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ABSTRACT: 

In the seasonal tropics, vegetation shows large reflectance variation because of phenology, which complicates land cover change 

monitoring. Ideally, multi-temporal images for change monitoring should be from the same season, but availability of cloud-free 

images is limited in wet season in comparison to dry season. Our aim was to investigate how land cover classification accuracy 

depends on the season in southern Burkina Faso by analyzing 14 Landsat 8 OLI images from April 2013 to April 2014. Because all 

the images were acquired within one year, we assumed that most of the observed variation between the images was due to phenology. 

All the images were cloud masked and atmospherically corrected. Field data was collected from 160 field plots located within a 10 km 

× 10 km study area between December 2013 and February 2014. The plots were classified to closed forest, open forest and cropland, 

and used as training and validation data. Random forest classifier was employed for classifications. According to the results, there is a 

tendency for higher classification accuracy towards the dry season. The highest classification accuracy was provided by an image 

from December, which corresponds to the dry season and minimum NDVI period. In contrast, an image from October, which 

corresponds to the wet season and maximum NDVI period provided the lowest accuracy. Furthermore, the multi-temporal 

classification based on dry and wet season images had higher accuracy than single image classifications, but the improvement was 

small because seasonal changes affect similarly to the different land cover classes. 

* Corresponding author

1. INTRODUCTION

Land cover influences the energy balance, carbon budget and 

hydrological cycle, and land cover classification is the basis for 

many environmental applications (Zhu and Woodcock, 2014). 

Remote sensing data with its ability of frequent revisit, large 

coverage and relatively low cost has become a reliable data 

source for land cover classification. 

In most parts of the world, land surface reflectance shows intra-

annual variation due to phenology, which complicates land cover 

classification. If the land cover classification is based on a single 

image, one has to select it among all the images acquired in one 

year. This decision is usually made based on the assumption 

that images from a particular season are most appropriate for 

separating land cover types under interest. Furthermore, if land 

cover classifications based on single images are used for land 

cover monitoring, the images from the same season are preferred 

in order to avoid detecting false changes in land cover due to 

phenology (Clark and Pellikka, 2009). Often, images close to the 

peak of the growing season or time of maximum vegetation 

“greenness” have been preferred (Kim et al., 2011; Zhu and Liu, 

2014). However, in practice image selection is also affected by 

cloud cover of the images in order to avoid gaps in the 

classification map and need for processing several images. 

With the opening free access to the Landsat archive, we now 

have more than 30 years of Earth observations, which makes 

Landsat a valuable source of data for long term land cover 

monitoring (Wulder et al., 2012). From the free Landsat archive, 

it is feasible to acquire multiple images for particular year, which 

enable us to study how season affects to the classification 

accuracy and get advice on image selection. In the seasonal 

tropics, the cloud-free images are usually available from the dry 

season but not necessarily every year from the late wet season, 

when maximum “greenness” occurs. Therefore, it would be 

important to know how accurately land cover can be classified 

using dry season images in comparison to commonly preferred 

maximum “greenness” images.  

Furthermore, most studies still use single images although many 

studies have indicated that multi-temporal images can increase 

accuracy of land cover classification (Guerschman et al., 2003; 

Zhu and Liu, 2014). This is because different land cover and 

vegetation types may show different phenological 

characteristics, which then can be used for separating them. 
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However, it is unclear how classification accuracy depends on 

the seasons when multi-temporal images were acquired.  

Our objective was to investigate how the classification accuracy 

depends on the season of the selected image in our study area in 

southern Burkina Faso. We used images from one year and 

assumed that there were no land cover changes during that 

period. Hence, all the variation in the classification results 

should be due to phenology. Furthermore, we also aimed to find 

out whether the combination of images improves the 

classification accuracy, and how the accuracy is related to the 

seasons of the images used. 

In order to accomplish our objectives, we designed three 

classification scenarios: (1) using each single date Landsat image 

separately; (2) using each single date Landsat image together 

with the image providing the highest classification accuracy; (3) 

using all the Landsat images from one year. 

2. MATERIAL AND METHODS

2.1 Study area and field data 

The study area is located in the southern Burkina Faso 

(11°44'55"N 1°56'34"W). The annual mean temperature for 

1950–2000 was 27.5°C and annual mean precipitation was 826 

mm (Hijmans et al., 2005). The most of the precipitation falls 

between May and September. The driest months are December, 

January and February. According to the WWF Global 

Ecoregions map, the site belongs to the West Sudanian Savanna 

(Olson et al., 2001). The land cover is characterized by forest, 

savannah woodland and croplands (e.g., sorghum, millet, maize, 

cotton). Topographically, the study area is relatively flat with 

the mean elevation of 350 m. In the summer time (wet season), 

satellite images are likely to have clouds, and in the winter time 

(dry season), wild fires are common in the area. 

