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ABSTRACT: 
Human actions are changing the Amazon’s landscape by clearing tropical forest and replacing it mainly by pasturelands. The focus 
of this work is to assess the changes in the Itacaiúnas River watershed; an area located in the southeastern Amazon region, near 
Carajás, one of the largest mining provinces of the World. We used a Landsat imagery dataset to map and detect land covers (forest 
and montane savanna) and land use (pasturelands, mining and urban) changes from 1984 to 2013. We employed standard image 
processing techniques in conjunction with visual interpretation and geographic object-based classification. Land covers and land use 
(LCLU) “from-to” change detection approach was carried out to recognize the trajectories of LCLU classes based on object change 
detection analysis. We observed that ~47% (~1.9 million ha) of forest kept unchanged; almost 41% (~1.7 million ha) of changes was 
associated to conversion from forest to pasture, while 8% (~333,000 ha) remained unchanged pasture. The conversion of forest and 
montane savannah to mining area represents only 0.24% (~9,000 ha). We can conclude that synergy of visual interpretation to 
discriminate fine level objects with low contrast associated to urban, mining and savanna classes; and automatic classification of 
coarse level objects related to forest and pastureland classes is most successfully than use these methods individually. In essence, this 
approach combines the advantages of the human quality interpretation and quantitative computing capacity. 

* Corresponding author

1. INTRODUCTION

In a global and regional context, land covers and land use 
(LCLU) changes studies constitute a broad field in terms of the 
diversity of remote sensing methods available to map and 
monitor the different types of human-driven changes in the 
environments. However, long term and continuous mapping of 
distinct land cover classes in a tropical and subtropical 
watershed is uncommon (Shi et al., 2011). Nevertheless, 
supervised pixel-based classification algorithm has been widely 
used for land cover mapping and change detection, while 
geographic object-based image analysis (GEOBIA) literature is 
increasing rapidly (Blaschke, 2010). During the last few 
decades, the “per-pixel” classification approach has 
progressively been criticized due to be centered only in the 
digital number (i.e. brightness value) in each pixel of the digital 
image (Blaschke et al., 2014) and because it does not explore 
sufficiently the spatial concept of neighborhood, proximity or 
homogeneity (Burnett and Blaschke, 2003). However, image-
objects are composed of pixel groups with similar data values, 
which retains an intrinsic size, shape, and geographic 
relationship with the real-world landscape (Hay et al., 2001). 
Object-based approach has some advantages over the pixel-
based classification, such as remove “salt-and pepper” effects 
and a large set of features (e.g. objects generated from spectral, 
spatial and textural properties of a group of pixels) can be 
originated as additional information to improve image 
classification accuracy (Liu and Xia, 2010).  

In the previous studies with GEOBIA, a vast majority has been 
developed using high spatial resolution imagery (Blaschke, 

2010).. Few studies about LCLU changes were developed using 
moderate spatial resolution and long-term imageries carried out 
from GEOBIA (Desclée et al., 2006; Duveiller et al., 2008; 
Lyons et al., 2012). 

In this study, we employed a standard image processing 
techniques in conjunction with manual interpretation and 
geographic object-based classification. The aims of this paper is 
to present a combined object-based classification and manual 
interpretation methodology for a quantitative assessment of 
LCLU changes and recognize the spatio-temporal trajectories of 
LCLU classes in the Itacaiúnas River watershed in the Amazon 
Region from 1984 to 2013 (Figure 1). 

