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ABSTRACT: 

Remote sensing is a suitable tool for estimating the spatial variability of crop canopy characteristics, such as canopy chlorophyll 

content (CCC) and green ground cover (GGC%), which are often used for crop productivity analysis and site-specific crop 

management. Empirical relationships exist between different vegetation indices (VI) and CCC and GGC% that allow spatial 

estimation of canopy characteristics from remote sensing imagery. However, the use of VIs is not suitable for an operational 

production of CCC and GGC% maps due to the limited transferability of derived empirical relationships to other regions. Thus, the 

operational value of crop status maps derived from remotely sensed data would be much higher if there was no need for re-

parametrization of the approach for different situations.  

This paper reports on the suitability of high-resolution RapidEye data for estimating crop development status of winter wheat over 

the growing season, and demonstrates two different approaches for mapping CCC and GGC%, which do not rely on empirical 

relationships. The final CCC map represents relative differences in CCC, which can be quickly calibrated to field specific conditions 

using SPAD chlorophyll meter readings at a few points. The prediction model is capable of predicting SPAD readings with an 

average accuracy of 77%. The GGC% map provides absolute values at any point in the field. A high R² value of 80% was obtained 

for the relationship between estimated and observed GGC%. The mean absolute error for each of the two acquisition dates was 5.3% 

and 8.7%, respectively. 

1. INTRODUCTION

Remote sensing is a suitable tool for estimating the spatial 

variability of crop canopy characteristics such as green ground 

cover (GGC%) and canopy chlorophyll content (CCC). Both 

variables are often used for crop productivity analysis and site-

specific crop management. Spatially high-resolution crop 

growth status information can provide farmers with relevant 

information e.g. for site-specific application of fertilizer (Scharf 

and Lory, 2002, Emerine, 2006), growth regulator (Maas et al. 

2004), irrigation requirements (Hunsaker et al., 2005, Er-Raki, 

2010), and crop productivity analysis (Schulthess et al., 2013). 

Since field management decisions are often time-critical, an 

almost real time production and provision of spatially high-

resolution CCC and GGC% maps is desired. 

Leaf chlorophyll absorption in the visible part of the 

electromagnetic spectrum provides the basis for using remotely 

sensed reflectance as a tool for the determination of crop 

development status. Often spectral vegetation indices (VI) are 

used to derive crop status information. Several studies have 

proven the existence of empirical relationships between 

different VIs and both CCC and GGC%. Even though the 

normalized difference vegetation index (NDVI) (Rouse et al. 

1973) is the most commonly used VI, it has the limitation that it 

tends to saturate when LAI exceeds 2, and it is also strongly 

influenced by soil background conditions (Baret et al., 1991). 

Several other VIs have been proposed for estimating CCC of 

various crops (Daughtry et al., 2000, Haboudane et al., 2002). 

In particular, the red-edge region of the spectrum showed 

strong potential for estimating canopy chlorophyll content. The 

main advantage of red-edge based indices is their reduced 

saturation effect due to a lower absorption by the chlorophyll in 

the red-edge spectral region compared to the red spectrum 

(Gitelson and Merzlyak, 1996). Thus, red-edge based indices 

are still sensitive to chlorophyll absorption at higher crop 

canopy densities. Since CCC varies widely over the growing 

season and among crops, any VI requires a large dynamic range 

for chlorophyll estimation. Eitel et al., (2007) have proven the 

general suitability of the RapidEye red-edge band for CCC 

estimation in winter wheat. 

Accordingly, BlackBridge (as the owner and distributor of 

RapidEye data) has been using the Normalized Difference Red-

Edge Index (NDRE) (Barnes et al., 2000), to produce relative 

chlorophyll maps. Although these maps are known to reflect the 

variability of CCC within individual fields, the variable nature 

of the NDRE-Chlorophyll relationship in different situations, 

has prevented the establishment of a universal relationship for 

estimating actual CCC values on the field. This limited 

transferability of empirical relationships hinders its 

incorporation into operational production processes. 

One option to overcome this limitation is to explore the 

possibility of establishing a relationship NDRE-CCC on a case 

by case basis, but with a procedure that is simple enough to be 

applied by farmers with little effort and previous knowledge. 

With this goal in mind, in this study a test was performed to 

determine the accuracy of NDRE maps as predictors of values 

of CCC when using a set of a few measurements on the ground. 

