial extent of a stand is flexible and 
simply given by the spatial resolution of environmental driver 
variables, here a grid of 1km x 1km. For each stand, vegetation 
is simulated in a number of replicate patches (without a 
specific location within the stand), in which individual tree 
establishment, mortality and patch-replacing disturbances are 
simulated stochastically (as commonly done in forest gap 
models). 
 
2.3.3. Testing models by comparison 

An inter-comparison of terrestrial biogeochemical models used 
in this study was carried out using primary outputs connected 
to a range of ecosystem processes (NPP). A linear regression 
technique was used to identify the differences of model. CASA 
and LPJ models use different input data sets to simulate NPP. 

For the comparison processes, these data sets are standardized. 
However, this standardization is not possible in some cases. 
For example, the CASA model requires a spatial vegetation 
map including defined classes according to behaviours and 
outputs. Random pixels were selected from the model NPP 
maps and the regression analyses were realized using these 
pixels. The correlation coefficient (r2) was investigated 
between model outputs to prove the linear relationship and 
differences between LPJ and CASA models.  

The spatial resolution was standardized into 1 km and r2 was 
calculated for each selected pixel. The NPP values for the each 
pixel were obtained from the common LPJ and CASA model 
outputs and correlated.  

The differences between model NPP estimations were 
identified by consisting the regression analyses. The in 
cooperation of the model outputs was significant to identify the 
capability of the different model behaviours on NPP estimation 
in local scale.   

3.RESULTS 
 
Uncertainty of Input Parameters 

 
The CASA model utilises vegetation maps and ancillary data to 
prescribe vegetation structure to simulate the biogeochemical 
fluxes on the basis of soil and climate characteristics. This 
model describes functional changes within vegetation 
particularly and ignore the vegetation redistribution. 

The LPJ model is a DGVM that simulates ecosystem structure 
and functions and applied to potential vegetation. It estimats 
NPP as the difference between two processes that are modelled 
independently; Gross Primary Production (GPP) and 
Autrophical Respiration (RA). 

Comparison of the broad features of the NPP Models is given 
in Table 1. 

Additionally, the spatial and temporal resolutions of the input 
sets vary in agreement of the modelling strategy. Input data 
categories of NPP models used in this study are shown in 
Table 2. 

 

Table 1. Comparison of the broad features of the CASA and LPJ Models 

Model Temporal Resolution Influenced by Strategy 

CASA 1 month NPP=f (ε*, RS, fPAR, T, EET, PET ) NPP applied by empirically derived Light Use Efficiency derived 

LPJ-GUESS 1 day GPP=f (ε*, RS, fPAR, T, VPD, LAI, 
SW, RA ) 

NPP: GPP - RA 

Vegetation structure and physiological processes are simulated bu 
ccoupling C and water balance, pheonology 

RS: Solar radiation PET: Potential evapotranspiration EET: Estimated evapotranspiration, T: Temperature, W: Water capacity, RA: Plant autotrophic respiration, LAI: Leaf Area 
Index 
 

Table 2. Input data categories of CASA and LPJ models 

Parameters using in modelling processes are similar in remote 
sensing and ecosystem processes models. The main differences 
are the use of meteorological variables and deriving fPAR. Te 
CASA model utilises NDVI to derive fPAR by applying 
different algorithms; 

CASA fPAR=min{(SR−SRmin)/(SRmax−SRmin), 0.95} 

  Selected Inputs Selected Outputs 

Model Type Vegetation 
Distribution 

Satellite 
fPAR 

Biogeochemic
al fluxes 

LAI 

CASA Satellite 
based 

X X X  

LPJ 

 

Seasonal 
fluxes and 
veg.structure 

X  X X 
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SR=(1+NDVI)/(1−NDVI) 

However, the accuracy of fPAR is still an unsolved problem 
due to ground measurement constrains. 

