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ABSTRACT:

In this paper, a multi-layered multi-scale backscattering model for a lossy medium and a neural network inversion proc
been presented.

We have used a bi-dimensional multi-scale (2D MLS) roughness description where the surface is considered as a superg
finite number of one-dimensional Gaussian processes each one having a spatial scale using the wavelet transform anc
algorithm to describe natural surface roughness.

An adapted three layers 2D MLS small perturbations (SPM) model has been used to describe radar backscattering respo
arid sub-surfaces. The total reflection coefficients of the natural soil are computed using the multilayer model, and v
scattering is approximated by the internal reflections between layers. The original multi-scale SPM model includes only tt
scattering of the natural bare soil, while the multilayer soil modified 2D MLS SPM model includes both the surface scatte
the volumetric scattering within the soil. This multi-layered model has been used to calculate the total surface reflection c«
of a natural soil surface for both horizontal and vertical co-polarizations.

A parametric analysis presents the dependence of the backscattering coefficient on multi scale roughness and soil.

The overall objective of this work is to retrieve soil surfaces parameters namely roughness and soil moisture related to the
constant by inverting the radar backscattered signal from natural soil surfaces.

To perform the inversion of the modified three layers 2D MLS SPM model, we used a multilayer neural network (NN) arc
trained by a back-propagation learning rule.

[11]) and have suggested that natural surfaces are
described as self-affine random processes (1/f processes) 1
1. INTRODUCTION stationary processes. In previous works, we have analyzed
backscattering on multi-scale bi-dimensional surfaces [3][7]
Over the last two decades, microwave remote sensing hakich description does not depend on classical rougt
become an efficient tool for indirectly estimating soil moisturgparameters standard deviation and correlation length but ol
and soil properties in the top few centimeters of soils at differeparameters related to multi-scale surfaces properties.
spatial and temporal scales. Soil moisture affects the partitioni%g( . i . d h f
of rainfall into infiltration and runoff and modulates soil- —<Uacting soil moisture and roughness parameters of n:

atmosphere feedback interactions and it also affects groundweﬁgﬂaces from thlshdatahhas been p;oblc(ajmatlc for nl;?ny r?
recharge, crop growth. and many researchers have encountered many problems li

lack of information about the characteristics of natural sui
In that context, modeling radar backscattering through natuna@ughness. In addition, the relation-ship between

surfaces has become an important theme of research and adviaekscattering coefficients is non-linear and the probler
remote sensing and has shown its utility for many applications iatrieving parameters is frequently ill-posed and it may
hydrology, geology, astrophysics, etc impossible to separate the contributions from diffe

The characterization of soil surface roughness is a kmechanisms making the retrieval of several param
9 Ymultaneously necessary.

requirement for the correct analysis of radar backscattering
behavior. Many previous works have been devoted to thihe objective of this paper is to develop and test an inve
analysis of the backscattering characteristics of bare soils aaldgorithm for soil moisture and multi-scale roughness pararr
several backscattering models (theoretical, semi- empirical argtrieval from radar backscattering coefficients simulated b
empirical) were developed ([1] [2] [6] [9]). They used themodified SPM model using a neural network invers
classical statistical description of natural surfaces angtocedure based on a multilayer neural network (
characterized roughness by statistical parameters namaealyghitecture trained by a back propagation learning rule.

correlation length and standard deviation. . . . . ) . )
9 This paper is organized into five sections. The first se:

However, the weakness of the classical description of natuidgscribes the two dimensional multi-scale description of ne
surfaces is the large spatial variability which affects theough surfaces. Section 2 presents the multi-layers MLS
correlation function and makes classical roughness parametersdel. The third section discusses the influence of multi-
very variable. Several works have proposed various approachiesghness and the dielectric constant related to soil moistt
for the improvement of roughness descriptions ([3] [4] [5] [7the backscattering simulations using our three layers multi-
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bi-dimensional small perturbation model (SPM). In the nex
section the neural network based inversion procedure, the rest
and their accuracy are presented. Finally, our conclusions ¢

Verticale component of a multi-scale ACF

presented in the last section. 3.
24
2. A MULTISCALE DESCRIPTION OF NATURAL L
SOILS ROUGHNESS <

In this section, we present the multi-scale surface model used
the SPM model.