Often VIs used for fractional GGC% estimation rely on the soil 

line in the red and near-infrared (NIR) spectral feature space. 

Richardson and Wiegand (1977) introduced the bare soil line 

concept to improve the discrimination between bare soil and 

sparse vegetation cover. In particular the weighted difference 

vegetation index (WDVI) (Clevers, 1988) and the perpendicular 

vegetation index (PVI) (Jackson et al., 1980) were successfully 
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tested to estimate GGC% from multi-spectral imagery (Bouman 

et al., 1992, Schulthess et al., 2013, Maas et al., 2008, Rajan et 

al., 2009). 

Even though the basic concept of the PVI is to reduce the 

influence of bare soil reflection, this index cannot be considered 

fully insensitive to soil brightness. Huete et al. (1985) found out 

that for same amounts of vegetation cover PVI shows lower 

values on dark soils than on bright soils. Moreover, the initial 

assumption of an existing “global” soil line encompassing a 

wide range of soil conditions has been disproved. Soil type 

specific conditions cause variations in the slope and intercept of 

the soil line, and consequently influence the value of the 

particular VI (Huete et al., 1985). Therefore, regional specific 

soil lines are necessary to enable accurate GGC% estimation by 

utilizing soil line based VIs. 

Maas et al. (2008) developed a non-empirical and self-

calibrating approach for estimating GGC% based on the bare 

soil line and full canopy point (FCP) reflectance. The FCP is 

defined as the canopy reflectance in the NIR and the red 

spectral band at 100% ground coverage when seen directly 

from above. With parameters derived from the scatterplot of the 

NIR vs. the red band values of a particular multi-spectral image, 

they achieved a GGC% estimation error below 6% on average. 

The operationalization of this approach for the GGC% map 

production relies on the automated determination of an 

adequate soil line and FCP in each particular image, which is 

highly error-prone without a proper image screening 

beforehand. The accidental inclusion of urban areas, lakes, 

clouds and cloud shadows prevents the accurate identification 

of the soil line (Maas et al., 2008, Xu et al., 2013). Therefore, 

one of the goals of the study reported here is to find a procedure 

to improve the automatic extraction of a soil line representative 

of the area under study. 

The identification of the FCP requires the existence of full 

canopy within the image, which is not guaranteed for 

acquisitions early and late in the season. Furthermore, leaves 

transmit and reflect light in the NIR spectrum and absorb only a 

small fraction. As a result, the NIR reflection for a pixel of full 

canopy can continue to increase with increasing leaf density. 

Thus, it is very likely that automatically extracted NIR values 

are above the normal values of full canopy. To overcome this 

challenge, the use of an empirical FCP is recommended (Maas 

et al., 2008).  

The aim of this work is to demonstrate the feasibility of the 

automated generation of relative canopy chlorophyll maps 

(CCC) and absolute GGC% maps for individual fields based on 

RapidEye imagery, with the least amount of manual 

intervention. The resulting maps were compared to 

corresponding ground truth measurements of chlorophyll 

content and GGC% to assess the accuracy. The produced maps 

provide information about the spatial variability of crop growth 

that has potential use in precision agriculture as a means for 

directed field scouting and variable rate management. 

2. MATERIALS AND METHODS

2.1 Study Area 

The study area is located in the federal state of Saxony-Anhalt, 

Germany (11°54′E, 51°47′N) in an intensively used agricultural 

landscape. The region is characterized by Chernozem in 

conjunction with Cambisols and Luvisols as the predominant 

soil types of the Loess covered Tertiary plain. The test site is 

characterized by highly variable spatial soil properties. Within 

the study area, one winter wheat (Triticum aestivum L) field 

with a size of 90 ha was selected for the assessment of wheat 

CCC and GGC%. The field showed two areas with no 

vegetation as a result of waterlogging in early spring 2011. 

2.2 Field Measurements and Data Extraction 

Field data were collected close to image acquisition on the 8th 

of May and 22nd of June 2011. The first campaign was 

conducted within one day of image acquisition to avoid any 

distortions of the results due to high daily growth rates at this 

stage of crop development. The sample locations were defined 

aiming at covering the entire crop variability within the field as 

described in Siegmann et al. (2013). A total number of 24 and 

18 sample plots were measured at winter wheat’s stem 

elongation and early ripening stage, respectively (Figure 1).  

Figure 1. Test site with the sampling locations measured on 8th 

of May (dark) and 22nd of June 2011 (bright). The 

image shows the situation on the 7th of May 2011. 