2. DATASET AND METHODS

2.1 Remote sensing dataset and field data collection 

Fifteen Landsat Thematic Mapper (TM) and five Operational 
Land Imager (OLI) images were used in this work. Landsat 
images were downloaded from USGS Earth-Explorer website 
(http://earthexplorer.usgs.gov) and acquired in Level 1 Terrain 
(L1T) format. The images were orthorectified to the UTM 
cartographic projection, in WGS84 datum (Irons and Leveland, 
2013). Fieldworks were carried out in April and May 2014 to 
recognize LCLU classes using panoramic digital photographs 
and ground control points (GCPs), which were acquired using a 
Differential Global Position System (DGPS). We collected 
1,060 GCPs along approximately 2,400 km of roads to validate 
the 2013 Landsat-8 OLI mosaic image classification (Figure 1). 
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During the process of visual image analysis and fieldwork data 
collection, we recognized patterns and patches in the landscape 
observed in the color composition images. Hence, it was 
possible to identify three land covers (forest, montane savanna 
and water bodies) and three land-use types (pasturelands, 
mining and urban areas). 

Figure 1. Location map of the study site illustrated in the 2013 land 
cover and land use map generated from interpretation of the Landsat-8 
OLI images. Green = forest, orange = montane savanna, belge = 
pastureland, red = mining area, grey = urban area, blue line = main 
rivers, thin black line = secondary rives, bold line = watershed 
boundary. 

2.2 Digital image processing 

The 2013 Landsat-8 OLI images were converted to the Top of 
Atmosphere (TOA) reflectance (USGS, 2012). The 2004, 1994 
and 1984 Landsat-5 TM images were converted to ground 
reflectance in percentage through ATCOR algorithm of the PCI 
Geomatica 2013 software. For each mosaic Landsat date, we 
derived the Normalized Difference Vegetation Index - NDVI 
(Tarpley et al., 1984) and band ratio 6/4 of Landsat-8 OLI and 
5/3 of Landsat-5 TM (Gad and Kusky, 2006). Later, we 
generated mosaics of Landsat images from each year (1984 
Landsat-5 TM, 1994 Landsat-5 TM, 2004 Landsat-5 TM, and 
2013 Landsat-8 OLI) to quantify human-driven changes in the 
landscape. The mosaics presented 30 m in pixel size to UTM 
22S zone projection and datum WGS84. Clipping subset of 
mosaic was carried out from shape file containing the boundary 
of Itacaiúnas River watershed. 

2.3 Geographic object-based image analysis - GEOBIA 

The multi-resolution classification of LCLU classes was based 
on combined manual interpretation and automatic classification 
synergy from GEOBIA. As mining, urban and montane savanna 
classes were represented for a small amount of segments, we 
use a manually editing thematic vector objects technique. The 
eCognition software provides this possibility, allowing defines 
the thematic region of interest before automatic image 
classification. In essence, this technique combined the 
advantages of semi-automated fine level object generation and 

classification with the visual human interpretation (Benz et al., 
2004; Lang et al., 2009). Afterwards, a rule set was established 
to automatically classify objects associated with forest, bare 
soil, pasturelands, and water bodies.  
The segmentation process included three user-defined 
parameters: i) the spectral parameter wsp = 0.5 trading spectral 
homogeneity versus object shape, is included in order to obtain 
spectrally homogenous objects; ii) the compactness parameter 
wcp = 0.5 trading compactness versus smoothness, adjusts the 
objects shape between compact objects and smooth boundaries, 
and iii) the scale parameter hsc = 50, to obtain image 
segmentation with a minimum object size (equal to the 
Minimum Mapping Unit - MMU) of 2.5 ha. An overview of the 
steps of manual editing and object-based image analysis is 
given in Figure 2. 

Figure 2. Empiric GEOBIA workflow that illustrates the 
principles of the segmentation: i) remote sensing data set 
analysis, ii) multi-date segmentation, iii) manual image object 
editing, iv) classification process based on segmentation, v) 
image classification per class, and vi) merging and quantifying 
classification, which incorporates GIScience concepts. 

During the automated classification process, we adopted the 
membership functions to describe specific properties of the 
objects. The selection of objects was assisted by analysis of 
separability of the comparable classes. Each class was classified 
separately in the domain of image object level, using the class 
filter “unclassified”, according the following order: i) mining, 
urban and montane savanna classes (manual editing); ii) black 
water bodies; iii) whitewater bodies; iv) bare soil; v) 
pasture/croplands; vi) forest. Posteriorly, black-white water 
bodies and bare soil-pasture/croplands were grouped in two 
classes - water bodies and pasturelands - through merge region 
algorithm. 

