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ABSTRACT: 

Monitoring forest productivity and health is key to sustainable ecosystem management and informed decision making. A key 
parameter used in monitoring forest resources is the leaf area index (LAI), which is defined as the one-sided leaf area per unit ground 
area and is used to describe the canopy radiation regime, among other forest biophysical dynamics. Traditional optics-based methods 
to estimate LAI rely on the measurement of canopy transmission and foliage clumping. Extending optical methods to LiDAR data 
has been challenging and studies have reported effective LAI assessments, with no further quantification of foliage clumping. This 
study investigates the use of the box-counting method to assess the fractal dimension of point cloud data for contrasting forest types 
and along a gradient of foliage dispersal. We demonstrate the box-counting method on simulated ‘range-to-hit’, as well as acquired 
airborne discrete LiDAR data. Coherent results obtained from the different test cases hint at the potential of the box-counting fractal 
dimension to characterize foliage clumping and bode well for the use of clumping assessments in support of airborne, wall-to-wall 
estimates of LAI. 

* Corresponding author.

1. INTRODUCTION

The clumping of foliage is an important aspect of canopy 
architecture and regulates the distribution of light across leaves 
and with canopy depth. It is used in the computation of the leaf 
area index (LAI), that is defined as the half-sided leaf area per 
unit ground area, and finds broad use in ecological and 
silvicultural models (Gower et al. 1999; Chen and Black, 1992). 
Despite its importance, the measurement of foliage clumping 
relies on field-based optical methods and has proved difficult to 
scale to the landscape.  

Traditional methods to estimate LAI rely on some form of 
knowledge on the behaviour of radiative (light) transfer through 
the canopy. Nilson (1971) proposed the application of Beer’s 
law to estimate LAI using data related to the transmission of 
light through the canopy. The model considers exponential 
decay of light transmission with path length, based on the 
assumptions that leaves are infinitely small and leaf positions 
and orientation angles are both uniformly distributed (Sinoquet 
et al. 2005). Modifications to Beer’s law have been proposed 
that provide for LAI to be estimated for plant canopies with 
finite leaf sizes (Thanisawanyangkura et al. 1997) and for 
canopies where leaves are clumped around branches (Chen and 
Black, 1992). The latter introduced a clumping parameter/index 
in the exponent of Beer’s law, which slows down exponential 
decay of radiation with canopy depth. Traditional methods to 
measure this clumping index rely on the measurement of gap 
size distributions using a photodiode assembly that is moved 
along a linear transect underneath the canopy (Chen and Black, 
1992). However, this constrains such measurements to fine 
scales only, as opposed to more synoptic remote sensing 
modalities. 

Remote sensing approaches are ideally suited for the 
characterization of canopy architecture across broad scales. 
Previous studies have investigated correlations between LAI 
and canopy reflectance or range data. The latter is acquired 
using Light Detection and Ranging (LiDAR) scanners that 
provide for three-dimensional characterization of stand 
structure, including tree position and terrain elevation, as well 
as for measurement of light transmission through plant 
canopies. The data are generally captured as discrete-return 
point clouds, or as full-waveform digitization of backscattered 
energy. A waveform LiDAR signal represents a convolution of 
the emitted laser pulse with canopy elements exposed along the 
laser beam path. Such data hold more information than what is 
stored in discrete LiDAR returns and have been used to derive 
denser point clouds and for radiometric calibration to obtain 
apparent reflectance (Jupp et al. 2008). Studies using discrete 
LiDAR data typically have explored the use of summary 
statistics about return height information and correlations 
between these and field-measured LAI (e.g. Lefsky et al. 2005; 
Korhonen et al. 2011; Richardson et al. 2009; Morsdorf et al. 
2006). Studies using full-waveform LiDAR data have typically 
explored information embedded in the transmission of light 
with range or canopy depth. For example, Jupp et al. (2008) 
used full-waveforms from a tripod-mounted system to describe 
gap probability as a function of range and estimated both leaf 
area and vertically-resolved foliage density profiles. More 
recently, Armston et al. (2013) and NiMeister et al. (2010) 
derived canopy gap probabilities from airborne full-waveform 
LiDAR data for LAI and biomass estimation. 

