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ABSTRACT: 

Limitations and deficiencies of different remote sensing sensors in extraction of different objects caused fusion of data from different 

sensors to become more widespread for improving classification results. Using a variety of data which are provided from different 

sensors, increase the spatial and the spectral accuracy. Lidar (Light Detection and Ranging) data fused together with hyperspectral 

images (HSI) provide rich data for classification of the surface objects. Lidar data representing high quality geometric information 

plays a key role for segmentation and classification of elevated features such as buildings and trees. On the other hand, hyperspectral 

data containing high spectral resolution would support high distinction between the objects having different spectral information 

such as soil, water, and grass.  This paper presents a fusion methodology on Lidar and hyperspectral data for improving classification 

accuracy in urban areas. In first step, we applied feature extraction strategies on each data separately. In this step, texture features 

based on GLCM (Grey Level Co-occurrence Matrix) from Lidar data and PCA (Principal Component Analysis) and MNF 

(Minimum Noise Fraction) based dimension reduction methods for HSI are generated.  In second step, a Maximum Likelihood (ML) 

based classification method is applied on each feature spaces. Finally, a fusion method is applied to fuse the results of classification. 

A co-registered hyperspectral and Lidar data from University of Houston was utilized to examine the result of the proposed method. 

This data contains nine classes: Building, Tree, Grass, Soil, Water, Road, Parking, Tennis Court and Running Track. Experimental 

investigation proves the improvement of classification accuracy to 88%. 

1. INTRODUCTION

One of the powerful methods for improving classification 

performance is data and sensor fusion. In recent years, different 

remote sensing sensors are provided a wide spectrum of data. 

For many applications, the information provided by single 

sensors are incomplete and imprecise, multiple sensors can 

provide complementary data and fusion of information from 

different sensors can provide the better information from 

desired area which is not possible with individual sensors 

(Simon, 2002. Pohl and Van Genderen, 1998). 

Fusion of multiple datasets can be performed at the signal, 

pixel, feature and decision level (Esteban, 2014, Pohl, 1998). In 

signal level fusion, signals from multiple sensors are combined 

together to create new signal with a better signal-to-noise ratio 

than the input signals. In pixel level fusion, the information 

from different images on a pixel by pixel are merged to improve 

detection of objects in some tasks such as segmentation. Feature 

level fusion consists of merging features extracted from 

different images. In this level of fusion, features are extracted 

from different sensors are combined to create a feature vector 

for classified using a classifiers methods. In decision level 

fusion, different datasets are combined at a higher level of 

integration. In this level of fusion, at first the data from each 

single sensor is classified, then fusion consists of merging the 

output from the classification (Du et al. 2013, Dong et al. 2009, 

Yan, 2004). 

The aim of our work is fusion of HSI with Lidar data based on a 

Maximum Likelihood classification algorithm. On the one hand, 

hyperspectral data are optical images describing spectral 

characteristics of each pixel with high spectral resolution. On 

the other hand, Lidar data show the heights of observed areas 

and objects on the ground. Objects such as buildings covered 

with different roofing materials, streets and other open spaces as 

well as different vegetation types can be detected in HIS, 

because the spectral characteristics of these materials differ 

from each other in a significant way (Roessner et al., 2001, Segl 

et al., 2003, Heiden et al., 2007). 

In Lidar data object detection is possible as well as prediction 

about height of objects. Fusion of these both datasets is 

expected to increase the classification accuracy. 

Simental et al. (2003) showed that fusion of hyperspectral and 

Lidar data can enhance overall detection and classification 

performance in vegetation classes. As HSI provide a widespread 

description of the spectral information in some classes without 

any height information such as building, street and vegetation, 

fusion of this data with Lidar data may improve classification 

results in areas with different height. Lemp et al. (2005) fused 

hyperspectral and Lidar data for improving classification of 

urban areas. They used Lidar data for segmentation and 

hyperspectral data for classification tasks. Delponte et al. (2008) 

investigate the joint of hyperspectral and Lidar data with 

classification based on SVM for rainforest areas. They applied a 

band reduction strategy to select the best features from 

hyperspectral data. Then, they added a Lidar data to selected 

features from hyperspectral data for the classification. In recent 

years, Zhao et al. (2013) applied four features: Principal 

Component Analysis (PCA), Minimum Noise Fraction (MNF), 

Normalized Difference Vegetation Index (NDVI) and GLCM 

on hyperspectral data. Next, non-ground and ground points on 

Lidar data are separated based on the algorithm proposed by 

Axelsson (Zhao, 2013). After that they applied three classifiers 

on features of hyperspectral data and Lidar data. Finally, they 

fused all classifiers using majority voting (Zhao, 2013). 
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This paper proposes a classifier fusion system based on ML 

classifier and dimension reduction methods for fusion of HSI 

and Lidar data. At first, different features are extracted from 

both datasets generate features spaces on hyperspectral and 

Lidar data. Then, classification based on ML was applied on 

features from hyperspectral and Lidar data. Finally, using a 

classifier fusion method the outputs of classifiers from 

hyperspectral and Lidar data are fused. 