2.4 Object-based change detection analysis 

Land cover and land use “from-to” change detection approach 
(Lu et al., 2013) was carried out to recognize the trajectories of 
LCLU classes based on object change detection analysis from 
1984 to 2013. We identified five unchanged classes (forest, 
montane savanna, urban, pasture and mining) to understand 
their possible change trajectories, related to conversion “from-
to” of forest-pastureland, forest-mine, forest-urban, montane 
savanna-mine, pasture-forest, and pasture-urban. The Figure 3 
illustrates the conceptual model, which recognize trajectories of 
LCLU changes over time in the study site. 
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2.5 Classification accuracy assessment of LCLU classes 

We initially assessed the quality of image segmentation from a 
visual evaluation of classified images. Later, we used 1,060 
GCPs collected during the fieldwork to run the classification 
accuracy assessment of 2013 Landsat-8 OLI image. As we have 
no older thematic map available, we used selected objects 
generated from image segmentation to produce thematic class 
map based on stratified random sampling. Accuracy assessment 
of 2013 Landsat-8 OLI image classification were undertaken 
using confusion matrices, Kappa index (Congalton and Green, 
2009) and Tau statistics (Ma and Redmond, 1995). 

Figure 3. Conceptual model of trajectories of land cover and 
land use changes over time in the Itacaiúnas River watershed. 

3. RESULTS

3.1 Accuracy assessment 

The results indicated that overall accuracy, kappa and Tau index 
for mapping forest, montane savanna, pastureland, mining, 
urban and water bodies classification were higher than 0.89, 
using 2013 Landsat-8 OLI imagery as reference data (Table 1).  
Producer’s accuracy indicates which segments were correctly 
identified according reference data (GCPs). All classes have 
producer’s accuracy higher than 90%, with emphasis in 
pastureland (98.63%), montane savanna (97.92%) and urban 
areas (95.06%). The higher omission’s errors occurred between 
forest and pastureland. This confusion can be explained due to 
regeneration of small patches of secondary forest in pasture 
areas. In relation to user’s accuracy, the segments or value of 
the accuracy assessment site were derived from the map. Four 
classes have user’s accuracy higher that 97% (forest, montane 
savanna, pastureland and water bodies), while the higher 
commission’s errors were observed in mining (10.45%) and 
urban areas (7.23%). Four GCPs of forest were commissioned 
as mining due to vegetation suppression between remote 
sensing imagery time (August 2013) and GCPs collection (April 
2014). Five GCPs of pastureland were commissioned as urban 
areas due to similarities in spectral responses. 

3.2 Land cover and land use “from-to” change detection 

Figure 4 illustrates the LCLU unchanged and “from-to” change 
detection classes based on a bi-temporal mosaic image analysis. 
The change detection between 1984 and 1994 indicated that 
unchanged forest was the largest class with almost 2.8 millions 
ha (68% of the study area). The conversion from forest class in 
1984 to pasture class in 1994 reached an area of 800,000 ha, 
while unchanged pasture encompassed ~300,000 ha (Table 2A). 
Between 1994 and 2004, the unchanged forest class represented 
around 2 millions ha, while unchanged pasture attained ~1 
million ha. The conversion from forest to pasture in this period 
kept the same intensity of ~800,000 ha. The change detection 
between 2004 and 2013 is marked by an accentuated decrease in 
the LCLU changes, with unchanged forest and unchanged 
pasture occupying an area of approximately 1.8 and 1.7 million 
ha, respectively, which demonstrates that no change occurred in 
around ~85% of the study site. The conversion from forest to 
pasture was reduced to ~300,000 ha, while forest recovery from 
pasture reached the maximum intensity (~140,000 ha). Between 
1984-2013, we could observe that ~47% (~1.9 million ha) of 
forest kept unchanged; almost 41% (~1.7 million ha) of changes 
was associated to conversion from forest to pasture, while 8% 
(~333,000 ha) remained unchanged pasture. The conversion of 
forest and montane savanna to mining area represents only 
0.24% (~9,000 ha). The area and percentage of unchanged and 
“from-to” change detection between one class to another can be 
observed in the Table 2A.  