2.2.1 Ground Measurements of Chlorophyll 

Field data collection included leaf area index (Licor LAI-

2200©, Delta-T Sunscan©) and leaf chlorophyll meter readings 

in the upper canopy (Minolta SPAD-502©). SPAD 

measurements represent a unit-less relative measurement of leaf 

chlorophyll content and have been proven to be positively 

correlated to chlorophyll content of wheat (Reeves et al., 1993) 

and other crops (Zhu et al., 2012). 

Since satellite images represent the spectral reflectance from 3-

dimensional crop canopies, the SPAD readings at leaf level 

were also transformed to a 3-dimensional CCC. The CCCSPAD 

was derived by calculating the product of the corresponding 

leaf SPAD reading and leaf area index (Gitelson et al., 2005). 

Samples showed a considerable CCCSPAD range from 18 at 

minimum to 151 at maximum on the 8th of May 2011 and from 

20 at minimum to 240 at maximum on the 22nd of June. The 

average CCCSPAD from the two dates ranged from 58 to 119. 

2.2.2 Ground Measurements of Ground Cover 

Photographs of the wheat canopy were taken with a standard 

digital camera looking downward from a distance of 

approximately 1.5 m to allow the estimation of green crop 

ground cover. Photographs were subject to supervised 

classification aiming at the objective determination of reference 

GGC%. Trimble eCognition Developer 8© software was used to 

perform an object-based supervised classification of green 

vegetation and non-green vegetation. The image was cropped to 

include only the central portion for the GGC% determination to 

minimize the effects of optical distortions on the plant canopy 

present near the edges of the image. GGC% was calculated as 
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the area of green vegetation of the resulting polygon shape file 

divided by the total area of the photograph.  

The mean reference GGC% of the field was 71% on the 8th of 

May and 65% on the 22nd of June 2011. The variability of 

GGC% observed was considerably higher in June ranging from 

23% at minimum and 95% at maximum compared to 42% at 

minimum and 96% at maximum in May. 

2.3 Remote Sensing Data Processing 

2.3.1 Satellite Imagery 

The RapidEye (RE) satellite system is a constellation of five 

identical earth observation satellites with the capability to 

provide large area, multi-spectral images with frequent revisits 

in high resolution (6.5 m at nadir). In addition to the blue (440–

510 nm), green (520–590 nm), red (630–685 nm) and NIR 

(760–850 nm) bands, RapidEye has a red-edge band (690–

730 nm), especially suitable for vegetation analysis. The 

RapidEye level 3A standard product covers an area of 

25x25 km, and is radiometrically calibrated to radiance values 

(Anderson et al. 2013), ortho-rectified, and resampled to 5 m 

spatial resolution. All the images used were calibrated to top of 

atmosphere reflectance. The two images used (Tile ID 

3363006) for crop status mapping were acquired on the 7th of 

May and 27th of June 2011.  

2.3.2 Chlorophyll Mapping 

Since the relationship between canopy chlorophyll and the 

spectral VI used may vary between crop types or different areas, 

it is more appropriate to restrict the comparisons to individual 

crop fields. For this reason, the Chlorophyll Map focuses on 

differences within single fields, thus providing a relative 

chlorophyll level scale. 

The NDRE was calculated for the entire satellite image (1), as: 

NDRE = (ρNIR – ρREdge) / (ρNIR + ρREdge) (1) 

where ρNIR and ρREdge are the reflectance values of the near 

infrared and red-edge spectral region. 

The NDRE layer obtained was clipped to the test field area and 

all included pixels were encoded as a relative chlorophyll level 

index (RCLI) into a 0 – 100 grey value scale. 

The relative chlorophyll values were calibrated to the field 

specific conditions by obtaining three ground measurements of 

CCCSPAD for each of the three chlorophyll level (low, moderate 

and high) areas previously delineated. A linear regression 

analysis between the CCCSPAD values and the corresponding 

relative chlorophyll map values allowed for generating a linear 

transfer function to be applied to the relative chlorophyll map in 

order to estimate the spatial distribution of CCC. 