LiDAR-derived LAI estimates typically assume foliage 
distributions to be uniform within thin height layers and do not 
address foliage clumping into shoots, whorls, or crowns. The 
LAI estimates, therefore, represent effective quantities and 
capture the density of leaf area that would establish the 
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observed canopy transmission as if the foliage were distributed 
uniformly (Jupp et al. 2008). However, significant deviations 
from exponential light decay can occur at the scale of individual 
trees or traditional inventory plots. To provide for improved leaf 
area estimates from remote sensing modalities, research is 
needed to address the characterization of canopy architectures 
into a condensed set of properties that captures the variation in 
leaf area density across a range of different scales. 

Fractal analysis has become a popular field of research that 
studies scale-invariant features and self-similarity in object 
space. Iterative function systems (Sinoquet et al. 2005) or L-
systems (Lindenmayer Systems; Prusinkiewicz and 
Lindenmayer, 2004) have gained traction as algorithms to 
construct graphics that exhibit self-similarity across a range of 
scales. L-systems have been widely used in plant modelling and 
are well suited to the study of light transport in heterogeneous 
media (Sinoquet et al. 2005, 2007; Da Silva et al. 2006; Cote et 
al. 2011). The fractal dimension of these forms can either be 
derived from theory (Sinoquet er al. 2005) or measurement. 
Sinoquet et al. (2007) have investigated the use of the box-
counting method to compute variance in foliage density across a 
range of scales, and related these estimates to lacunarity, a 
measure of the porosity of media, and foliage dispersion. 
Hereto, points along the fractal geometries were sampled and a 
hierarchy of grids were built that divided the three-dimensional 
space into homogeneous boxes of decreasing size, and for each 
hierarchical tier the number of boxes was counted that 
contained any surface points. For fractal objects, the 
relationship between the logarithm of the box count and the 
logarithm of the box size is linear, so that the slope of the 
regression line defines the fractal dimension. Box counting has 
also been applied to real plant canopies using point cloud data 
from digitizer wands (Sinoquet et al. 2005, 2007) and using 
hemispherical photography (Jonckheere et al. 2006), but to the 
authors’ knowledge, its application to airborne LiDAR data 
remains underexplored. 

This paper therefore investigates the use of the box-counting 
method in three dimensions using simulated ‘range-to-hit’ and 
airborne LiDAR data and investigates the potential to 
characterize various degrees of foliage clumping. 

2. METHODS

2.1. Study area 

The study area is located in California, and comprises two sites, 
described in detail in Kampe et al. (2013). The first is the San 
Joaquin Experimental Range (SJER), about 32 km north of 
Fresno, California, USA. This site is a woodland savannah 
dominated by blue oak (Quercus douglasii), interior live oak 
(Quercus wislizeni) and grey pine (Pinus sabiniana), and the 
ground is continuously covered with herbaceous vegetation. The 
climate is Mediterranean, with wet cool winters and dry hot 
summers, while annual precipitation is about 486 mm and mean 
monthly temperatures range from 4 to 10 °C in winter and 
between 24 and 27 °C in summer. 

The second study site is Soaproot Saddle (SOAP), which is 
located about 30 km east from SJER, and approximately 5 km 
south of Shaver Lake at an altitude of approximately 1100 m. 
This site is composed of a mixed deciduous/conifer forest and is 
dominated by ponderosa pine (Pinus ponderosa) and incense 
cedar (Calocedrus decurrens). The canopy is open and the 

forest floor is densely covered with a variety of shrubs, 
including mountain misery (Chamaebatia australis). 

