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ABSTRACT: 

Data fusion has lately received a lot of attention as an effective technique for several target detection and classification applications 

in different remote sensing areas. In this work, a novel data fusion scheme for improving the detection accuracy of ship targets in 

polarimetric data is proposed, based on 2D principal components analysis (2D-PCA) technique. By constructing a fused image from 

different polarization channels, increased performance of ship target detection is achieved having higher true positive and lower false 

positive detection accuracy as compared to single channel detection performance. In addition, the use of 2D-PCA provides the ability 

to discriminate and classify objects and regions in the resulting image representation more effectively, with the additional advantage 

of being more computational efficient and requiring less time to determine the corresponding eigenvectors, compared to e.g. 

conventional PCA. Throughout our analysis, a constant false alarm rate (CFAR) detection model is applied to characterize the 

background clutter and discriminate ship targets based on the Weibull distribution and the calculation of local statistical moments for 

estimating the order statistics of the background clutter. Appropriate pre-processing and post-processing techniques are also 

introduced to the process chain, in order to boost ship discrimination and suppress false alarms caused by range focusing artifacts. 

Experimental results provided on a set of Envisat and RadarSat-2 images (dual and quad polarized respectively), demonstrate the 

advantage of the proposed data fusion scheme in terms of detection accuracy as opposed to single data ship detection and 

conventional PCA, in various sea conditions and resolutions. Further investigation of other data fusion techniques is currently in 

progress. 

1. INTRODUCTION

Detection of ship targets is an important task in maritime and 

sea border surveillance, pollution control (e.g. oil spill 

detection), as well as vessel search and rescue in 

emergencies. It also stands as the first stage in a ship 

identification scheme. While the surveillance area and 

demands expand rapidly, synthetic aperture radar (SAR) 

becomes a powerful complementary or alternative tool to 

traditional surveillance resources such as Automatic 

Identification Systems (AIS) and Vessel Traffic Services 

(VTS) systems. Recently, ocean surveillance with SAR data 

has been researched widely. The most representative are the 

Canada’s Ocean Monitor Workshop (OMW), the American’s 

Alaska SAR Demo, and the series projects promoted by 

European Community, such as IMPAST, DECLIMS and 

LIMES (Margarit, 2006; LIMES, 2006). 

In this context, new high resolution SAR sensors are very 

attractive, because they promise to improve the performance 

of the whole scheme. Commonly, algorithms devised to 

discriminate between ships and background, depend on the 

goodness of the background statistical characterization. The 

electromagnetic action between microwave and sea surface, 

and speckle noises make the sea clutter in SAR imagery 

presents statistical properties. Such images are heavily 

affected by the presence of the speckle, and, for this reason, 

many ship detection algorithms employ Constant False Alarm 

Rate (CFAR) algorithms (Oliver, 2004; Crisp, 2004). CFAR 

detectors are based on the analysis of sea clutter’s statistical 

properties. A CFAR algorithm is an anomaly detector, which 

is able to find those pixels which are unlikely to be 

statistically characterized by the hypothesized background 

probability density function (pdf). There are several statistical 

models that are suitable to describe SAR’s sea clutter 

characteristics such as Rayleigh, Lognormal, Weibull, K and 

generalized gamma distributions (Anastassopoulos, 1999; 

Farina, 1986; Chitroub, 2002; Farina, 1994; Erfanian, 2009). 

The clutter power is presented by its mean and variation 

values and the decision threshold that determines which pixel 

belongs to target is calculated based on the two known 

values. 

During these past decades, a considerable number of CFAR 

detectors were presented in the literature, with different local 

statistics of the sea clutter (Bisceglie, 2005). Each CFAR 

detector requires a high computational load, depending on the 

background pdf, i.e. the longer the time required to estimate 

the pdf parameters, the higher the computational load 

required by the detection algorithm. As the number of SAR 

sensors increases and the demand for sea application in high-

resolution scenes grows rapidly, fast algorithms needs to be 

designed to deal with the mass data and to achieve wide area 

ocean surveillance. A conventional CFAR detector searches 

ship targets adaptively in the whole imagery with a sliding 

window, which consumes much time and cannot meet the 

near real-time processing requirement (Xiang, 2012). 