Land cover and 
land use classes 

F MS P M U W Raw 
total 

F 176 0 2 3 0 0 181 
MS 0 47 0 0 0 0 47 
P 14 0 649 2 4 0 669 
M 4 1 2 60 0 0 67 
U 0 0 5 0 77 1 83 
W 0 0 0 0 0 13 13 
Column total 194 48 658 65 81 14 1060 
Error Omission 
(%) 9.28 2.08 1.37 7.69 4.94 7.14 1022 
Error 
Commission (%) 2.76 0 2.99 10.45 7.23 0 
Producer’s 
accuracy 90.72 97.92 98.63 92.31 95.06 92.86 
User’s accuracy  97.24 100 97.01 89.55 89.55 100 
Kappa per Class 0.97 1 0.92 0.89 0.92 1 
Overall accuracy = 0.96 Kappa index = 0.94 Tau index = 0.93 

Table 1. Confusion matrix of the GEOBIA 2013 Landsat-8 OLI 
classification. The matrix shows the number of verification 
points, omission's and commission's errors, user’s and 
producer’s accuracy, Kappa index per class, overall accuracy, 
general Kappa index and Tau index. F = forest, MS = montane 
savanna, P = pastureland, M = mining, U = urban, W = water. 

Table 2B and 2C shows specifically the change analysis 
associated to conversion from forest and montane savanna to 
different land use types. Over time, forest was converted mainly 
to pasture, and in minor proportion to mining and urban areas. 
Between 1984 and 2013, 53% of the forest remained 
unchanged, while in 46% of entire watershed area we testified 
the conversion of forest to pasture, which represent a 
deforestation of ~1.7 million ha. Less than 9,000 ha of forest 
was converted to mining and approximately 6,000 ha were 
converted to urban areas. With respect to conversion of montane 
savanna, its change trajectory was exclusively related to mining. 
During the entire period, ~1,400 ha of montane savannah were 
converted to mining, which represent ~13% of the total savanna 
area. 
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Figure 4. Qunatification of land cover and land use changes 
between 1984-1994, 1994-2004, 2004-2013 and 1984-2013, 
from “from-to” object detection approach. 

A) 
LCLUC 1984-1994 1994-2004 2004-2013 1984-2013 

Area % Area % Area % Area % 
F - M 2.63 0.06 2.49 0.06 3.64 0.09 8.73 0.21 
F - P 792 19.17 796 19.25 301 7.27 1,680 40.62 
F - U 0.72 0.02 0.42 0.01 0.90 0.02 5.79 0.14 
P - F 65.21 1.58 72.26 1.75 139 3.36 41.99 1.02 
P - U 1.23 0.03 0.00 0 7.51 0.18 6.72 0.16 
MS - M 0.39 0.01 0.56 0.01 0.49 0.01 1.43 0.03 
UF 2,818 68.16 2,046 49.5 1,807 43.7 1,925 46.55 
UM 1.36 0.03 3.40 0.08 5.49 0.13 1.12 0.03 
UMS 10.23 0.25 9.93 0.24 9.42 0.23 9.12 0.22 
UP 307 7.43 1,040 25.15 1,710 41.36 333 8.05 
UU 1.13 0.03 2.74 0.07 5.10 0.12 1.18 0.03 
Un 134 3.23 161 3.88 146 3.52 122 2.94 

B) 

