Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies
Keywords: Amazon rainforests, Enhanced Vegetation Index, dry season leaf flush, sun-sensor geometry effects, drought impact
Abstract. The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI’s sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.