In addition, research has recently shifted to the exploitation 

of polarimetric SAR data properties (Touzi, 2004; Margarit, 

2006), which utilize the composite mechanisms of ships 

based on combinations of basic scattering procedures. The 

geometric properties of the polarimetric scattering behaviour 

can act as a good estimate for discriminating ships from sea 

clutter. For polarimetric data with more than two channels, 
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images can be properly combined in order to exploit 

complementary features from different channels for 

improving the performance of ship target detection. 

To cope with the limitations reported above, that is the need 

to perform effectively (with high detection accuracy) and 

efficiently (within near real-time limits) ship target detection 

in more than two channels SAR imagery, data fusion can be a 

very effective tool with a variety of mutli-sensor data fusion 

techniques developed recently. A significant amount of 

research has been performed on linear fusion methods, 

mainly for multi- and hyperspectral data (Jia, 1999; Pohl, 

1998; Tyo, 2003; Tsagaris, 2005). However, little attention 

has been given on the utilization of polarimetric SAR data 

fusion approaches. For example, Hong et. al. (Hong, 2002) 

used multiresolution polarimetric SAR image fusion based on 

discrete wavelet transform (DWT) for combining spatial 

registered multi-polarization channels. The resulting 

classification map based on polarimetric feature vector 

presented better class separation after application of fusion 

processing than without fusion. In another work (Sciotti, 

2001), detection techniques for exploiting the polarimetric 

information of SAR data were developed, in order to improve 

the detection capability of ships. Fusion of the polarimetric 

information was performed using both a decentralized and a 

centralized approach. Zhao et. al. (Zhao, 2008) proposed an 

effective polarimetric image fusion technique for improving 

signal to clutter contrast by utilizing the polarization 

scattering attributes of objects and background clutter. More 

recently, in their work Fei et. al. (Fei, 2012) proposed a novel 

Markov-chain-based CFAR detector for polarimetric data, 

using low-level data fusion and high-level decision fusion, 

which considered both correlation between neighboring 

pixels and pdf information in CFAR detection. 

In this work, a novel data fusion scheme for improving the 

detection accuracy of ship targets in polarimetric data is 

proposed, based on 2D principal components analysis (2D-

PCA) technique (Yang, 2004). Compared to conventional 

PCA, which first rearranges the pixels in each band kA   into 

column vectors ka , 2D-PCA operates directly on the input 

bands. This direct operation does not destroy (or affect) any 

row-to-row relationships that may exist between the pixel 

gray-level values. By constructing the image covariance 

matrix directly on 2D matrices, rather than 1D vectors, this is 

found much smaller. The application of 2D-PCA creates a 

fused image from the different polarization channels. The 

outcome is the achievement of increased performance of ship 

target detection, having higher true positive and lower false 

positive detection accuracy as compared to single channel 

detection performance. In addition, the use of 2D-PCA 

provides the ability to discriminate and classify objects and 

regions in the resulting image representation more 

effectively, with the additional advantage of being more 

computational efficient and requiring less time to determine 

the corresponding eigenvectors, compared to e.g. 

conventional PCA (Theoharatos, 2011). 

Throughout our analysis, a constant false alarm rate (CFAR) 

detection model is applied to characterize the background 

clutter and discriminate ship targets based on the Weibull 

distribution and the calculation of local statistical moments 

for estimating the order statistics of the background clutter. 

Appropriate pre-processing and post-processing techniques 

are also introduced to the process chain, in order to boost ship 

discrimination and suppress false alarms caused by range 

focusing artifacts. Experimental results provided on a set of 

Envisat and RadarSat-2 images (dual and quad polarized 

respectively), demonstrate the advantage of the proposed data 

fusion scheme in terms of detection accuracy as opposed to 

single data ship detection and conventional PCA, in various 

sea conditions and resolutions. Further investigation of other 

data fusion techniques is currently in progress. 