2.2. Data collection 

Data were collected on June 12 and 13, 2013 using the National 
Ecological Observatory Network (NEON) Airborne 
Observatory Platform (AOP) that features a full-waveform 
Optech Gemini small-footprint LiDAR and an imaging 
spectrometer based on the AVIRIS Next-Generation 
(AVIRISng) instrument. The LiDAR system records both 
discrete and full-waveform returns and operates in the 1064 nm 
waveband (Kampe et al. 2010). From the flight line data, three 
120 x 120 m plots were selected, with one in the San Joaquin 
Experimental Range (site AOP116), and two in Soaproot Saddle 
(AOP143, and AOP299). Site AOP116 was represented in two 
flight lines (i.e., numbered 3 and 12); hence, both flight lines 
were used in our analysis, resulting in two point clouds for site 
AOP116. Figure 2 shows illustrations of the point clouds, as 
classified into vegetation and ground returns. 

Figure 2: Selected LiDAR point clouds from the NEON 
AOP system, shown in nadir and oblique view. The two 

panels show the four plots in corresponding order. Top left: 
SJER, site AOP116, flight line 3; Top right: SJER, site 

AOP116, flight line 12; Bottom left: SOAP, site AOP143, 
flight line 10; Bottom right: SOAP, site AOP299, flight line 

7. Each plot represents 200 x 200 m. Note the distinct
horizontal and vertical structural differences between the 

SJER and SOAP sites. 
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2.3. Data simulation 

Virtual scenes for data simulation were generated using Arbaro 
(Weber and Penn, 1995), a tree regeneration software written in 
Java that provides for the three-dimensional modelling of a 
wide variety of shrubs and trees using a set of intuitive inputs 
that defines parameters such as stem lengths, orientation, and 
number of splits, for up to three branching orders. Three trees 
were selected from the standard template library 
(http://sourceforge.net/projects/arbaro/) and were used for 
subsequent analysis. The trees were placed in scenes, and an 
axis-aligned bounding box was used to tightly enclose each 
scene. A total of four scenes were generated, comprising three 
trees and a mixed stand. For each scene, a range of foliage 
dispersions was generated (Figure 3 and 4). Hereto, individual 
leaves, comprised of a fixed number of facets, were labelled and 
a uniform distribution S of n points, equal to the number of 

leaves, was created within the scene’s bounding box. Linear 
transects were computed between each leaf and a randomly 
chosen point in S, and leaves were moved along these transects. 
For each scene, six different degrees of foliage dispersal were 
created, so that in each step along this gradient, leaves moved 
20% of the distance towards their randomly assigned point in S. 

From the ceiling of the scene-bounding box, rays were projected 
into the scene and intersections with scene elements were 
computed using SRT (Van Leeuwen et al. 2013). The bounding 
box was used as a periodic boundary, so that rays would 
cyclically re-enter the scene until they either intersected a tree 
element or hit the scene floor. Using a density of 30 rays m-2, 
under an incidence angle of 1 rad from zenith, each of the 24 
scene-dispersion combinations resulted in a three-dimensional 
point cloud that was used for box-counting analysis. 

Figure 3: Shown are the different degrees of foliage dispersion for virtual trees constructed with Arbaro. Trees represent 
poplar, cottonwood, and aspen species, from top to bottom rows, respectively. 
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Figure 4: Different degrees of foliage dispersion for a constructed mixed virtual scene, representing poplar and aspen species. 

2.4. Box-counting design 

For each point cloud, P, derived from the virtual scene-dispersal 
combinations or AOP LiDAR data, the box-counting method 
was used to compute a fractal dimension. For scenes comprising 
a single tree, a hierarchy of box sizes was created by iteratively 
dividing the scene-bounding box into smaller units, so that the 
number of boxes exponentially grew as i3, for i = 1, 2, 3, …, 8. 
For the stand-level point cloud data, lengths, r, were measured 
in meters, since plot size is an arbitrary measure. The range of 
box sizes (r) was 5 to 50 m for NEON sites SJER and SOAP, 
and 1 to 10 m for the simulated stand, due to its smaller size. In 
each hierarchical tier, the number N of boxes was counted that 
consisted of one or more points in P. For a range of scales, e.g., 
greater than a leaf, clumped canopies were expected to have 
lower fractal dimension, while more uniform foliage 
distributions were expected to have higher fractal dimensions. 
The fractal dimension was computed from the slope of the 
regression line between Log N and Log r-1. 