Field data was collected from 160 field plots located within a 10 

km × 10 km study area between December 2013 and February 

2014 following the Land Degradation Surveillance Framework 

(LDSF) (UNEP, 2012). According to the tree crown cover (CC) 

and information on land use (cultivated or not), we divided field 

data into three land cover categories, including closed forest  (CC 

> 40%), open forest (CC  40% and not cultivated) and 

cropland (cultivated). 

2.2 Remote sensing data 

We downloaded all the available Landsat 8 Operational Land 

Imager (OLI) images between April 2013 and April 2014 

(Path/Row: 195/52) from the USGS Earth Resources 

Observation and Science (EROS) Centre archive. Considering 

the cloud contamination, we selected 14 images for further 

analysis. These 14 images covered all the seasons and 

phenological variation in the study area. In order to reduce the 

atmospheric effects on the images, the raw DN values were 

converted to the surface reflectance with the fast line-of-sight 

atmospheric analysis of hypercubes (FLAASH) module in 

ENVI software (ITT, 2009). In addition, we used only bands 2–

7 (i.e. six bands in blue to short wave infrared range) for 

classification. The cloud and cloud shadows in the 14 images 

were masked with Fmask-method (Zhu and Woodcock, 2012). 

After the pre-processing, we calculated the percentage of cloud-

free area for each image and our study area (Table 1). 

   Date Percentage cloud-free 

18-Apr-13 80.9% 

20-May-13 96.3% 

21-Jun-13 75.3% 

23-Jul-13 96.6% 

11-Oct-13 100% 

27-Oct-13 100% 

12-Nov-13 100% 

28-Nov-13 100% 

14-Dec-13 99.7% 

30-Dec-13 100% 

15-Jan-14 100% 

16-Feb-14 100% 

20-Mar-14 100% 

05-Apr-14 84.9% 

Table 1. Summary of the 14 Landsat OLI images used. 

Figure 1. Examples of (a) wet and (b) dry season images. 

Figure 1 shows examples of images from the wet and dry 

seasons with the field plots. In the wet season image (21-Jun-

13), most missing values are related to the clouds and cloud 

shadows. In the dry season image (11-Oct-13), there are few 
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clouds but some burn scars can be observed as dark patches. 

Because some of the field plots were covered by clouds, we 

kept only plots which were cloud free in all 14 images. This was 

done in order to have consistent data set for all dates. 

Furthermore, we excluded all the plots that were severely 

affected by fire according to the visual interpretation of each 

image. Finally, we used 78 plots for the classification. 

2.3 Methods 

Random forest classifier was employed for classification tests. 

This algorithm is increasingly being applied in remote sensing 

and ecology (Horning, 2010; Cutler et al., 2007).  

Random forest is an ensemble decision tree-based classifier. It 

begins with generating a large number of decision trees. It uses 

bootstrap samples with replacement to grow a large collection of 

classification trees. Each tree is trained using two-thirds of 

randomly selected training samples and the remaining one-third 

of the samples, so called out of bag (OOB) samples, are reserved 

to estimate prediction error (Breiman, 2001). In each node of the 

tree, the split variable is also randomly selected. The prediction 

is determined by evaluating the responses from all the trees. 

Pixels are assigned to each class based on a majority voting rule 

which assigns a pixel to the class with the maximum number of 

votes. The strong law of large numbers ensures that the solution 

always converges without overfitting (Ghimier et al., 2010). 

There are two parameters in Random forest classifier: the 

number of trees and the number of split variables at each node. 

For the number of split variables at each node, the square root of 

the total number of variables has been suggested (Zhu et al., 

2012). In our study, we used 1000 for the number of trees and 

the square root of the total number of variables as the number of 

split variables.  

The OOB error has been used to evaluate classification accuracy 

in remote sensing, and it is often ideal for smaller data sets as it 

allows for all information to be included within classification 

tree construction (Watts et al., 2011). Because there was limited 

number of field plots in our study, we used OOB error for 

estimating classification overall accuracy (OA), user’s accuracy 

and producer’s accuracy. To minimize the random variation 

between classification results, we run 100 classifications for 

each scenario and took the mean value as classification accuracy. 

There were three types of input datasets for classification: (1) 

using each single date Landsat image separately; (2) using each 

single date Landsat image together with the image providing the 

highest classification accuracy; (3) using all the Landsat images 

from one year. 

Some images were affected by fire with clear burn scars. After 

classification, we masked burnt pixels for each image using burn 

area index (BAI = 1 / ((0.1 − Band4)2 + (0.06 − Band5)2)) 

(Chuvieco et al., 2002) and normalized difference vegetation 

index (NDVI = (Band5  Band4) / (Band5 + Band4)) (Tucker, 

1979). The threshold value for separating burnt areas was 

determined by visual analysis. 

