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ABSTRACT: 

The University of Natural Resources and Life Sciences (BOKU) in Vienna (Austria) in cooperation with the National Drought 
Management Authority (NDMA) in Nairobi (Kenya) has setup an operational processing chain for mapping drought occurrence and 
strength for the territory of Kenya using the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI at 250 m ground 
resolution from 2000 onwards. The processing chain employs a modified Whittaker smoother providing consistent NDVI “Monday-
images” in near real-time (NRT) at a 7-daily updating interval. The approach constrains temporally extrapolated NDVI values based 
on reasonable temporal NDVI paths. Contrary to other competing approaches, the processing chain provides a modelled uncertainty 
range for each pixel and time step. The uncertainties are calculated by a hindcast analysis of the NRT products against an “optimum” 
filtering. To detect droughts, the vegetation condition index (VCI) is calculated at pixel level and is spatially aggregated to 
administrative units. Starting from weekly temporal resolution, the indicator is also aggregated for 1- and 3-monthly intervals 
considering available uncertainty information. Analysts at NDMA use the spatially/temporally aggregated VCI and basic image 
products for their monthly bulletins. Based on the provided bio-physical indicators as well as a number of socio-economic indicators, 
contingency funds are released by NDMA to sustain counties in drought conditions. The paper shows the successful application of the 
products within NDMA by providing a retrospective analysis applied to droughts in 2006, 2009 and 2011. Some comparisons with 
alternative products (e.g. FEWS NET, the Famine Early Warning Systems Network) highlight main differences. 

1. INTRODUCTION

Drought is a recurrent natural phenomenon in many arid and 
semi-arid regions of the world. The resulting stress depends 
primarily on the strength, duration, timing and spatial extent of 
the dry spell. At the same time, different communities and 
economic sectors may show varying vulnerabilities and 
resiliencies to drought events, as available coping strategies and 
previous (environmental) conditions differ.  

For drought-prone countries, it is important to monitor droughts 
and affected communities to prevent disastrous results. For this 
purpose, Kenya established in 2011 a National Drought 
Management Authority (NDMA) which mandate is to exercise 
general supervision and coordination over all matters relating to 
drought management in Kenya. In 2014, the NDMA received 
some Drought Contingency Funds (DCFs) from the European 
Union to facilitate early response to drought threads. DCFs are 
disbursed by the NDMA to drought-affected counties in order to 
implement response activities that can help mitigating the worst 
impacts of droughts. MODIS satellite images are used to 
determine the drought status of a county in an objective and 
reproducible way. For near real-time processing of the data, 
BOKU University developed and implemented an advanced 
filtering method for NDVI images. The processing yields reliable 
drought indicators at county and sub-county levels and for 
various aggregation times and livelihood zones. Image analysis 
is complemented at NDMA by field-based (socio-economic) 
indicators. The innovative DCF disbursement mechanisms of 
NDMA ensure a timely support of drought-affected counties and 
communities.  

The present paper describes the MODIS processing chain 
implemented at BOKU. Through comparison with the well-
established FEWS NET data, we highlight and quantify main 
differences between the two datasets.  

2. STUDY AREA

The study covers an area of 10° x 11° centred over Kenya. We 
focus on the arid and semi-arid land (ASAL) mainly located in 
the northern and eastern parts of the country (see Figure 1). These 
areas are characterised by high temperatures (except elevated 
areas), low rainfall amounts and therefore often relatively low 
biomass/NDVI. This low biomass is seen in Figure 1 as average 
annual NDVI ≤0.4 (brownish colour). 

3. METHODOLOGY

3.1 Data Processing at BOKU 

The University of Natural Resources and Life Sciences (BOKU) 
in cooperation with the National Drought Management Authority 
(NDMA) has setup an operational processing of MODIS images 
with the aim of providing consistent NDVI and anomaly 
“Monday-images” in near real-time (NRT) with a 7-day update 
interval. The main processing stages are depicted in Figure 2.  

Note that tasks shown on the left side are only run once 
(“offline”), whereas the remaining processes are repeated every 
week. To ensure a temporally consistent NDVI time series, the 
weekly processing steps were initiated with the start of the time 
series. 
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Figure 1: Average annual NDVI for ASAL counties of Kenya. 
Non-ASAL counties are shown in grey. The map also shows the 

1° x 1° tiling system in which MODIS data is processed 

3.1.1 MODIS Data: The NDMA drought indicators are 
derived from MOD13Q1 and MYD13Q1 NDVI collection 5 
products of the MODIS Terra and Aqua satellites from LP DAAC 
(from 2000 onwards). These products are gridded level-3 data in 
approximately 250m spatial resolution in Sinusoidal projection 
with a (combined) temporal resolution of 8 days. The level-3 data 
are calculated from the level-2G daily surface reflectance gridded 
data (MOD09 and MYD09 series) using the constrained view 
angle – maximum value composite (CV-MVC) compositing 
method (Solano et al., 2010).  