The regional meteorology distribution is based on the spatial 
interpolation of station measurements. The interpolation 
precision is an important issue that influences the accuracy of 
NPP simulations (Liu et al, 2010). The multiple regression 
methods had a reasonable performance by introducing 
elevation and location. The CASA model utilises spatially-
interpolated meteorological maps incooperated the elevation. 

A wide datasets were used in this study to constitute model 
simulations. A detailed land cover used a an input in the CASA 
model process are shown in Figure 2. 

 
Figure 2. Land Cover Map of Goksu Watershed used a an 
input in CASA Model. 

The forest stands of Goksu Basin were combined to two 
formation classes as NLEF and BDF. The forest NPP 
estimation using CASA model was based on those two classes 
that comprise the main forest types of Goksu Basin. NLEF 
comprises Juniperus excelsa, Pinus nigra, Pinus brutia, Cedrus 
libani and Abies cilicica. BDF comprises only Quercus sp., 
respectively. 

The Goksu Basin located in Mediterranean region is 
characterized within its sparse vegetation. The complexity of its 
terrain in respect to the soil types and topography greatly 
influence reflectance from sparse cover of the Mediterranean 
forests. Particularly, high reflectance from the soil causes a 
significant albedo effect, and hence, overwhelms reflectance 
from the vegetation component, thus leading to under 
estimation of NPP (Berberoglu et al., 2007). Thus, the percent 
tree cover map derived using the RT method improved the 
discrimination of vegetation cover by assisting in the 
exploration of the relationships between LANDSAT spectral 
bands and biophysical variable of NDVI. This relationship 
assisted to calibrate the model along the entire tree cover and 

other land cover types. The percent tree cover map used a major 
input of the CASA model is shown in Figure 

 
Figure 3. Percent Tree Cover Map of Goksu Watershed used a 
an input in CASA Model. 

The climate variables including precipitation, air temperature 
and solar radiation play a significant role in understanding the 
seasonal NPP changes of differents land cover classes.  Hence, 
integration of climate variables and spatial ancillary data 
including land cover and percent tree cover maps to the 
regional models may increase the potential on NPP 
representation of the complex environments. Such approaches 
improve in understanding and assessing the local and regional 
consequences of climate change on the productivity of the 
complex and rich ecosystems such as Goksu Basin. 

Comparising the CASA and LPJ Outputs 

Time step plays an important role in estimating NPP. The 
CASSA model outputs comprised monthly NPP maps. The 
NPP was estimated on daily basis with LPJ-GUESS. Monthly 
and daily NPP estimations form those models were amalgamed 
and total NPP maps were derived. The comparison of model 
outputs were carried out using total NPP maps.  

Annual total NPP map of the Goksu Basin derived from the 
CASA model is shown in Figure 4 (30 m) and Figure 5 (1-km). 
Annual total NPP map derived from LPJ model is shown in 
Figure 6 (1-km). 

Monthly NPP changes in land cover classes of Goksu Basin 
were estimated with CASA model. The NPP of major land 
cover classes were aggregated and total annual NPP was 
estimated. Monthly NPP maps revealed that mean monthly 
NPP ranged from 12.9 to 144.07 gC m2 month-1. A significant 
increase was determined from March to April within spring 
season in the entire basin. Slight changes in NPP is realised 
from April to June until a dramatic decrease occurs in July. 
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Figure 4. Total Annual NPP Map derived from the CASA-30 m. 
 
 

  

 
Figure 5. Total Annual NPP Map derived from the CASA-1 km. 

 

 
Figure 6. Total Annual NPP Map derived from the LPJ. 
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The CASA and LPJ model outputs showed significant 
differences in terms of their vegetation representation. Annual 
NPP was estimated as 705 gCm2y-1 within CASA model. In 
respect to the CASA model simulations, the NPP was 

underestimated in watershed scale. The total annual NPP was 
estimated as 556 gCm2y-1 using LPJ model. 
The plots of different model outputs are shown in Figure 7. 