TF 1984-1994 1994-2004 2004-2013 1984-2013 
Area % Area % Area % Area % 

TF 3,614 100 2,845 100 2,112 100 3,619 100 
UF 2,818 77.98 2,046 71.93 1,807 85.55 1,925 53.19 
F - M 2.63 0.07 2.49 0.09 3.64 0.17 8.73 0.24 
F - P 792 21.93 796 27.97 301 14.23 1,680 46.41 
F - U 0.72 0.02 0.42 0.01 0.90 0.04 5.79 0.16 

C) 

TMS 1984-1994 1994-2004 2004-2013 1984-2013 
Area % Area % Area % Area % 

TMS 10.61 100 10.49 100 9.91 100 10.54 100 
UMS 10.23 96.34 9.93 94.66 9.42 95.09 9.12 86.47 
MS - M 0.39 3.66 0.56 5.34 0.49 4.91 1.43 13.53 

Table 2. A summary of land cover and land use change 
trajectories from object based approach. A) Quantification of 
LCLUC between 1984-1994, 1994-2004, 2004-2013 and 1984-
2013; B) Total forest and C) Total montane savanna unchanged 
and “from-to” change detection over years. Area in 1,000 
hectares. F = forest, MS = montane savanna, P = pastureland, M 
= mining, U = urban, UF – unchanged forest, UM – unchanged 
mine, UMS – unchanged montane savanna, UP = unchanged 
pastureland, UU = unchanged urban, Un = unclassified, TF – 
total forest, TMS = total montane savanna. 

4. DISCUSSION

The methodological approach used in the study case allowed to 
combine the advantages of visual human interpretation of a 
segmented image to recognize and define specific classes (e.g., 
mining and urban areas), as well as automated fine level object 
classification (e.g., forest, bare-soil, pasture-agriculture and 
water bodies).  

The use of multi-date remote sensing data for generating image 
objects is one of the most important aspect for object-based 
image analysis (Blaschke et al., 2014). As image objects can be 
considered as segments, at least from the point of view 
segmentation algorithm (Castilha and Hay, 2008), delineating 
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segments from image objects reduces the processing time of 
image analysis and therefore limits the cost of the remote 
sensing and GIS processes, mainly when related to regional 
scale. According Lang et al. (2009), this approach shows how 
superior aggregation capabilities of the human brain can be 
combined with the fine spatial segmentation and classification. 
Furthermore, the combination of the object analysis level, the 
nearest neighbor classifier, and expert knowledge provides the 
highest classification accuracy in comparing to per-pixel 
classification approach (Platt and Rapoza, 2008). A similar 
result was found for mapping tropical savanna in Australia 
using object-based classification (Whiteside et al., 2011). 

Hence, this paper proves strong evidence in favor of this 
assertive. High values of overall accuracy, Kappa and Tau index 
were got in the accuracy assessment analysis, indicating a close 
correspondence between the object-based image classification 
output and the fieldwork observations. Moreover, the obtained 
results suggest that GEOBIA can be used to extract LCLU 
changes information from moderate spatial-resolution satellite 
imagery, such as Landsat images time series, in climatological 
(moist tropical and tropical seasonal climate) and ecological 
(tropical rainforest and savannah) transition zone in the 
Brazilian Amazon. 

The deforestation process observed in 1980’s and 1990’s 
decades is associated with the opening of road in the 
southeastern Amazon Region (Laurence et al., 2009; Barber et 
al., 2014). Another point is that the deforestation occurred 
preferentially in larger properties with >500 ha dominated by 
large and very large landholders, whose properties are more 
concentrated in older areas that have better infrastructure, such 
as roads, and thus are connected to markets (Godar et al., 2014). 

5. CONCLUSION

The synergy of visual interpretation to discriminate fine level 
objects with low contrast associated to urban, mining and 
montane savannah classes and automatic classification of coarse 
level objects related to forest and pastureland classes is most 
successfully than use these methods individually. In essence, 
this approach combines the advantages of the human quality 
interpretation and quantitative computing capacity. We can 
conclude that there is a strong negative relation between 
deforestation processes and formation of new landscape 
dominated by pastureland in the Itacaiúnas River watershed. 
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