The rest of this paper is organized as follows. The SAR data 

description is provided in Section 2. Section 3 provides an 

overview of the utilized CFAR detection approach, along 

with the necessary parameter estimation. The utilized data 

fusion approach is presented in Section 4. Experimental 

results are provided in Section 5 and conclusions are made in 

Section 6 along with future research objectives. 

2. DATASET DESCRIPTION

Two SAR scenes were used in this study. The first dataset 

comes from RadarSat-2 satellite mission and was acquired on 

May 6 2008, having fine quad polarization data (HH, VV, 

HV and VH polarizations) and resolution of 4.73m x 4.82m. 

The experiment area is located in the area of Vancouver, US, 

illustrated in the red rectangle in Figure 1. 

Figure 1. The quad-pol RadarSat-2 scene’s test site. 

The second dataset comes from Envisat satellite mission and 

was acquired on May 6 2008, having dual polarization data 

(HH and HV polarizations) and resolution of 12.5m x 12.5m. 

The experiment area is located in the area of Saronikos Golf, 

Greece, illustrated in the red rectangle in Figure 2. 

Figure 2. The dual-pol Envisat scene’s test site. 
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3. CFAR DETECTION APPROACH

In a typical CFAR detection approach, the clutter pdf is given 

by  xpc  within a test cell cY  corresponding to the clutter

pixels only, while the target pdf is represented by  xpt  for 

target pixels within a cell tY  corresponding to the signal-

plus-clutter (Fei, 2012). Given the different statistical 

distributions, the target can be discriminated from the 

background clutter by comparing the pixel value to a 

threshold T . In this way, the probability of false alarm FAP

is physically the area under the clutter model, while the 

probability of detection DP  that indicates the area under the 

target model: 

   




T

ccFA dxxpTYPP , (1) 

   




T

ttD dxxpTYPP  (2) 

In the above equations, the threshold T  can be defined in an 

adaptive way based on the clutter statistical model (e.g. mean 

value) of the local background, as mT  , with   being a 

positive empirical value. 

In order to provide a reasonable fit to the amplitude statistics 

of the background clutter, several CFAR detectors with 

different local statistics have been proposed in the past. For 

example, in homogenous clutter environment the mean-level 

detectors are widely used, an example of which is cell 

averaging CFAR (CA-CFAR) (Gandhi, 1994). Other 

commonly used detectors are order statistic (OS-CFAR) 

(Peihong, 1996), greatest of CFAR (GO-CFAR) and smallest 

of CFAR (SO-CFAR) (Gandhi, 1988), optimal Weibull 

CFAR (OW-CFAR) (Anastassopoulos, 1995), the concept of 

variability index CFAR (VI-CFAR) (Smith, 1997), as well as 

combinations of the previous ones, for solving the problems 

of clutter edge and interference of neighbour target. All those 

types have their own pros and cons, with different potential 

application situations. Lately, adaptive CFAR algorithms 

have been proposed based on SAR data properties (Smith, 

2000) or automatic censoring (Gao, 2009) for target 

detection. 

In our analysis, a nonparametric CFAR detector was utilized, 

based on pairs of the ordered statistic (OS-CFAR) samples of 

the Weibull distribution, which has been found to provide a 

good fit to sea clutter. 

3.1 The Weibull distribution 

The Weibull pdf is a two-parameter distribution. The first 

parameter of the distribution, a shape parameter, relates to the 

skewness of the distribution, whereas the second parameter, a 

scale parameter, scales the distribution. This distribution is 

mathematically convenient as it allows the skewness of the 

distribution to be changed with a single parameter to match 

the characteristics of the data. 

The pdf of the Weibull distribution is given by: 

  a

xb

e
h

x

h

b
xp



 (3) 

where 0x  and 0a , 

b  is the shape parameter and h  is the scale 

parameter of the Weibull distribution. 

The mean value is given by: 

  









b
hXE

1
1 (4) 

where    is the gamma function given by

  




0

1 dtetz tz
. 