 

 a )        b)       c)   
 

Figure 7. The plots of different model outputs; CASA-30m (a), CASA-1km (b), LPJ-GUESS-1km, (c). 
 
The spatial distribution of NPP also showed large differences 
in both model estimations. The land cover classification and 
soil texture data biased potentially the spatially distributed 
estimation of NPP in CASA model simulations. The output 
NPP maps in CASA model associated with different land cover 

types and percent tree cover. The grassland and bare soil areas 
were more distinctive in NPP maps derived from the LPJ 
model.  
The histograms derived using random pixels of different model 
NPP maps are given in Figure 8.

 

  
 

Figure 8. Histograms of CASA (Left) and LPJ-GUESS (Right) NPP maps

The CASA model NPP estimates range approximately from 
200 to 1200 gCm2y-1. This range showed that the CASA model 
was able to capture NPP differences in rich vegetation 
diversity. 
The LPJ-GUESS NPP estimates range from 280-550 gCm2y-1. 
Thus, the LPJ-GUESS estimated NPP in a low frequency. The 
standart deviation for CASA model estimations was 53 and 
163 for the LPJ. The model NPP estimation was also compared 
for each land cover classes. A comparison of modelled NPP for 
random grid cells was realized for each class. The values of 
random grid cells of different NPP outputs were correlated and 
the linear relationship of model NPP outputs was defined. The 
total annual NPP estimations for the land cover classes derived 
from CASA and LPJ-GUESS are shown in Table 3. 
The annual total NPP estimations of the CASA and LPJ-
GUESS for each land cover classes showed large differences. 
Needleleaf Evergreen Forest (NLEF) was estimated 702 

gCm2y-1 within CASA model and 375 gCm2y-1 within LPJ-
GUESS. Moreover, the difference in annual total NPP of the 
Broadleaf Forest formations are calculated approximately -332 
gCm2y-1.  
 
Table.3. Total annual NPP estimations for the land cover 
classes. 

Land Cover Classes CASA (1-km) LPJ-GUESS (1-km) 

NLEF 702 375 
BDF 726 394 
Agriculture 657 369 
Grasslands 698 397 
   
Relationship between CASA and LPJ-GUESS NPP estimations 
for each land cover class is shown in Figure 9. 
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NLEF (r2=0.44) 

 
BDF (r2=0.095) 

 
Agriculture (r2=0.53)  

Grasslands (r2=0.01) 
Figure 9. Relationship between CASA and LPJ-GUESS NPP estimations for each land covers class. 

 
 

A comparison of the land cover classes indicates low 
correlation between two models. The correlation plots revealed 
general characteristics of the relationship between different 
model simulations. The correlation for NLEF estimations is 
0.44. The model estimations were slightly correlated for NLEF 
and Agriculture estimations. However, grasslands and BDF 
estimations within two models did not show a reasonable 
correlation.  
 
4.CONLUSIONS 

 
A remotely-sensed data based biogeochemical model and 
process-based modelling approach were performed and NPP 
outputs were compared to evaluate simulation performances of 
the models in a semi-arid Mediterranean environment. Each 
approach has a theoretical basis for its own at global scale and 
this study is important for applying global based models into 
watershed scale.  
Model comparisons play an important role within numerous 
minor findings to improve simulation accuracy for further 
applications. In this comparative research, NPP estimations of 
different approaches varied greatly. The relation between 
CASA and LPJ simulations for NLEF was reasonable annually. 
Annually integrated agriculture NPP estimations showed also a 
reasonable correlation. The total annual NPP was under-
estimated with LPJ model in comparison to CASA results. 
However, taking the uncertainty related to scale differences 
between time-series and satellite data into account LPJ model 
performed well for a semi-arid region. The CASA model 
provided reasonable results to represent spatial distribution of 
NPP by means of remote-sensing integration. Thus, remote 
sensing provides many advantages to obtain relevant data that 
could be utilised in spatially-distributed NPP modelling.   
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