Natural roughness is described as a multi-scale process havin %

1/f spectrum with a finite range of spatial scales going from

15
- ) . 5 .jxoextens\oﬂinx(cmj
few millimeters b (b< E)) to several meters (B<resolution cell) spaiid
[3][7]. We have considered the surface as a superposition of a
finite number of one-dimensional Gaussian processes each on

Bigure 1. Vertical component of a MLS two-dimensional
having a spatial scale [1] characterized by: 9 P

ACF for vx=2.1,vy=1.1,yx=0.2cm angy=0.8cm

Py

AOEY i G

m=—P; n=—c0

Diagonal component of a multi-scale ACF

@

WhereZ™ is a collection of gaussian random independer
variables with variangg2~™, x a normalized distance with
respect to an arbitrary length L2 B and¥™ a collection of
orthonormal wavelet (4th Daubechies). The roughness multisc:
parameterv is related to the fractal dimension (v=5-2D for
mono-dimensional Euclidean surfaces awd7-2D for bi-
dimensional surfaces [7]) and is related to the standard
deviation and the number of spatial scales is equal to P. Ir
previous work [4][5], to describe more adequately natur:
surfaced, we have used the separable dyadic multi-resoluti
analysis introduced by Mallat [8] to extend the wavelet theol
from one-dimensional to two-dimensional case.

Using the bi-dimensional wavelet transform, we have obtainedFigure 2. Diagonal component of a MLS two-dimensional
respectively the vertical wavelet component, the horizontal
wavelet component (3) and the diagonal wavelet component (4)
of the height}, (where i=Vertical, Horizontal or Diagonal.
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In figure 1 and figure 2 the vertical, diagonal and horizc
component of a multi-scale two dimensional ACF surface
represented.

oo o n e 0 e (2)  We have simulated the 3D representation of the MLS sur
. for two different spatial scales, with P=5 in figure 3 and P=1
+o0 400 n oMy omy o )
gen=3 3 5 S w10
P P +00 400 oMy omy
Zh(x,y) = Z Z Z Z Z;ZXZ:;“P(?xfnx) (B y—ny) (4)
Their autocorrelation function (ACF) is given by:
Py, x+ &y +n) ={Zy,NZ5(x + &y + 1)) (5)
And the standard deviation can be written as:
s? = rH(0,0) = r2(0,0) = v/ (0,0) (6)

Figure 3. 3D representation of a multi-scale surface using
Daubechies wavelet with multi-scale parameters
(vi=1.3;v,=1.3;y=0.2cm) P=5
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The natural soil is composed by a dense media compos
multiple species of particles [10] and water, of a disc
dielectric soil component

We considered the half-space below the ground surface (z:
a three-layer medium (figure 5), where D is the r:
penetration depth. This multilayer soil model includes tl
uniform layers [10]:

- The medium 1 with thicknes$, and permittivityy,,
represents the mixture of soil particles and lig
water contents;

- The medium 2 with thicknes$, and permittivitye,
represents the air in soil;

The medium 3 represents the soil layer below the radar
penetration depth D (d d,), with permittivitye,. It is semi-

Figure 4. 3D representation of a multi-scale surface using infinite and has no thickness

Daubechies wavelet with multi-scale parameters
(v1=1.3;v,=1.3;y=0.2cm) P=10

E; ER1 Er2 ER3
Medium 0
3. AMULTILAYER MULTISCALE BI-DIMENSIONAL . s
SPM MODEL - i | | f
. \\1:"1‘1 /NEr Evs /
3.1 MLS SPM Model Bsecen & 9 £ (i. T
Esw En\[/En |/ Ers D
In this study, we modeled radar backscattering over a thre S i
S . Medium 2
layer model [10] by taking into account volume scattering. Eact €0 d>
layer is described as a multi-scale bi-dimensional surface usin - : 1
our multi-scale description. Medium 3 ‘\
In this study the small perturbation model SPM is used for the & *\
simulation of backscattering coefficients. S —\ P
~— / N ~

SPM input parameters are the dielectric constant (deduced frc ~—

the surface volumetric moisture content), the fractal parameter

and the standard deviation of surface height. A multi-scale Figure 5. Multilayer reflection model soil [10]

correlation function was therefore used in thisstudy. To remain

within the domain of validity of the SPM used surfaces with  We consider the reflection of an electromagnetic wave

ks< 0.3 (k: wave number, s: rms height). each layer. The incident wave is from layerl, and as laye
semi-infinite there is no electromagnetic wave reflection 1
the bottom of layer3.

k 2 2 -
UOZZ exp(R*)(cos8 b ‘qu‘W ¢ Xsing ) (7)  The incidence and reflected radar signal between medil
(air) and medium 1 can be expressed as:

Where® is the incident angle a+bqp‘ is given by given by Fung

E; = E, e k12 ©)
[6] and )
Epy = RoEqe /X22=R,E; (10)
o (= _27f|re€m) Epy = Tyo ARGAToE; = TyoTo1 A*RSE; 11
W ( 2kx,0)——ff i cos@k,&)d&dn (8) r2 = l10 ARsAlg 0y = T10lo1A°RE; (11)
7T00 rC(O,O)

Ega = T10AT21RqT12AT oy
Where W" is the Fourier transform of the nth power of the
multi-scale autocorrelation function given by Mattia in [7] WithEi = To;T12T21A%R,E;
n=1 for the SPM model [3][4][5][7]. Surfaces are characterized
by the dielectric constant related to soil moisture, the albedo, the (12)
°p“°"?" depth. gnd surface roughness. Prewogs works US\‘?&% have to take into account these equalities since mediul
classical statistical parameters namely correlation length and.
standard deviation in the expression of the autocorrelation
function W. The principal aim of this study is to use the muItiP - _R (13)
scale surface description in the backscattering coefficient. s @

. - Tor = T 14
3.2 Multilayer modified SPM model o T (14)

In this section we present the multilayer reflection model giver?12 = Tho (15)
by Fung [6] and Song [10] using our multi-scale 2D description
of surface roughness.
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The total surface reflection coefficient of the multilayer soil can
be expressed from the incident and reflected radar signal at a The impact of fractal dimension v on the radar backscatter signal chh
medium 1 interface as 25 LU TEL R PSS E ST

0= v=15
-—R--v=17
| F-v=19

Ro = Rq+ RoTo1T10A*(To1Tio + 1) (16)

where R, is the surface scattering of the soil (the specula
surface reflection term,To1T10A%(To1T1o + 1) is the internal

reflections between layers (the equivalent volumetric scatterin
ke dq

term), with A= ecosér, 9, the refraction angle at the air medium
1 interface,R, the specular reflection coefficient of air at air-
mediumT,,,, the transmission coefficient from medium m to
medium n (n=0, 1, 2, 3)K,the extinction coefficient of the ) : ] ; :
medium 1 ([7], [10]) d, the thickness of the medium 1. 55 i i i i i

The total reflection coefficients of the natural soil are computet Incident Angle 6 (degree)

using the multilayer model, and volumetric scattering is

approximated by the internal reflections between layers. TheFigure 7. Backscattering coefficient dependence on fracta
surface reflection terms in the modified SPM model are
replaced by the total reflection coefficients from the multilayer
soil surface. The original multi-scale SPM model includes onlyyhen v, the parameter related to the fractal dimens
the surface scattering of the natural bare soil, while the, reases the backscattering coefficient decreases.
multilayer soil modified 2D MLS SPM model includes both the poq gyrfaces withv between 1.5 and 2.3 are considerec
surface scattering and the volumetric scattering within the SOiBmooth, we set, as a second step, this parameter at 2.1
This multilayered model has been used to calculate the tOtﬁblarization and 1.9 in HH polarization for five spatial sc
surface reflection coefficients of a natural soil surface for bo”(Figure 8 and figure 9).

horizontal and vertical co-polarizations.

Each |ayer is described as a multi-scale bi dimensional surfac The impact of standard deviation y on the radar backscatter signal cw
using our multi-scale description ([4] [5] [10]) and the modified with v=21,P=5andf=>5 (Ghz)

SPM. i :

Radar Backscatter Signal chh (dB)

parameter v at HH polarization

35

==€-- v=0.0011 (cm)
--| ==@= v =0.0021 (cm)

- 0.0031 (cm)
=== v =0.0041 (cm)
4. SENSITIVITY ANALYSIS OF THE THREE LAYERS ¥ =0.0081 tem)

MULTISCALE BI-DIMENSIONAL SPM MODEL

4.1 Sensitivity to multi-scale roughness parameters

Backscatter Signal ovv (dB)

We have considered the VV and HH polarizations and studie &
the sensitivity of radar backscattering and angular trends fce&
different multi-scale roughness and for different dielectric : ] : : :
constants of each layer. 20 30 40 50 60 70 80

We have simulated the angular trends of the three layers mul.. e SR
scale backscattering coefficient from 20 to 80 degrees for . .
different roughness parameters. Figure 8. Backscattering coefficient dependence on standa
As a first step, we fixed the parameter related to the Root Mean deviationy at VV polarization

) o . e
Square at Q.0031cm in VV and HH polar!zatlons for five Spatla'_ The impact of standard deviation y on the radar backscatter signal chh
scales to find out the effect of fractal dimension on the rade with v=19.P=5etf=05

backscattered signal (Figure 6 and figure 7).