2.3.3 Green Ground Cover Mapping 

Green ground cover (GGC) is defined as the fraction of an area 

covered with green plant canopy. GGC percent maps are 

generated based on a modification of the original approach 

developed by Maas et al. (2008). The required bare soil line 

slope and intercept were obtained by calculating the arithmetic 

mean from automatically generated soil lines of a set of multi-

temporal images using the slightly modified procedure from 

Fox et al. (2004). Images before and after the main vegetation 

period were used to guarantee a sufficient number of pixels 

representing bare soil. The empirical FCP reflectance was 

determined by averaging the reflectance values from multiple 

locations within the field known to be more than 90% covered 

with vegetation at the time of image acquisition.  

The GGC% (2) was calculated from the ratio of the PVI (3) 

value to the corresponding full-canopy PVI (PVIFC) value (4) 

as: 

GGC% = PVI / PVIFC  (2) 

where 

PVI = (ρNIR – a * (ρRed)) –b) / (1 + a²)0.5  (3) 

and 

PVIFC = (ρNIRFC – a * (ρRedFC)) –b) / (1 + a²)0.5 (4) 

in which a and b are the slope and the intercept of the bare soil 

line respectively; and ρNIR and ρred are the reflectance values 

of the corresponding spectral band. 

The final GGC% map expresses the percentage of ground 

covered by the crop green foliage (0%, no green vegetation, and 

100%, ground entirely covered with green vegetation). 

2.4 Accuracy Assessment 

The sampling points were buffered with a radius of 10 m to 

extract the average estimated CCC (CCCest) and GGC% values 

which were then stored in a shape file for subsequent analysis. 

Linear regression analysis between CCCest and ground 

measured CCCSPAD, as well as between the estimated and 

observed GGC% was performed to assess the estimation 

accuracy, respectively. 

3. RESULTS AND DISCUSSION

Correlation analysis between the CCCSPAD data obtained during 

the field sampling campaign and six spectral VIs derived from 

multi-spectral RapidEye imagery revealed best correlations for 

those indices incorporating the red-edge reflection (Table 1). 

The results revealed strong linear correlation between CCCSPAD 

and NDRE and CIred-edge for two different development stages of 

winter wheat. 

Table 1. Correlation coefficient (r) between CCCSPAD of winter 

wheat and selected vegetation indices (n=24 in May; 

n=18 in June; level of significance, p = 0.01). 

Date NDRE MCARI MTVI2 CIred-edge OSAVI NDVI 

May 2011 0.90 0.63 0.89 0.90 0.89 0.86 

June 2011 0.87 0.82 0.87 0.87 0.87 0.86 

MCARI (Daughtry et al., 2000), MTVI2 (Haboudane et al., 2004), 

CIred-edge (Gitelson et al., 2003), OSAVI Rondeaux et al., 1996) 

Figure 2 shows the generated RCLI map for the winter wheat 

field on 7th of May 2011. The dimensionless chlorophyll levels 

are represented in eight classes of colour tones representing 

relative differences in chlorophyll content within the field. 

Figure 2. Spatial distribution of classes representing relative 

chlorophyll level differences in winter wheat on 7th 

of May 2011. 
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This relative map provides accurate information about the 

spatial variability of CCC within the field and facilitates 

directed field scouting to obtain SPAD and LAI measurements 

in specific areas of the field. These measurements allow for the 

calibration the RCLI map to field condition specific CCCSPAD 

values and enables the farmer to make in-season N fertilization 

rate decisions and applications. 

Three CCCSPAD measurements corresponding to each of the 

three classes representing high, moderate, and low relative 

chlorophyll levels were selected and used to calibrate the 

relative chlorophyll values to CCCSPAD values. The relationship 

between relative chlorophyll levels and CCCSPAD for both dates 

is shown in Figure 3-A and Figure 4-A, respectively. 

The derived linear transfer function was then used to estimate 

the spatial variability of CCC based on relative chlorophyll 

values derived from remotely sensed data. Results of estimating 

CCCest in the described way are plotted in Figure 3-B and 

Figure 4-B. The least-squares linear regression line fit to the 

points of CCCest vs. ground-based CCCSPAD observations tend 

to overestimate low CCCSPAD values and underestimate higher 

CCCSPAD values. Based on the prediction, the two outliers 

(Figure 4-B) should belong to the high CCC group of points but 

the observed values are significantly lower than that. From an 

inspection of the sample locations in the satellite images, no 

particular situation was found to explain these unexpected 

values. One certain possibility would be a field measurement 

error. 

However, the resulting coefficients of determination (R²) 

indicate that more than 75% of the total variance among the 

points can be explained by the models. This strong correlation 

shows that the procedure applied is able to provide information 

on the spatial variability of CCC. 