In addition, the variance is given by: 

  


























bb
hX

2
1

2
1var 22

(5) 

3.2 Estimation of Weibull parameters 

By combining equations (4) and (5), we can estimate an 

expression that is independent of the parameter h : 

 
 
































b

bb

XE

X
CV

1
1

2
1

2
1

var

2

(6) 

Using eq. (6) we can calculate the value of parameter b  

through some predefined variance values for different 

Weibull distributions. This can also be easily done by 

estimating different sets of CV  and b  values, which can be 

called based on an estimated look-up table. 

In order to model the clutter statistics of the Weibull 

distribution, the scale parameter h  needs also to be 

calculated from eq. (4), given the estimated value of h  and 

the expected value of x within the test cell: 

  




N

i

ix
N

mXE

1

1
(7) 

In addition, the threshold value T  is given by: 

b

FAP
hmT

2

1
log


























 (8) 

Therefore, given a value for parameter   (e.g. )3  and 

the exact value of the mean power of the clutter m , we can 

determine the threshold value T  and, thereafter, the scale  

and shape parameters h  and b  respectively. 

Actually, target discrimination from the background clutter is 

dealt as a two-class classification problem. Given the 

parameter estimation model presented above and a predefined 

value for FAP  (based on the uniformity or homogeneity 

nature of the clutter), one must determine the size of the 

guard and boundary cell within a sliding window, centered on 

the ROI. This window is typically called CFAR stencil and is 

shown in Fig. 3. 
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Figure 3. CFAR stencil representation. 

Different types and sizes of guard and boundary cells can be 

utilized in the detection process. The most common choices 

are rectangular types of cells, the dimensions of which 

depend on the data resolution and the size of ship targets that 

need to be detected in the SAR data. If G  is the size of the 

guard cell and B  is the size of the boundary cell, a value of 

23GB   is experimentally found to provide good detection 

results. 

Figure 4. Detected ship targets in (a) HH, (b) HV, (c) VH and 

(d) VV polarizations, for the RadarSat-2 scenes, using a 

CFAR stencil of size 7751x . 

Figure 4 illustrates the CFAR detection results for the quad-

pola RadarSat-2 data, using guard and boundary sizes of 

values 7751x  (i.e. 51G  and 77B ). This, however, 

CFAR detection approach performed on each separate 

polarization channel, is an extremely slow process and might 

not be applicable in near real-time applications. 

4. POLARIMETRIC FUSION STRATEGIES

In order to improve target detection capabilities, execution 

time, and also take advantage of the different polarizations of 

polarimetric SAR data, data fusion strategies can be applied 

to combine the complementary information. Two different 

levels of data fusion to polarimetric CFAR detection can be 

applied, as shown in Figure 5: 

a. A single-channel CFAR detection algorithm is

applied to each polarimetric image and then the

detection hits are combined using a decision fusion

approach

b. The polarimetric images are first combined using a

data fusion module and then a single-channel

CFAR detection algorithm is applied.

Figure 5. Polarimetric (a) data (top-diagram) and (b) decision 

(bottom-diagram) fusion approaches. 

For both fusion approaches, the considered detection 

algorithm is the one described in Section 3. That is, either if 

CFAR detection is applied to the combined image (Fig. 5(a)) 

or separately to each polarimetric image (Fig. 5(b)), the 

modified version of the OS-CFAR using sample of the 

Weibull distribution is utilized in the study. 

Regarding data fusion, several transformation or polarimetric 

decomposition techniques can be applied for improving the 

signal-to-noise ratio of the ship targets, as explained in the 

introduction. In this paper, 2D-PCA is utilized for creating a 

fused image from the different polarization channels, which 

was found to achieve increased performance of ship target 

detection compared to conventional PCA technique or single 

channel detection performance. A short description of the 

classical PCA and the proposed 2D-PCA is provided in the 

sequel. 

Date:0
/
t
/
ubse with optimal weibull CFAR

Date:0
/
t
/
ubse with optimal weibull CFAR

Date:0
/
t
/
ubse with optimal weibull CFAR

Date:0
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t
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4.1 PCA-based fusion of SAR data 

Principal components analysis is a widely utilized 

dimensionality reduction technique in remote sensing, having 

been considered as a novel solution for sub-band fusion 

processes. This is due to the fact that the information of the 

original multidimensional data is transformed mainly on the 

first few orthogonal components of the new space. The 

concentration of the available information on a single band 

results in maximization of the variance for the pixels and the 

features in this band. Simultaneously, information does not 

degenerate, since PCA is an information preserving 

transformation and consequently the source data can be 

restored. However, the use of PCA may not reveal 

information that appears only in a few pixels of certain bands, 

due to the global statistical nature of this linear 

transformation. 