T I

-=9-- v=0.0011 (cm)

=== v =0.0021 (cm)
The impact of fractal dimension v on the radar backscatter signal cw ==%-- v = 0.0031 (cm)
=== v =0.0041 (cm)

with ¥ =0.0031 (cm),P=5etf=05

25 o

A T

=0.0051 (cm)

T S

-—0--v=15
: H H H -—%-v=17
20 . : Lo |- v=19
H ; . --O- v=21

Radar Backscatter Signal chh (dB)

Radar Backscatter Signal ovv (dB)

Incident Angle 6 (degree)
0 i i i i i . . . .
20 30 40 50 60 70 80 Figure 9. Backscattering coefficient dependence on standal

Incident Angle 6 (di .. . .
DodoSeyidegse) deviation y at HH polarization

Figure 6. Backscattering coefficient angular trends on
fractal parameter v at VV polarization
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When vy, the parameter related to the fractal dimension The effect of £'1 on the radar backscatter signal ow (dB)
increases the backscattering coefficient increases.

The backscattered signal in VV polarization is higher than th ~~%-£2=8(cm)

backscattered signal in HH polarization.

For all the simulations, the backscattering coefficient decreast

with the incidence angle.

4.2 Sensitivity to Soil Moisture

Soil moisture is related to the complex dielectric constain

Figure 10, figure 11, figure 12 and figure 13, we have
represented radar backscattering as angular trends for differe
values of the complex permittivity of the second layer in the twc

polarizations VV and HH.

Radar backscatter signal ovv (dB)

The effect of £'1 on the radar backscatter signal cvv (dB)
with€'2 =10 (cm), v=1.3,7y=0.0011 (cm) and f = 0.5 (Ghz)

""""" ‘_-_"_““*-~_ ==9--£1=2(cm)
st e e T G | E1=3(m)
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Incidence angle 6 (degree)

Figure 10. Backscattering coefficient dependence afil at

Radar backscatter signal shh (dB)

VV polarization

The effect of £'1 on the radar backscatter signal chh (dB)
withe'2 =10 (cm), v=1.3,7v=0.0011 (cm) and f = 0.5 (Ghz)

-=9--1=2(cm)
=-=@ - ¢£1=3(cm)
==%-=¢£1=4(cm)
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Figure 11. Backscattering coefficient dependence aifil at

HH polarization

withe'1 =5 (cm), v= 1.3, 7= 0.0011 (cm) and f = 0.5 (Ghz)

=-=@=-£2=9(cm)
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- e2=11(cm)
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Radar backscatter signal ovv (dB)
'I
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Incidence angle 6 (degree)

Figure 12.Backscattering coefficient dependence ar, at
VV polarization

The effect of £'2 on the radar backscatter signal chh (dB)
withe'1 =5 (cm), v=13,7v=0.0011 (cm) and f = 0.5 (Ghz)

= = i : -=9--c2=6(cm)
s ~<F- R ==®=£2=7(cm)
= %=-c2=8(cm)
SN -—<t-c2=9 (cm)
-1 —~BF- £2 =10 (cm)

Radar backscatter signalshh (dB)
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Incidence angle 6 (degree)

Figure 13. Backscattering coefficient dependence ay, at
HH polarization

The backscattering coefficient decreases &sgncreases
whereas it increases wheggincreases also. Indeed when
layers are dry corresponding to a lower humidity and

consequence a lower dielectric constant, the penetration

signal is more important and the backscattered signal is lov
As the dielectric constant increases, the surfaces and subs
become wetter and the backscattered signal increases b
the penetration is lower.

5. METHODOLOGY OF THE RETRIEVAL
PROCEDURE

5.1 Inversion procedure

We present in this section, an algorithm to retrieve multi-¢
roughness parameters and soil moisture parameter. In this
the direct problem is represented by the SPM model. Th
sensitivity analysis of the SPM model has been performec
presented in the section 5.3 to examine the dependence
output of the scattering model to the inputs parameters.
the outputs of the scattering model became saturate
insensitive to a parameter, the parameter inversion rang
narrowed.