3. RESULTS

3.1 Seasonal effects on classification accuracy 

According to the classification results, the season had an effect 

on the overall accuracy (Figure 3). To visualize the relationship 

between the overall accuracy and phenology, we computed the 

mean NDVI for the sample plots from the 14 images. From the 

NDVI time series, it is evident that cloud free images were not 

available between 23 July and 11 October when maximum 

NDVI likely occurred. 

Figure 3. Overall accuracy and mean NDVI for each image. 

The lowest overall accuracy among the 14 images (65.1%) was 

provided by the image from 11 October corresponding to the 

wet season and the maximum NDVI period. The best 

classification accuracy was provided by  the image from 14 

December (85.5%). This date corresponds to the dry season and 

is close to the minimum NDVI. The overall accuracy for the 

December image was around 20% higher than that of the 

October image. 

Figure 4. User’s accuracy and producer’s accuracy for different 

land cover types. 

The user’s and producer’s accuracies varied similarly to the 

overall accuracy (Figure 4). The user’s accuracy and producer’s 

accuracy for cropland were relatively stable and higher than 

those of closed forest and open forest. The highest user’s 

accuracy for cropland was provided by the 16 February image, 
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and for closed forest and open forest by the 14 December image. 

The image providing the lowest user’s accuracy for cropland 

was 27 October image, for closed forest 23 July image, and for 

open forest 11 October image. The image providing the highest 

producer’s accuracy for cropland, closed forest and open forest 

was 14 December image. The image providing the lowest 

producer’s accuracy for cropland and open forest was 11 

October image and for closed forest 23 July image. 

Land cover classification maps based on 11 October image and 

14 December image are shown in Figure 5. The most obvious 

difference between the maps is in the distribution of the closed 

forest class. 

Figure 5. Land cover classifications based on (a) 11-Oct-13 

image and (b) 14-Dec-13 image. 

3.2 Multi-temporal classification accuracy 

The highest overall accuracy among the 14 images was provided 

by the image from 14 December. In order to test the effect of 

temporal information on overall accuracy, we combined the 14 

December image with other 13 images (Table 2). Among the 13 

combinations, the highest overall accuracy was yielded when 

combining 14 December image with 11 October image (OA = 

87.0%). However, in general the overall accuracies were 

increased only marginally and in most cases the overall accuracy 

was not increased in comparison to 14 December image. 

We extracted the mean spectral profiles for the three land cover 

types from 11 October and 14 December images (Figure 6). The 

profiles indicated that reflectance of open forest and closed 

forest in band 4 (near infrared) was similar in October image. By 

contrast, the difference was greater in December image. When 

combining the two images, the spectral bands capture the most 

important seasonal variation of the different land cover types. 

Other multi-temporal classification combinations did not 

improve the overall accuracy, which showed that multi-temporal 

classification does not necessarily increase the overall accuracy. 

Although the multi-temporal classification improved the overall 

accuracy, the improvement was small because seasonal changes 

are similar in the different land cover classes. 

Date Single image OA 14-Dec-13 + other 

image OA 

18-Apr-13 75.0% 85.3% 

20-May-13 68.0% 82.6% 

21-Jun-13 70.4% 85.4% 

23-Jul-13 67.4% 85.9% 

11-Oct-13 65.1% 87.0% 

27-Oct-13 71.1% 85.0% 

12-Nov-13 73.8% 83.7% 

28-Nov-13 74.4% 84.7% 

14-Dec-13 85.5% 

30-Dec-13 76.3% 85.3% 

15-Jan-14 76.7% 86.2% 

16-Feb-14 78.6% 84.6% 

20-Mar-14 73.9% 85.0% 

05-Apr-14 70.9% 84.0% 

Table 2. Overall accuracy (OA) of the multi-temporal 

classifications. 

Figure 6. Mean spectral profiles for the three land cover types 

from 11 October 2013 image and 14 December 2013 

image separately. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015 
36th International Symposium on Remote Sensing of Environment, 11–15 May 2015, Berlin, Germany

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XL-7-W3-455-2015

 
458



3.3 Classification accuracy with all the images 

The overall accuracy was 82.9% when all the 14 images were 

used together. The overall accuracy was improved in 

comparison to most single image classifications and was only 

2.6% lower than that of the best single image classification 

(Table 2). However, it was lower than the overall accuracy of 

most two image combinations.  

4. DISCUSSION AND CONCLUSION

We explored the seasonal variation in land cover classification 

accuracy in seasonal tropics in southern Burkina Faso. The 

result demonstrated that during the dry season the classification 

result tends to be higher than during the wet season. The multi-

temporal classification based on images from October and 

December had higher accuracy than single image classifications 

and other multi-temporal combinations. The results are similar 

to Senf et al. (2015) who found that multi-temporal 

classification of the maximum and minimum NDVI images 

increased the overall accuracy in the Mediterranean area. This 

indicates that careful image selection is needed before using 

multi-temporal classification. When using all the 14 images 

together for classification, there were 6 × 14 input bands, and 

the high dimensionality and correlation between the spectral 

bands decreased overall accuracy.  
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