Classical PCA operates on one-dimensional data, by first 

transforming each input image kA , with Kk  , 2, ,1 

denoting K  image matrices of size NM  , to 1MN  size 

vectors and then performing eigenanalysis to each 1-D 

vectors. Therefore, given a set of polarimetric SAR images, 

PCA can be considered optimal in the sense that the first 

principal component will have the highest contrast and thus it 

can be displayed as a grayscale image with the larger 

percentage of visual information. This component, however, 

may not be suitable to form a grayscale image since the 

energy is not uniformly distributed and the result will not be 

optimal for the target detection processes, as is the case of 

our analysis. In addition, by rearranging the pixels in any 

image kA  into a column vector ka , any row-to-row 

relationship that may exist between the pixel’s gray-level 

values is lost. In order to overcome this problem, a two-

dimensional PCA (2D-PCA) algorithm was proposed (Yang, 

2004). 

4.2 SAR fusion using 2D-PCA 

4.2.1 2D-PCA algorithm: This techniques operates 

directly on the input images kA  without first converting them 

into column vectors ka . The algorithmic steps are explained 

in the sequel (Theoharatos, 2011). 

First, each input image is normalized by substracting the 

mean image matrix A : 

AAX kk   (9) 

where 




K

k

kA
K

A

1

1
. 

In the following step we define a NN   image covariance 

matrix using the formula: 






K

k

k
T

k XX
K

C

1

1
(10) 

2D-PCA aims to find an optimal projection matrix 

  dN
d

 yyyY  , , , 21  , with Kd   that minimizes the

mean square reconstruction error given by: 

  YYY CJ T (11) 

Intuitively, this means that the total scatter of the projected 

samples is maximized after the projection of an image onto 

Y . The matrix-image representation reduces the learning 

process of 2D-PCA to an eigencomposition problem of the 

covariance matrix C . 

Let iy  with  di  , 2, ,1   define the set of N

dimensional eigenvectors of the covariance matrix C

corresponding to the d  largest eigenvalues: 

ii yy C (12) 

Then, the optimal projection axis is the unitary vector that 

maximizes the criterion  YJ , that is, the eigenvector of C

corresponding to the largest eigenvalue. Most of the times, 

having only one optimal projection axis is not adequate. We 

usually need to select a set of projection axes, dyyy  , , , 21  , 

which follow the rules coming from the orthonormal 

constraints and maximizing  YJ . Actually, the optimal

projection axes are the orthonormal eigenvectors of C  

corresponding to the first d  largest eigenvalues. 

The 2D-PCA transformation, as defined in (12), operates on 

the rows of the input image kA . Other variants of this 

algorithm can be obtained by including a column of a 

diagonal based transformation. 

4.2.2 2D-PCA image reconstruction: In traditional PCA, 

the principal components can be combined with the resulted 

eigenvectors to reconstruct the original data. This can be also 

achieved in 2D-PCA to visualize the output of the fusion 

process (Yang, 2004). 

The basic implementation that should be computed to obtain 

the reconstructed image A
~

 of the input image matrices kA  is 

given by: 






d

k

T
kk

1

~
yYA , with dk  , 2, ,1  (13) 

where kY  are the resulting principal component vectors 

calculated as kk AyY  . 

Following this concept, one can choose a restricted number 

of dimensions (i.e. bands) Kd   to represent a reconstructed 

subimage (of the same size) of A  as 
T
kkk yYA 

~
. 

Obviously, this can be obtained by summing up the first d

subimages in (13), which results in an approximation for A . 

In our analysis, the input polarimetric SAR data is fused 

using the 2D-PCA algorithm, keeping the first subimage (i.e. 