2. PROPOSED METHOD

This paper proposes a classification method based on ML and 

dimension reduction for fusion of HSI and Lidar data. In first 

section, different feature extraction methods are used for 

extracting more information from Lidar data. In this step 

different dimension reduction methods are applied on HIS data. 

In second section, classification based on ML is applied on 

features separately. In final section, the classifiers are obtained 

from two datasets fused together using a fusion method and 

provided a final image. General diagram for proposed method is 

shown in figure 1. 

Figure 1. Proposed method for Lidar and hyperspectral data 

fusion 

2.1 Feature Extraction 

In this step, as shown in the figure 1, different features are 

extracted from Lidar and hyperspectral data. These features 

must contain useful information to improve accuracy of 

classification process. 

2.1.1 Dimension Reduction on HSI data 

One of the main steps of classification process on HSI is 

extraction of proper features from dataset. These features must 

contain useful information to identify different regions of the 

surface. NDVI (Normalized Difference Vegetation Index) can 

be used to transform HSI into a single image band representing 

vegetation distribution. The NDVI values indicate the amount 

of green vegetation present in the pixel. Higher NDVI values 

indicate more green vegetation. This formulation is shown in 

equation 1. 

 (1) 

Other feature extraction methods are Principal Component 

Analysis (PCA) and Minimum Noise Fraction (MNF). PCA and 

MNF have been utilized to reduce the dimension of spectral 

bands. The number of 30 features containing the most 

information of the HSIs is considered for both PCA and MNF. 

Because the variances of bands are high in 30 first bands than 

other bands. 

2.1.2 Feature extraction on Lidar data 

Extraction of proper features from Lidar data is one of main 

steps in classification process. Feature descriptors can be 

measured based on the grey value relationships between each 

pixel and its neighbouring pixels in a local window or in the 

global image. On Lidar data, different GLCM have been used 

on Lidar data. GLCM can be measured by calculating how often 

a pixel with grey intensity value i occurs horizontally adjacent 

to a pixel with the value j. GLCM is one of the fundamental 

techniques used for texture analysis defined by Haralick and his 

colleague (1973).  

The features on Lidar data are represented in Table 1. 
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Table 1. Different features on Lidar data 

2.2 ML based classification 

Several urban classification methods have been proposed for 

classification of Lidar and hyperspectral data. Maximum 

Likelihood (ML) is a supervised classification method derived 

from the Bayes theorem, the probability which a pixel with 

feature vector w belongs to class I is given by: 

 (2) 

Lidar data Hyperspectral 
image 

Dimension 

Reduction 

Feature 

Extraction 

ML based 

Classification 

ML based 

Classification 

Fusion of classifiers 

Final Image 
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Where P(w|i) is the likelihood function, P(i) is the probability 

which class I occurs in the area and P(w) is the probability that 

w is observed. 

ML classification often assumes that the statistics for each class 

in each band are normally distributed. Then the probability of 

belonging of each pixel to a specific class was calculated. 

Consequently, each pixel is assigned to the class which has the 

highest probability (Richards, 1999): 

 
 (3) 

2.3 Fusion of HSI and Lidar data 

In step 1, different features are extracted on HSI and Lidar data. 

Then, ML classifiers are applied on each feature space 

separately. After that results of each classifier are fused 

together. Classifier fusion is applied on various types of data to 

improve single classifier results. Generally, two types of 

classifier fusion methods exist: crisp and fuzzy (Kuncheva, 

2004). In our proposed method, we applied one of the crisp 

classifier fusion methods: NB (Naive Bayes) (Kuncheva, 2004). 

Naïve Bayes is a statistical classifier fusion method which can 

be used for fusing the outputs of single classifiers. Denote by 

P( ) the probability that classifier jth labels x in class . L 

is the number of classifier and c is the number of classes. NB is 

based on the Bayesian theory (Kuncheva, 2004) which is 

represented as follows: 

 (4) 

The posterior probability needed to label x equal with: 

 (5) 

The denominator does not depend on and can be ignored, so 

the support for class  can be presented as follows: 

 (6) 

The practical implementation of the NB method on a data set 

with cardinality N is explained as follows. For each classifier, a 

c × c confusion matrix  is calculated by applying testing 

data set. The ( k, s) the entry of this matrix,  is the number 

of the elements of data set whose true class label was  and 

are assigned by the classifier to class  By  we denote the 

total number of elements of data set from class . Taking 

 as an estimate of the probability , and 

 as an estimate of the prior probability for class . The 

final equation for class  is: 

 (7) 

NB classifier has been found to be surprisingly accurate and 

efficient in many studies (Kuncheva, 2004). 