Figure 3. A: Calibration model to turn relative chlorophyll level 

values into CCCSPAD for the May data set. B: 

Estimated CCCest plotted vs. the corresponding 

observed CCCSPAD measurements on May 7th 2011. 

The solid diagonal line represents the 1:1 line. 

Figure 4. A: Calibration model for the June data set to turn 

relative chlorophyll level values into CCCSPAD. B: 

Estimated CCCest plotted vs. the corresponding 

observed CCCSPAD measurements on June 27th 2011. 

The solid diagonal line represents the 1:1 line. 

To better evaluate the fit of the model, RMSE, mean absolute 

error (MAE), and average accuracy (MAE as a percentage of 

observed mean plus 100) were calculated. On the 8th of May, 

the prediction accuracy yielded an RMSE of 17 and an MAE of 

13 suggesting that on average the estimates of CCCest are within 

13 SPAD units of their true values. On the 22nd of June the 

RMSE of 36 and MAE of 25 were slightly higher mainly due to 

the larger range of values. However, both models were capable 

of predicting CCCSPAD with an average accuracy of 78% and 

77%. 

The final accuracy of the CCCest strongly depends on the field 

measurements used for establishing the calibration model. In 

case of inadequate measurements, the CCC estimation results 

will be less accurate. Nevertheless, the results demonstrated that 

RapidEye imagery is suitable to provide sufficiently accurate 

relative chlorophyll level maps, which can potentially support 

site-specific management decisions. 

The automatically derived soil line slope (a) and intercept (b) 

for multi-temporal RapidEye images of the project area are 

summarized in Table 2. Both parameters are variable over time. 

Since the area of study is the same in all images, the only 

remaining reasons for the observed variability could be haze, 

clouds, cloud shadows, or different non-photosynthetic crop 

residuals left on the fields. Additionally, an influence of 

different sensor viewing angles cannot be excluded. 

The GGC% was estimated based on the two RapidEye images 

acquired on the 7th of May and 27th of June 2011 using equation 

(2) with the derived average slope of 1.05291 and average 

intercept of -0.04858 (Table 2) together with the reflectance 

values for the empirical FCP of winter wheat in the Red = 0.04 

and NIR = 0.4 spectral band. 

A 

B 

A 

B 

Y = 0.7349x + 22.566 

R² = 0.78 

RMSE = 17 

Y = 1.4828x – 15.217 

R² = 0.85 

Y = 0.9183x + 15.568 

R² = 0.76 

RMSE = 36 

Y = 2.3846x – 18.151 

R² = 0.93 
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Table 2. Bare soil line characteristics of multi-temporal images 

and the mean values used for estimating GGC% 

from RapidEye images. 

Imaging date Slope (a) Intercept (b) 

March 1st ,2011 1.1400 -0.07887 

September 2nd , 2011 1.0463 -0.05811 

September 24th, 2011 1.0627 -0.04996 

October 2nd , 2011 0.95041 -0.03103 

March 26nd , 2012 0.98531 -0.02531 

March 4th , 2013 1.02156 -0.03717 

March 10th , 2014 1.17059 -0.06735 

March 29th , 2014 1.12263 -0.05741 

October 1st , 2014 0.97676 -0.03198 

Mean 1.05291 -0.04858 

STDEV 0.07770 0.01836 

The results revealed a strong correlation of r = 0.89 between 

estimated and observed GGC% for the sampling locations 

within the test field. Regression analysis indicated that 80% of 

the total variance among the points could be explained by the 

model (Figure 5) for the pooled data set with an RMSE of 9. 

The average estimated GGC% was 68%, which is about 2% 

higher than the average observed GGC%. The approach tends 

to overestimate lower GGC% and underestimate higher GGC% 

values. The derived MAE for the pooled data set was 6.8% 

(Table 3). This suggests that estimates of GGC% using the 

proposed approach based on an averaged regional soil line and 

an empirical FCP were on average within 7% of their true 

values. 

Since field management decisions have to be made based on the 

actual crop status in the field, the GGC% estimation accuracy at 

each particular date is more important than the overall accuracy 

across the season. The observation date specific accuracy 

measures are reported in Table 3. For both dates, the calculated 

MAE values suggest that the GGC% estimations were on 

average within 6% and 9% of their true values. 

