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ABSTRACT:

The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new
methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns
hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications
(e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned
with providing a platform for data mining and knowledge discovery content from EO archives. The platform’s goal is to implement
a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an
understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated
tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful
information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging
sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion
of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image
content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.)
semantic definition of the image content via machine learning methods. All these components are integrated and supported by a

relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.

INTRODUCTION

In recent years the ability to store large quantities of Earth Obser-
vation (EO) satellite images has greatly surpassed the ability to
access and meaningfully extract information from it. The state-
of-the-art of operational systems for Remote Sensing data access
(in particular for images) allows queries by geographical loca-
tion, time of acquisition or type of sensor. Nevertheless, this in-
formation is often less relevant than the content of the scene (e.g.
specific scattering properties, structures, objects, etc.). Moreover,
the continuous increase in the size of the archives and in the va-
riety and complexity of EO sensors require new methodologies
and tools - based on a shared knowledge - for information min-
ing and management, in support of emerging applications (e.g.:
change detection, global monitoring, disaster and risk manage-
ment, image time series, etc.). Along the years, several solutions
were presented for accessing the Earth-Observation archives as
for example queries of the image archive using a small number
of parameter like: geographical coordinates, acquisition times,
etc.(Wolfmiiller et al., 2009). Later, the concept of query by ex-
ample allowed to find and retrieve relevant images taking into
account only the image content, provided in the form of primitive
features, several systems following this principle appeared for in-
stance (Agouris et al., 1999), (Mufioz and Datcu, 2010), (Datcu
et al., 2003),(Shyu et al., 2007). However, later the problems of
matching the image content (expressed as primitive features in
the low level of processing) with semantic definitions adopted by
human were evident; causing the so-called semantic gap (Smeul-
ders et al., 2000). With the semantic gap, the necessity of seman-
tic definition was clearly demonstrated. In an attempt to reduce
the semantic gap, more systems including labeling or definition
of the image content by semantic names were introduced. For
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example, (Rasiwasia et al., 2007) clarified the problem of the se-
mantic gap and proposed several methods for linking the image
content with semantic definitions. Here, it was demonstrated that
the semantic representation has an intrinsic benefit for image re-
trieval by introducing the concept of query by semantic example
(semantics and content). In general, an image archive contains
additional information apart from the pixel raster data, as for ex-
ample, distribution data, acquisition dates, processing and qual-
ity information, and other related information, which in general
is stored and delivered together with the image data in the form
of text files (metadata). However, this information is not fully
exploited in querying the image archive. Thus, another important
issue is how to deal with and take advantage of the additional in-
formation delivered together with EO images (Espinoza-Molina
and Datcu, 2013).

Nowadays, we are in the Big Data era, where this term is used
to identify datasets that we can not manage with current method-
ologies or data mining software tools due to their large size and
complexity (Bifet, 2013). Thus, the authors of(Fan and Bifet,
2013) defined Big Data mining as the capability of extracting
useful information from these large datasets or streams of data,
where new mining techniques are necessary due to the volume,
variability, and velocity, of such data. Data visualization and
visual data exploration play an important role in the data min-
ing process of big data. Visualization can certainly be explored
in this novel context, in addition to the more traditional visual
data exploration the term visual data mining can describe applica-
tions of visualization in both contexts (de Oliveira and Levkowit,
2003) (visualization and data mining). The solution proposed is
to have a visual navigation tool for allowing the exploration and
exploitation of the entire image archive, this tool should be able
to project the content of the image database based on the prim-
itive feature space. In this context, an application of visual data
mining to visualize geospatial data was presented in (Keim et al.,
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2004). Here, it highlighted the importance of integration of in-
teractive geospatial data visualization with statistical data min-
ing algorithms. A 3D visualization and interactive exploration of
large relational data sets through the integration of several multi-
dimensional data visualization techniques and for the purpose of
visual data mining and exploratory data analysis was presented
in (Yang, 2003). Here, the experiments were done using more
than a million records in a relational database. Recently, as an
advanced example of visual data mining system implementation,
the system called Immersion Information Mining was introduced
in (Babaee et al., 2013). This system uses virtual reality and is
based on visual analytic approach that enables knowledge discov-
ery from EO archives.