Figure 2: Processing chain of BOKU’s near real-time (NRT) 
filtering of MODIS NDVI time series. The steps on the left side 
are done only once. The processes shown on the right side are 
repeated every week. Together the processing leads to filtered 

NDVI images with associated uncertainties. Based on this 
primary information anomaly indicators are derived and 

aggregated over time and for different administrative units 

3.1.2 Data Acquisition and Preparation: The MODIS data 
are downloaded, mosaicked and re-projected to geographic 
coordinates (datum WGS84) with a spatial resolution of 
approximately 0.002232° (ca. 250 m) using nearest neighbour 
resampling. The images are cropped to a dedicated tile system 
(see Figure 1). These steps are performed on a daily basis using 
the R MODIS package (Mattiuzzi et al., 2012). 

3.1.3 NRT Filtering: To minimize the possible impact of 
undetected clouds and poor atmospheric conditions, a 
standardized procedure temporally filters the NDVI time series 
based on two distinct steps: offline smoothing (only once) and 
near real-time filtering (every week).  

The offline smoothing step uses the Whittaker smoother (Eilers, 
2003), (Atzberger and Eilers, 2011a) and (Atzberger and Eilers, 
2011b). It smoothes and interpolates the data in the historical 
archive (2000 to 2012) to daily NDVI values. The smoothing 
takes into account the quality of the data and the compositing day 
for each pixel and time step based on the MODIS VI quality 
assessment science dataset (Solano et al., 2010). For a detailed 
description of the filtering procedure and settings, see (Atzberger 
et al., 2014). Only every 7th image corresponding to “Mondays” 
is stored. The 7-day interval reduces the storage load of the 
archive but permits at the same time an easy restoration of daily 
data whenever needed. From the smoothed data, weekly statistics 
are calculated describing the typical NDVI paths for a given 
location and time. This information serves for “constraining” the 
Whittaker smoother during the NRT filtering. 

The near real-time (NRT) filtering step also uses the Whittaker 
smoother. However, the filtering is executed every weekend and 
only uses available observations of the past 175 days. Filtered 
NDVI images of the successive Monday are stored but also for 
the past four Mondays, representing different consolidation 
phases of the filtered NDVI (see Figure 3 “output 0” to “output 
4”). Obviously, “output 4” is more reliable (e.g. better 
constrained through available data) compared to the “output 0” 
which is always extrapolated as (reliable) MODIS observations 
become available only after some days.  

Figure 3: Principle of BOKU’s constrained near real-time 
(NRT) filtering. Black asterisks are the observed (raw) MODIS 
values from 16-day MVC (both Terra and Aqua). The blue line 
is the fitted curve of the (unconstrained) Whittaker smoother. 
The five coloured dots are the final (constrained) “Monday” 
images, representing different consolidation phases. These 

“Monday” images are stored every weekend. To constrain these 
outputs, previously calculated statistics are used (e.g. from 

“offline-smoothing”, not shown in the graph) 
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Note that the missing constraints may lead to arbitrary high or 
low values, particularly, at times of the year, where rapid NDVI 
changes take place. Thus, we apply a pixel specific constraining 
procedure that limits the NDVI change between consecutive 
“Mondays” according to weekly statistics of the offline-
smoothed data. In Figure 3, the effect of the constraining can be 
seen as the difference between the blue line (the unconstrained 
Whittaker) and the coloured dots (e.g. the final output that is 
stored and used for drought mapping). 

3.1.4 Calculation of Statistics of NRT Data and 
Uncertainty Modelling: Saving every weekend the five output 
NDVI images plus quality information (e.g. number and quality 
of observations within the 175 days temporal window), allows us 
to keep a consistent archive of the different consolidation phases. 
Before starting the operational production of NDMA data, the 
archived NRT data are compared to a filtered “reference” time 
series where all observations were available (e.g. central point of 
the blue curve in Figure 3). The difference between “reference” 
time series and NRT estimates gives the error of the NRT 
filtering. We model this error using the stored quality 
information. In our operational setting, the uncertainty of a pixel 
filtered in NRT is estimated based on those previously 
established models. This is done for each output product, pixel 
and time step in NRT. 