Figure 5. Scatter plot of GGC% estimated from RapidEye 

imagery vs. corresponding in-situ measurements of 

GGC% for pooled data of the May and June 

campaign. 

Table 3: Accuracy measures for GGC% estimations based on 

RapidEye imagery using a regional specific average 

soil line and an empirical full canopy point 

reflectance. 

R² MAE RMSE 

May 7th, 2011 0.61 5.3 7.3 

June 27th , 2011 0.85 8.7 10.9 

Pooled data 0.80 6.8 9.0 

Even though the use of an averaged soil line and empirical FCP 

deprives, to a certain extent, the original GGC% estimation 

procedure of the self-calibration capability as its main 

advantage, the procedure is still able to accurately estimate 

GGC%.  

Figure 6 shows the GGC% maps produced for the test field 

based on RapidEye images acquired on the 7th of May and 27th 

of June 2011. In early May, the GGC% shows considerable 

spatial variation in the winter wheat canopy, which might be 

suitable for variable rate management. The areas with the 

lowest GGC% values correspond to the areas affected by 

waterlogging in early spring. In June, the wheat canopy shows 

more large-scale variation in GGC% compared to May. The 

larger areas with lower GGC% represent areas affected by 

drought-stress-induced abnormally premature ripening due to 

extreme weather conditions in early summer 2011. 

Figure 6. GGC% maps for winter wheat derived from RapidEye 

imagery acquired on 7th of May 2011 (top) and on 

27th of June 2011 (bottom). 

The successful use of a pre-defined, region-specific soil line 

and FCP parameters instead of determining them directly from 

the image can probably be attributed to the stability of the 

sensor calibration over time. Nevertheless, the influence of haze 

or other atmospheric effects on the GGC% estimation accuracy 

have to be investigated further. In this context, focus has to be 

placed especially on the transferability of the empirical full 

canopy point reflectance across regions, seasons, and crop 

types. Since it is known that VIs show different values for crops 

with planophile and erectrophile leaf canopy architecture, the 

proposed utilization of an empirical FCP has to be tested on 

crops other than winter wheat to help reduce estimation errors. 

Y = 0.7691x + 13.483 

R² = 0.80 

RMSE = 9 
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4. CONCLUSION

Results demonstrated that high-resolution RapidEye imagery is 

suitable for providing accurate spatial information on CCC and 

GGC% during the growing season, and is potentially useful for 

site-specific crop management. 

Relationships between CCCSPAD and red-edge based VIs 

showed highest correlations for different development stages of 

winter wheat. Since such empirical relationships are crop type 

or even cultivar specific, it is almost impossible to achieve 

reliable and accurate estimations solely from reflectance 

measurements. A method has been presented that is capable of 

providing spatially accurate and fast relative chlorophyll level 

maps, which allow for directed field scouting. The cultivar 

specific calibration can be realized afterwards at low cost by 

obtaining a small number of in-situ measurements in different 

areas representing high, moderate, and low relative chlorophyll 

content using a portable chlorophyll-meter. This approach is 

capable of accurately estimating CCCSPAD with an average 

accuracy of 77%. Such chlorophyll maps provide valuable 

complementary information for the derivation of site-specific 

N-fertilizer recommendations. Furthermore, in conjunction with 

soil fertility and yield maps, chlorophyll level maps can aid in 

the delineation of site-specific management zones. 

The results of this study showed that GGC% of winter wheat 

can be accurately estimated from RapidEye images based on a 

region-specific bare soil line and an empirical reflectance of 

crop full canopy. Effective GGC% prediction of winter wheat 

across the growing season yielded a coefficient of 

determination of R² = 0.8. On average, the estimated GGC% 

values were within 7% of their true values. 

The great operational value of the proposed procedure is that it 

is does not rely on any empirical relationship. According to 

Rajan et al (2009) the major advantage of such GGC% maps is 

that they provide an absolute measure of crop canopy density at 

any point in the field, allowing for direct comparison of GGC% 

derived from multi-temporal images. Therefore, GGC% maps 

enable the monitoring of seasonal crop growth dynamics within 

individual fields. 

RapidEye’s short revisit cycle and the red-edge channel make 

the satellite constellation unique for agricultural monitoring. Its 

capability for simultaneous acquisitions of crop status 

information for large areas can greatly reduce the workload for 

conducting field surveys and the crop analysis necessary to 

obtain relevant input for precision agriculture. 
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