1d ) as the output of the aforementioned technique. The 

application of a single CFAR detector on the fused outcome 

can, not only improve target detection performance in terms 

of effectiveness (i.e. higher true detection and lower false 

alarms), but also in terms of efficiency due to the decrease of 

the execution time equal the number of polarization channels 

in the SAR data. 

5. EXPERIMENTAL RESULTS

As presented in Section 2, two SAR scenes were used in this 

study, a quad-pol one (HH, VV, HV and VH polarizations) 

coming from the RadarSat-2 satellite mission of resolution of 
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4.73m x 4.82m, and a dual-polarized scene (HH and HV 

polarizations) coming from the Envisat satellite mission of 

resolution 12.5m x 12.5m. All scenes have been initially pre-

processed by applying ortho-rectification, radiometric 

calibration, land masking for separating land and water areas 

and speckle filtering using Lee filter (Lee, 2009) to remove 

speckle noise. 

Figure 6 presents the CFAR detection result of the fused 

outcome (after performing 2D-PCA) of the RadarSat-2 data, 

using the same guard and boundary sizes as the ones used in 

Figure 4 for the individual SAR data, that is 7751x . By 

comparing Figures 4 and Figure 6, it can be observed that the 

detection result is better in the fused outcome than the one 

taken from each polarization channel, with almost all (except 

from one) ship targets having been detected. 

Figure 6. Detected ship targets in the 2D-PCA based fused 

result of the RadarSat-2 scenes, using a CFAR stencil of size 

7751x . 

In addition, Figure 7 illustrates the CFAR detection result of 

the 2D-PCA outcome of the Envisat data, using the same 

CFAR stencil of size 7751x . 

Figure 7. Detected ship targets in the 2D-PCA based fused 

result of the Envisat scenes, using a CFAR stencil of size 

7751x . 

To verify the overall detection performance, we cross 

checked the detected vessels with the ground truth provided 

by AIS ancillary data. A Figure of Merit (FoM) is used as a 

detection performance measurement (Foulkes, 2000). It is 

given by: 

GTFA

TD

NN

N
FoM


 (14) 

where TDN  is the number of the total true detections, 

FAN  is the number of false alarms and 

GTN  is the number of ground truth targets. 

Regarding the values calculated using the formula in eq. (14), 

the higher the FoM  numbers are, the better detection results 

(i.e. higher detection rate and lower false alarm rate) are 

taken from the application of the CFAR detector presented in 

Section 3. In order to calculate the FoM  measure, the 

number of ground truth ship targets should be known a-

priory. These are provided from the AIS ancillary data. For 

the RadarSat-2 scene, the total number of ground truth targets 

is 20, thus 20
2


RadarSat
GTN , while for the Envisat data 

34
Envisat

GTN . 

The application of the FoM metric to the CFAR detection 

results is critical, since our target is not only to detect as 

many targets as possible, but also to apply a technique that is 

able to detect as less false alarms as possible. Therefore, the 

detection process is a two-fold evaluation procedure. 

Table 1 shows the results of detecting ships using RadarSat-2 

images. The detection performance is determined by 

calculating the FoM  at each polarization separately, as well 

as to the fused images generated by the application of PCA 

and 2D-PCA. All measurements have been taken with and 

without the application of speckle filtering, which seem to be 

a critical pre-processing step of a target detection system. 

mode 21x31 31x47 41x61 51x77 

w
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t 
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k

le
 f

il
te

r 

ap
p

li
ca

ti
o
n
 

VV 0,400 0,375 0,522 0,435 

VH 0,321 0,258 0,300 0,478 

HV 0,333 0,308 0,308 0,391 

HH 0,281 0,176 0,379 0,312 

2D-PCA 0,391 0,500 0,769 0,531 

PCA 0,269 0,292 0,280 0,304 

w
it

h
 s

p
ec

k
le

 f
il

te
r 

ap
p

li
ca

ti
o
n

 

VV 0,346 0,270 0,440 0,375 

VH 0,286 0,300 0,300 0,360 

HV 0,250 0,214 0,308 0,391 

HH 0,206 0,212 0,393 0,312 

2D-PCA 0,346 0,452 0,600 0,454 

PCA 0,204 0,160 0,224 0,219 

Table 1 FoM calculation for RadarSAT-2 images. 