3. RESULT

3.1 Data set 

In this paper, we present a fusion method for improvement of 

classification results on urban areas. The proposed approach 

was applied on two data sets. A HSI and a Lidar derived digital 

surface model (DSM); both data sets with spatial resolution of 

2.5 m which is shown in figure 2. The HSI consists of 144 

spectral bands. The data sets have captured over the University 

of Houston campus and the neighbouring urban area and have 

been acquired by the National Science Foundation (NSF)-

funded Centre for Airborne Laser Mapping (NCALM). The 

ground truth of this data set which was provided by NCALM 

have 15 different land cover classes; in our proposed method 

some of these classes have been merged, Building class has 

been provided by combining commercial and residential classes, 

Road class has been provided by merging highway, road and 

railroad classes, Grass class has been provided by combining 

grass healthy, grass stressed and grass synthetic and by merging 

parking lot1 and parking lot2 have been produced Parking class. 

These classes are shown in table 2.  

(a) 

(b) 

Figure 2.data sets: a) Hyperspectral Image, b) Lidar derived 

DSM 

Class Name Number of 

training samples 

Grass 580 

Tree 188 

Soil 186 

Water 182 

Building 387 

Road 565 

Parking 376 

Tennis court 181 

Running track 187 

Table 2. Land cover classes and reference number 

3.2 Results and Experiment 

In first step of proposed method, feature spaces on HSI and 

Lidar data has been produced independently. All of textural 

features in Table 1 were applied on Lidar data to generate 

different feature spaces. Some of these feature spaces are 

illustrated in Figure 3. 

Figure 4 also illustrates feature space on HSI. 

(a) Mean 

(b) Variance 

(c) Homogeneity 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7/W3, 2015 
36th International Symposium on Remote Sensing of Environment, 11–15 May 2015, Berlin, Germany

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XL-7-W3-569-2015

 
571



(d) Second Moment 

Figure 3. Some of extracted features on Lidar data 

(a) PCA-band1 

(b) MNF-band1 

(c) NDVI 

Figure 4. Feature extraction on HSI 

In next step, classification based on ML is applied on 

hyperspectral and Lidar data. After classification of 

hyperspectral and Lidar data, NB is applied as classifier fusion 

methods on the outputs of classifiers. 

Table 3 illustrates the accuracies of classification results on all 

nine classes of data sets. Finally, Figure 5 demonstrates the 

classifier fusion strategy on hyperspectral and Lidar data. 

Table 3. Accuracies of classification results on all classes 

Class Name Producer 

Accuracy 

User 

Accuracy 

Grass 92.96 94.96 

Tree 92.80 96 

Soil 93.84 93.84 

Water 91.60 96 

Building 78.90 87.42 

Road 89.61 89.28 

Parking 81.10 68.07 

Tennis court 90.73 96 

Running track 92.87 96 

Figure 5. Final classification map 

4. CONCLUSION

In this paper, the performance of a decision fusion method for 

fusion of hyperspectral and Lidar data is assessed. In first step, 

feature spaces have been extracted on hyperspectral and Lidar 

data. Then ML classifiers were applied independently on both 

data sets. Finally, a decision fusion method based on Bayesian 

theory was applied to fuse outputs of classifiers of hyperspectral 

and Lidar data. 

Fusion of hyperspectral and Lidar data in decision level is the 

important aim of our proposed method. In this level, 

complexities of hyperspectral and Lidar data are considered. 

Because HSIs provide a detailed description of the spectral 

signatures of objects but no information on the height of ground 

covers, whereas Lidar data provide detailed information about 

the height of objects but no information on the spectral 

signatures. So the elevation information of Lidar data is very 

effective for the separation of objects with similar spectral 

signatures. Also the spectral information of hyperspectral data is 

very effective for discrimination of similar elevation objects but 

different spectral information. Based on the results of our 

proposed method, fusion of classifiers on two data sets 

improves classification accuracy. The overall accuracy (OA) 

and kappa coefficient of this strategy are shown in Table 4. 

Based on these results, proposed classifier fusion on 

hyperspectral and Lidar data improves the classification 

accuracy. 

Table 4. Results of final fusion method 

OA 87.95 

Kappa 0.8668 
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