3.1.5 Anomalies: From the filtered NDVI data, a weekly 
vegetation condition index (VCI) is calculated at pixel level 
(Kogan et al., 2003): 

௜ܫܥܸ ൌ 	
ே஽௏ூ೔ିே஽௏ூ೘೔೙,ೢ

ே஽௏ூ೘ೌೣ,ೢିே஽௏ூ೘೔೙,ೢ
ൈ 100   (1) 

where  VCIi = vegetation condition index at time step i 
 NDVIi = normalized difference vegetation index 

observed at time step i 
 NDVImin,w, NDVImax,w = lowest / highest 7-day values 

observed from 2003 to 2012 at week w 

Conceptionally, the VCI enhances the inter-annual variations of 
a vegetation index (e.g. NDVI) in response to weather 
fluctuations while reducing the impact of ecosystem specific 
response (e.g. driven by climate, soils, vegetation type and 
topography). Other anomaly indicators are also calculated (e.g. 
Z-score) but will not be presented here as NDMA restricts its 
analysis to VCI. 

To get a more concise picture of the vegetation development in 
the ongoing season and to identify drought-affected areas, we 
temporally and spatially aggregate the weekly VCI maps. 
Temporal aggregation includes 1-monthly and 3-monthly 
weighted VCI averages using the VCI images of the recent 4 and 
12 weeks of the according month, respectively. During the 
temporal aggregation, the modelled uncertainty is taken into 
account down-weighting the impact of less reliable observations. 
Spatial aggregation averages the VCI at pixel level according to 
administrative units (e.g. counties, constituencies of Kenya) 
and/or livelihood zones. All data are imported at NDMA into 
SPIRITS (Eerens et al., 2014) for production of seasonal graphs, 
etc. Additional web-tools were developed by BOKU for 
educational purposes (BOKU, 2015). 

3.2 Comparison with FEWS NET Data 

We used for comparison the eMODIS NDVI data provided by 
the FEWS NET (USGS, 2013). The downloaded FEWS NET 

data are pentadal NDVI at 0.002413° spatial resolution (Datum 
WGS84) covering the area of East Africa.  

The eMODIS dataset is generated by the U.S. Geological Survey 
(USGS) Earth Resources Observation and Science (EROS) 
Center from the Level 1B MODIS products of Terra (MOD09, 
MOD03, MOD35_L2) (USGS, 2011). The output includes near 
real-time and historical NDVI products that are composited in 
10-day intervals every 5 days at about 250m spatial resolution. 
This results in 72 composite periods per year (pentades). 

The historical NDVI dataset (2001-2010) is temporally smoothed 
by USGS with a “modified” weighted least squares linear 
regression approach (Swets et al., 1999). As current-year 
composites become available, they are added to the time series 
and smoothed, resulting in a smoothed composite for a given 10-
day period (updated every 5 days). The eMODIS data available 
for download are updated during six composite periods, only 
after which the images become definitive (USGS, 2013). Hence, 
the most recent five images are produced using climatological 
information. For our study, only the consolidated FEWS NET 
data were used covering the period of 2001 to 2014. 

To compare BOKU and FEWS NET datasets, temporally and 
spatially aggregated VCI anomalies are calculated from the 
FEWS NET NDVI data. First, NDVI images were cropped and 
resampled to the BOKU grid. Pentadal statistics (minimum, 
maximum) of the NDVI were derived for each pixel and the 
period of 2003 to 2012 similar to the BOKU dataset (see section 
3.1.4). Next, pentadal VCI images were calculated using the 
derived statistics (Equation 1). Temporally aggregated VCI 
images (1 and 3 month) were obtained by averaging 6 and 18 
pentades, respectively. Finally the spatial aggregation was 
conducted in the same way as for the BOKU data. It has to be 
noted that the FEWS NET indicators derived in this way, are not 
available in near real-time, but only after six pentades (e.g. one 
month). This contrasts with the NDMA data, which are derived 
in NRT. 

4. RESULTS AND DISCUSSION

In this section, we focus on 3-monthly VCI data (VCI3M) 
aggregated at county level and provided on a monthly basis. The 
VCI3M anomalies are compared with FEWS NET anomalies. 
Both datasets are evaluated against food security assessment 
reports. 

The linear regression between 3-monthly VCI datasets from 
BOKU and FEWS NET shows generally a good agreement 
between both datasets with a coefficient of determination (R²) of 
0.89 (see Figure 4). The VCI observations regularly scatter 
around the 1-to-1 line with a slope close to one and a (slight) 
positive intercept. As expected, the majority of the points 
(highest density, dark red points) are found in the range of 30% 
and 55% corresponding to near “normal” conditions. The 
majority of observations (88%) fall well within a range of ± 10%. 