The efficacy of the box-counting method to estimate foliage 
clumping was assessed from the change in fractal dimension 
with clumping degree. For the simulated data, the degree of 
clumping was directly assessed from the range of translation of 

leaves along their randomly assigned line transects. No use of 
TRAC (Chen and Black, 1992) or hemispherical photography 
was made at this stage to characterize foliage clumping at the 
two NEON sites; we wanted to first establish the theoretical 
validity of the approach before its extension to field 
measurement efforts. 

3. RESULTS

Figure 6 demonstrates the use of the box-counting method on 
the discrete NEON AOP data that were acquired from the four 
site and flight line combinations. Linear regression analysis 
shows significant differences between sites SOAP and SJER, 
while estimates of fractal dimension within these sites were 
within close proximity of one another. Figure 7 shows range-to-
hit data for the virtual-mixed scene and for a gradient of leaf 
dispersions. The histograms show a change in the interceptance 
distribution with height, along with fitted Weibull distributions 
(i.e., without accounting for bimodality). For clumped foliage 
distributions, the mid-canopy height most frequently intercepted 
incident rays, owing to the larger leaf area density around mid-
canopy height. For the uniform foliage distribution, the largest 
interception frequency occurs towards the top of the canopy.   
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Figure 6: Relationship between the number of boxes enclosing LiDAR returns and the reciprocal of the box size, shown on 
logarithmic axes (box size, r, in meters). The slope of regression lines equates to the fractal dimension. 

Figure 7: Distribution in range-to-first hit for different degrees of foliage clumping for the virtual mixed stand. The 
histograms show a transition from a bimodal distribution towards a negative exponential distribution, according to a change 

from clumped- (top-left) to uniform (bottom-right) foliage distributions. 
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Figure 8: Relationship between the box count and the reciprocal box size for simulated point clouds from individual trees. 
Box size was chosen as an integer division of the scene-bounding box. The fractal dimension (slope) increases as clumping is 

reduced towards more uniform foliage distributions. 

Box-counting analysis shows that the decrease in fractal 
dimension is consistent with the degree of foliage dispersal that 
was applied to the scenes (Figure 8 and 9). The fractal 
dimension (slope) increases as clumping is reduced and the 
foliage distribution becomes more uniform. For individual trees, 
the scale of box sizes was defined as an integer division of the 
scene’s bounding box, hence the fractal dimensions of the 
individual trees have a slightly different interpretation than the 
fractal dimension of the mixed scene. While the fractal 
dimensions of individual trees relate solely to crown 
architecture, patterns in the mixed scene relate, in addition, to 
the clumping of the stand into crowns, which for this study was 
based on a regular spacing. Nevertheless, a marked linearity in 
the logarithmic relationship was observed, as well as in the 
variation of the fractal dimension for the range of foliage 
dispersals considered and for box sizes ranging between 1 and 
10 m. 

Figure 9: Box-counting analysis of point cloud data 
simulated for the mixed stand. 

4. CONCLUSION

The box-counting method was used to assess the fractal 
dimension of point clouds obtained from simulated range-to-

first hit and discrete LiDAR data. Airborne discrete LiDAR data 
showed a consistent variation in slope of the regression line 
between log N and log r-1 between sites. Fractal patterns of 
vegetation were more clearly observed at the scales of 
individual trees; however, a linear relationship between Log N 
and Log r-1 also was observed at the stand level. These results 
hint at the value of the box-counting method for deriving 
information related to foliage clumping from range data. Further 
research is needed to link these observations to the site-specific 
clumping index, as measured via hemispherical photography or 
TRAC (Chen and Black, 1992) and to investigate effects of 
beam width and pulse duration that potentially could obscure 
some of these fractal patterns. 
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