As shown in Table 1, the use of PCA does not give good 

detection results in comparison to the application of 2D-PCA, 

providing – in most of the cases – even worse results 

compared to those provided by the application of the CFAR 

detector to each separate polarization channel. This is 

because the implementation of CFAR detector in the PCA 

produced output provides many false alarms (besides the true 

detections), which have a negative effect on the calculation of 

the FoM . The higher FoM  measurements for each CFAR 

stencil are highlighted in bold numbers in Table 1, while the 

best measurement is found in red-bolded numbers. That is, 

the maximum value of FoM  is found for a CFAR stencil 

6141x  pixels, without having applied a de-speckle filter 

procedure. 
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Regarding the dual-polarization Envisat images, the ship 

detection performance was calculated for each one of the 

polarizations separately, along with the image created using 

the 2D-PCA. The respective FoM values are presented in 

Table 2. Images using simple PCA were not used, since the 

detection result gave too many false alarms and, therefore, 

the evaluation result was not evaluable. For the Envisat 

images, the best results were also found in the 2D-PCA based 

fused outcome provided using a window of 7751x , after 

having the data filtered to remove speckle noise. Once again, 

the higher FoM  measurements for each CFAR stencil are 

highlighted in bold numbers in Table 2, while the best 

measurement is found in red-bolded numbers. 

mode 21x31 31x47 41x61 51x77 

w
it

h
o
u

t 
sp
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k
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fi
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 a

p
p
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ca

ti
o

n
 

HV 0,527 0,620 0,520 0,571 

HH 0,527 0,633 0,620 0,646 

2D-PCA 0,537 0,667 0,630 0,652 

w
it

h
 s

p
ec

k
le

 f
il

te
r 

ap
p

li
ca

ti
o
n
 

HV 0,527 0,646 0,630 0,667 

HH 0,537 0,633 0,520 0,617 

2D-PCA 0,537 0,667 0,652 0,727 

Table 2 FoM calculation for Envisat images. 

Finally, concerning processing time, the application of the 

CFAR detector on a single polarization channels requires 

approximately 304.6 secs for a CFAR stencil of size 3121x  

and approximately 402.5 secs for a CFAR stencil of size 

7751x , running on a standard Wintel 64-bit PC, having 8GB 

RAM memory and an Intel Core i5 CPU processor @ 

3.10GHz. It is apparent that, the application of CFAR on each 

separate SAR channel significantly limits the target detection 

capabilities, making it unmanageable for near real-time 

applications. 

6. CONCLUSIONS

In this paper, a novel data fusion scheme for improving the 

effectiveness and efficiency of ship target detection in 

polarimetric data is proposed, based on 2D principal 

components analysis (2D-PCA) technique. The application of 

the 2D-PCA algorithm increases the detection capabilities of 

a classical CFAR detector, while reducing false alarm 

detection. In addition, it significantly reduced processing time 

by a factor equal to the number of incoming polarization 

channels. Moreover, the use of 2D-PCA provides the ability 

to discriminate and classify objects and regions in the 

resulting image representation more effectively, with the 

additional advantage of being more computational efficient 

and requiring less time to determine the corresponding 

eigenvectors, compared to classical approaches like the 

conventional PCA. 

Throughout our analysis, a constant false alarm rate (CFAR) 

detection model is applied to characterize the background 

clutter and discriminate ship targets based on the Weibull 

distribution and the calculation of local statistical moments 

for estimating the order statistics of the background clutter. 

Appropriate pre-processing and post-processing techniques 

are also introduced to the process chain, in order to boost ship 

discrimination and suppress false alarms caused by range 

focusing artifacts. Experimental results provided on a set of 

Envisat and RadarSat-2 images (dual and quad polarized 

respectively), demonstrate the advantage of the proposed data 

fusion scheme in terms of detection accuracy as opposed to 

single data ship detection and conventional PCA, in various 

sea conditions and resolutions. Further investigation of other 

data fusion techniques is currently in progress. 
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