Despite the generally good agreement between the two VCI 
datasets, larger differences appear if the analysis is repeated 
month-by-month. The resulting intra-annual coefficient of 
determination (R²) varies between 0.77 and 0.94 (see Figure 5 – 
green line). Local minima of R² (and maxima of RMSE) are 
visible in April and November. This coincides very well with 
Kenya’s long and short rains that normally occur in March–June 
and October–December.  
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Figure 4: Scatterplot of 3-monthly aggregated VCI (VCI3M) 
derived from FEWS NET and BOKU datasets of ASAL 

counties across all months between 2003 and 2014. 1-to-1 line 
(red) and regression line (black) 

The two seasons are captured by the average monthly NDVI 
profile derived from the weekly NDVI values between 2003 and 
2012 for all ASAL pixels (orange line in Figure 5). Obviously, 
the largest differences in the VCI3M anomalies occur in parallel 
to significant NDVI changes - these are periods of prime interest 
for image interpreters and NDMA.  

The inter-annual agreement/disagreement between the two 
datasets is depicted in Figure 6. Results show some variability 
from year to year. Interestingly, the RMSE slightly drops down 
to local minima for the years of 2005, 2009 and 2011. According 
to assessment reports of the Kenya Food Security Steering Group 
(KFSSG, 2005), (KFSSG, 2006), (KFSSG, 2011a) and (KFSSG, 
2011b), the years 2005 and 2011 coincide well with major 
droughts. In 2009, a poor performance of the long rains was 
reported (KFSSG, 2009b). Consequently, our current assumption 
is (to be validated) that the two datasets show a better agreement 
in years with (extreme) droughts.  

Figure 5: Intra-annual agreement/disagreement between 
monthly updated FEWS NET and BOKU VCI3M values. 
(green) coefficient of determination (R²), (blue) root mean 

square error (RMSE) between the two data sets. In (orange) 
time course of the average NDVI of ASAL counties. Lines are 

only shown for reader's convenience 

Figure 6: Inter-annual agreement/disagreement between 
monthly FEWS NET and BOKU VCI3M values. (green) 

coefficient of determination (R²), (blue) root mean square error 
(RMSE). Lines are only shown for reader's convenience 

The spatial variation of RMSE for the ASAL counties is shown 
in Figure 7. The RMSE values were calculated across all months 
and years of the two datasets. The resulting RMSE ranges 
between 4% and 9% and show some spatial coherence. Large arid 
counties (e.g. Turkana, Marsabit, Wajir) as well as southwestern 
semi-arid counties (e.g. Narok, Kajiado) show a relatively good 
agreement between the FEWS NET and BOKU anomalies (see 
Figure 7, green and dark-green).  

Largest variations occur in the centre (e.g. Kitui) as well as in 
Mandera. Although the counties seem to build spatial groups, no 
obvious relation to aridity can be seen. 

To further reveal county-specific differences, we prepared a 
detailed analysis for the counties of Laikipia, Mandera and Kitui. 
Laikipia represents a semi-arid county with a very good 
agreement (low RMSE), whereas Mandera belongs to the arid 
counties exhibiting medium RMSE values. Kitui is again semi-
arid, but shows larger RMSE values of slightly more than 7%. 
All counties experienced major droughts during the period of 
2003 and 2014. We employ matrix plots to display the monthly 

Figure 7: Variations of root mean square error (RMSE) between 
monthly FEWS NET and BOKU VCI3M values for ASAL 

counties. Counties outside the ASAL area are shown in grey. 
The observed minimum RMSE was 4.3 and the maximum 9.7 
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Colour VCI3M in % Drought category 
≥ 50 Wet 

35 to 50 No Drought 
21 to 34 Moderate Drought 
10 to 20 Severe Drought 

< 10 Extreme Drought 

Table 1: Thresholds for monthly updated VCI3M and related 
drought categories 

VCI3M anomalies for all years per county and dataset. Analysts 
at NDMA operationally use these matrix plots for their monthly 
bulletins distinguishing five drought categories (Table 1). 

The results for Laikipia are displayed in Figure 8 (top) for 
FEWS NET and in Figure 8 (bottom) for BOKU anomalies. The 
low RMSE of Laikipia is confirmed by the very similar seasonal 
pattern throughout all years between both datasets. Major 
droughts can be observed for the years of 2006, 2009 and 2011 
classified in both datasets as severe and extreme droughts. In 
2005 and 2010 short rains failed in the region (KFSSG, 2006) 
and (KFSSG, 2011a), which led to the detected low VCI in 
February and March.  