In this paper, we propose system architecture which deals with
knowledge discovery and data mining from Earth-Observation
(EO) images, related geospatial data sources and their associ-
ated metadata, mapping the extracted low-level data descriptors
into semantic classes, and providing an interactive method for
efficient data mining of big data. Our system follows a mod-
ular architecture and is composed of the following components
1) the data model generation implementing methods for extract-
ing relevant descriptors (low-level features) of the data sources,
analysing their metadata in order to complement the information
and to create a data model. 2) A database management system,
where the database structure supports the knowledge manage-
ment. 3) Data mining and knowledge discovery tools allowing
the end-user to perform advanced queries and to assign seman-
tic annotations to the image content. The low-level features are
complemented with semantic annotations giving semantic mean-
ing to the image information. 4) Query builder tools for helping
the end-user to find and retrieve scene of interest based on param-
eters such as semantics, metadata, and image content. 5) Visual
data mining providing Human-Machine Interfaces for navigating
and browsing the big archive of heterogeneous data using 2D or
3D representation.

1. SYSTEM ARCHITECTURE

An Earth-Observation data mining and knowledge discovery sys-
tem intends to implement a communication channel between the
Earth-Observation (EO) data sources and the end-user who re-
ceives the content of the data coded in an understandable for-
mat associated with semantics (Koubarakis et al., 2012). The
architecture concept and its components are described in Figure
1. The process starts with a new acquisition of an EO image,
it initiates the data model generation, transforming from an ini-
tial form of full EO products to much smaller value added prod-
ucts including image descriptors, enriched metadata, semantics,
etc. called data model, which will be available for immediate ex-
ploitation and analysis by the end-user. The data model is stored
into the database enabling the system functionalities as for exam-
ple, queries, data mining, visualization, etc.

The Data Sources are satellite images and their associated meta-
data (i.e. acquisition time, incidence angles, etc.), and auxiliary
data in vector format coming from geographical information sys-
tem (GIS) sources that complement the information about the
images, for instance, park boundaries, city boundaries or land
uses represented as polygon layers. The Data Model Genera-
tion focuses on a content and context analysis of the different
data sources. The image content analysis provides different fea-
ture extraction methods, which are dealing with the specificities
of satellite images in order to represent the relevant and correct
information contained in the images known as descriptors. The
image descriptors are complemented with image metadata (text
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Figure 1: Components of Data Mining and Knowledge Discovery
system

information) and GIS data (vector layers). It is important to note
that the efficiency of the query builder, data mining and knowl-
edge discovery components depends on the robustness and accu-
racy of the image descriptors. The data model will be stored into
a Database Management System (DBMS), which acts as the core
of the system and supports its functionalities. The Query Builder
(OB) component allows the end-user to perform several searches
based on metadata, on the image content, and on semantic de-
scriptors. The QB provides a list of metadata parameters that can
be used to retrieve several scenes, it also presents a semantic cate-
gories that can be used as query parameters, and finally it displays
a list of available images in order to enable the query by example.
The Operator (User) requires visual information that is intuitive,
contrary to raw images such as TerraSAR-X images that feature
information such as forests, water bodies, etc, as different grey
levels. However, combining the image content with semantics,
text descriptions, etc, the operator can better understand the con-
tent of the image and perform queries over collections of images
easily.

The Data Mining and Knowledge Discovery component requires
integration of 1) image processing and pattern recognition for un-
derstanding and extracting useful descriptors from a single im-
age, 2) spatial data mining for identifying implicit spatial rela-
tionships between images, and 3) content based retrieval of im-
ages from the archive based on their semantic and visual con-
tent. These types of techniques are used to discover knowledge
from the EO data sources. Therefore, knowledge discovery from
EO images is supported by concepts, tools, algorithms and ap-
plications for extracting and grouping relevant image descriptors,
combining them with text and vector information, and categoriz-
ing the image content into semantic categories. The Visual Data
Mining component allows interactive exploration and analysis of
very large, high complexity, and non-visual data sets stored into
the database. It provides to the operator an intuitive tool for data
mining by presenting a graphical interface, where the selection of
different images in 2-D or 3D space is achieved through visual-
ization techniques, data reduction methods, and similarity metrics
to group the images.