The method consists of inverting the SPM direct model L
multilayer perceptron architecture [4] and [6]. The inver:
consists in retrieving roughness and soil moisture paran
v1, y2,v1,v2, €1 ete2 by using as input parameters the r¢
backscattering coefficientsHH,, aVV and the incident ang!
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6 varied from 30 to 60 degrees. The NN is trained by learnin’ — R .
rules using the back propagation method. -
Simulated data sets based on the SPM surface scattering mo e /
are used to train the neural network. 115 Zad
To illustrate the inversion techniques we propose ¢ i 11495 O v ,// 4
methodology given by figure 14. L. ~

'E 11,49

& 11,485

Activation fm?clion 11,48 O . o 7o)

parameters
| Number of hidden layers l 10,00 12,00 14,00
Back ing data of the ; .
elcclromagx{euc model QiR e izinal val
Number of neurone by layer Original values
Random initialization of B! T

synaptic heights

Figure 15.The retrieving soil moisture parameterg;

/ after the inversion by the NN function of its original value
i 18 ¢ "”f" ) ¥
Examples of Data Minings
14 '/—_——_‘—-—.‘

1,2

Neurones outputs
estimating by gradient
backpropagation

0,8

Adjustment of synaptic
heights 04

0,2
. 00 O )
Medium quadratic error
13 15 1,7

calculating of learning
examples OnglrrnlaI values

Retrieval values
s

Figure 16. Theretrieving roughness parametery, after

Outputs of NN ; . . ! o
the inversion by the NN function of its original value

Relative error of retrieval 07
data is lower than threshold
06 /
w 05
)
z /
g 04
g /
£ 03
Figure 14. The proposed methodology :
. 01
5.2 Neural Network Training
0 ; :
The first step in the inversion procedure is the generation of 021 021 031 041 051 061
set of training patterns. Original values

In this study, a total of 35390 training patterns were generate
by using each of the signal modelsf the SPM backscattering
coefficient. The parameters of interestused to generate the
training patterns were randomly selected from within the range
of parameters given by the sensitivity analysis.

Figure 17. Theretrieving roughness parameterv; after
the inversion by the NN function of its original value

5.3 Inversion Algorithm Results

To illustrate the inversion techniques described in the pre
section, we apply them to the data simulated by the SPM.
Before using the NN for the inversion, we have to calculat
mean rms error of the network. It converges well to a v
smaller than 0.05 after 6000 iterations so that the NN is |
for the inversion procedure.
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In figure 18 we present the sum squared network error foPIERS, Progress In Electromagnetic Research Sympo
35390 epochs.The inversion has given quite satisfactory resulf®kyo,(2006).
as the original values were retrieved with an error of 2.75%.

Sum-Squared Network Error for 35390 Epochs

[5] Farah, L. B, Farah, I. R., Bennaceur, R, Hosni, I.
Boussema, M. R. "A Two Layers Multiscale Bi-dimensic
SPM Model for the Study of Radar Backscatter Behavio

Sum-Squared Error

Semi-arid Soil Subsurfaces” Papers, PIERS ONLINE, Proi
In Electromagnetic Research, 6 (2010).

[6] Fung, A.K. “Microwave scattering and emission models
their applications” Artech House, (1994).

[7] Mattia, F. and Le Toan, T. "Backscattering propertie:
multiscale rough surfaces,” Journal of Electromagnetic W
and Applications, Papers 13(4), 493-528 (1999).

[8] Mallat, S.G. "Theory of multi-resolution sign
decomposition: The Wavelet representation”. Papers, |

0 05 1 15 2 25 3 35 Transactions on Pattern analysis and machine intellige
S x10° 11(7), 674-693 (1989).
Figure 18. The sum squared network error [9] Oh, Y., Sarabandi, K. and Ulaby, T. "An empirical mc

6. CONCLUSION

and an inversion technique for radar scattering from bare
surfaces”, Papers, IEEE Transactions on Geoscience:
Remote Sensing, 30, 370-381 (1992).

In this paper, we have presented a lossy 2D multi-scald10] Song. K, X. Zhou and Fan,Y. "Multilayer soilode| for
mult”ayered medium backscattering model. imprOVement of soil moisture estimation Using the s
We replaced the surface reflection coefficients in the SPMperturbation method”, Papers, Journal of Applied Rel
model, which was obtained from a single-layer model, by théensing, 3, 033567 (2009).

total reflection coefficients obtained from the three layered

model. We have studied angular trends and three layers MLU$1] Zribi, M., Le Morvan, A. and Baghdadi, N. “Dielecti
SPM backscattering behavior in both HH and VV polarizationConstant Modelling with Soil-Air Composition and Its Eff
for different roughness and dielectric parameters. on Sar Radar Signal Backscattered over Soil Surface”, Pi
After this sensitivity study we performed the inversion using a>ensors8, 6810-6824 (2008).

neural network technique witch leaded to quite satisfactory

results with a mean error of 2.75 %.

Future work will be dedicated to the study of radar

backscattering on n layered media.
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