A particular situation is captured by the VCI3M anomaly in 2009. 
In 2009 (KFSSG, 2009b) reported poor long rains but still 
classified the situation in Laikipia as not exceptionally bad. 
BOKU data, as well as FEWS NET, reveal on the contrary an 
extreme drought in 2009, which is for example also confirmed by 
(Zwaagstra et al., 2010) employing NOAA AVHRR data.  

For Laikipia, the only visible difference between BOKU and 
FEWS NET data relates to the evolution of the drought in 2009; 
the BOKU data show a gradual degradation of the situation (from 
dark green to red), whereas FEWS NET saw “wet” conditions in 
January 2009 (dark green) immediately followed by “moderate” 
drought in February (yellow). Despite this, the overall agreement 
between the two datasets is very good for Laikipia. 

Figure 8: Seasonal matrix plot of categorised monthly VCI3M 
anomalies for the county of Laikipia (2003-2014) derived from 

(top) FEWS NET dataset and (bottom) BOKU dataset 

The drought detected for Mandera is displayed in Figure 9. One 
can observe slight differences between the drought categories of 
both datasets, but the differences never exceed more than one 
drought category. The overall pattern is still quite similar.  

Mandera experienced unfavourable long rains in 2005 as well as 
late, poorly distributed and early ending short rains in 2005 
(KFSSG, 2005) and (KFSSG, 2006). As a result, Mandera was 
affected by a major drought at the end of 2005 and the beginning 
of 2006 as depicted in Figure 9.  

A complete season failure of the short rains 2010 and the long 
rains 2011 (partially less than 10% of normal rains) was reported 
for the central and northern part of Kenya including Mandera 
(KFSSG, 2011a) and (KFSSG, 2011b). Again, this is well 
reflected by both datasets. 

The matrix plots of Kitui are displayed in Figure 10. We added 
the differences between the FEWS NET and BOKU datasets at 
the bottom of Figure 10. 

For 2005/2006 a moderate to severe drought is captured in both 
datsets (see Figure 10 top and centre) for the same reasons as in 
Mandera (KFSSG, 2005) and (KFSSG, 2006).  

The 2008 short rains in the southeast including Kitui were 
exceptionally poor, delayed by 20-40 days and lasted less than 
three weeks (KFSSG, 2009a). Parts of Kitui received on average 
only 10-20% of normal long rains in 2009 (KFSSG, 2009b). The 
situation is depicted in 2009 by both datasets. However, the 
BOKU anomalies show a clear offset reaching a VCI difference 
of more than 10% in October 2009 (see Figure 10 bottom), which 
might be explained by the NRT filtering. 

The drought of 2011 was again caused by unfavourable rains both 
in the short and long season of 2010/2011 but to a lesser extent 
than for e.g. Mandera (KFSSG, 2011a) and (KFSSG, 2011b). In 
particular, Kitui hardly experienced rainfall onsets  

Figure 9: Seasonal matrix plot of categorised monthly VCI3M 
anomalies for the county of Mandera (2003-2014) derived from 

(top) FEWS NET dataset and (bottom) BOKU dataset 
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Figure 10: Seasonal matrix plot of categorised monthly VCI3M 
anomalies for the county of Kitui (2003-2014) derived from 

(top) FEWS NET dataset, (centre) BOKU dataset and (bottom) 
difference between both datasets (FEWS NET minus BOKU) 

but had very short episodes of 10-20 day rainfall. The rains 
ceased unusually early in late April. Consequently, both datasets 
show severe droughts starting from June 2011. BOKU anomalies 
recover a little early than the one derived from FEWS NET as 
indicated by the negative VCI differences in September to 
December 2011 in Figure 10 (bottom). 

5. CONCLUSIONS

FEWS NET provides relevant and well established data for 
drought monitoring based on satellite observations. With our 
research, we aimed to studying to which extent we can re-
produce the drought indicators provided by FEWS NET in near 
real-time that is without waiting for the end of the consolidation 
period. The BOKU data analysed in this paper are provided 
within 2-3 days after the last Monday in a given month. The data 
are operationally used by NDMA for their monthly drought 
bulletins and for triggering the disaster contingency funds (DCF) 
of Kenya. 

In summary, our results clearly show an overall good 
correspondence between the two chosen datasets. An RMSE in 
the order of 6 was found for the more closely investigated 3-
monthly VCI products. Some larger differences were observed at 
the onset of vegetation growth that is before the short and the 
long rains in Kenya. Generally, the driest years were modelled 
best. Interestingly too, the spatial pattern of the differences 
between FEWS NET and BOKU-derived VCI was non-random. 

Together, these findings indicate some potential systematic 
differences between the two datasets, which deserve more 
research. In our future work, we will also focus to quantify how 
much the FEWS NET data quality degrades if delivered in near 
real-time. 
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