In the following subsections the system components are described
in detail.

1.1 Data sources

The data sources can be multi-spectral images as well as Syn-
thetic Aperture Radar (SAR) images. In our case, the system
uses TerraSAR-X Level 1b product. TerraSAR-X is the German
radar satellite launched on June 2007. It operates in the X-band
and is a side-looking SAR based on active phased array antenna
technology. It does supply high quality radar data for purposes
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of scientific observation of the Earth (DLR, 2007). The term
Level 1b product stands for TerraSAR-X basic products, which
are mainly composed of the main TerraSAR-X image in a geotiff
format, and the annotation section, which contains all the basic
information on the delivered product as uniform as possible for
all product types in a XML file.

Examples of TerraSAR-X image content are presented in Fig-
ure 2. Here, we selected TerraSAR-X sub-scenes representing 6
major land-use and land-cover classes for example bridges, ur-
ban area, rivers, forest, agricultural area, and ocean. In Figure
2, we can see that urban area classes are the classes with very
high brightness. Semantic class forest has medium brightness
and homogeneous texture. The brightness varies according to the
thickness of vegetation. Rivers appear as dark linear features and
class ocean appears as dark pixels in the TerraSAR-X image.
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Figure 2: Examples of TerraSAR-X image content. The sub-
sences represent (left-right) bridges, high density urban area,
river, forest, agricultural area, and ocean.

1.2 Data Model Generation

The Data Model Generation (DMG) focuses on the design and
implementation of methods for the extraction of relevant descrip-
tors (features) from satellite images, specifically TerraSAR-X im-
ages and combined usage of raster images and vector data in syn-
ergy with existing metadata.

DMG starts with creating a collection and specifying the EO
products to be ingested in addition to their input parameters (i.e.
product path, patch size, levels of resolution, etc.). Later the
metadata content analysis subcomponent reads the xml file and
extracts the relevant metadata entries. Further, the image con-
tent analysis subcomponent processes the EO products generat-
ing a grid of multi-size patches with their quick-looks by cut-
ting the image in several patches. Later, the primitive features
are extracted from each generated patch by the selected methods.
Finally, all the generated information is stored into a relational
database enabling the rest of the component functionalities. The
information can later be used either for classification purposes
or data mining and knowledge discovery. During DMG the meta-
data of an EO image is processed. In general, the metadata comes
in a text format stored as markup language (e.g., XML) files in-
cluding information about the acquisition time, the quality of the
processing, description of the image like resolution, pixel spac-
ing, number of bands, origin of the data, acquisition angles, ac-
quisition time, resolution, projection, etc. The use of metadata
enriches the data model by adding more parameters that can be
used later in advanced queries. Currently, the Data Model Gener-
ation counts on two feature extraction methods, namely, the Ga-
bor Linear Moment and Weber Local Descriptors.

1.2.1 Gabor Linear Moment (GLM) : It is a linear filter
used in image processing. Frequency and orientation represen-
tations of a Gabor filter are similar to those of the human visual
system, and it has been found to be particularly appropriate for
texture representation and discrimination. In the spatial domain,
a 2D Gabor filter is a Gaussian kernel function modulated by a
sinusoidal plane wave. Gabor filters are self-similar; all filters
can be generated from one mother wavelet by dilation and rota-
tion. The implementation of the Gabor filter by (Manjunath and
Ma, 1996) convolves an image with a lattice of possibly overlap-
ping banks of Gabor filters at different scales, orientations, and
frequencies. The scale is the scale of the Gaussian used to com-
pute the Gabor wavelet. The texture parameters computed from
the Gabor filter are the mean and variance for different scales and
orientations (Singh and Datcu, 2013). The dimension of the final
feature vector is equal to twice the number of scales multiplied
by the number of orientations; for instance, using two scales and
six orientations results in a feature vector with 24 elements.

1.2.2 Weber Local Descriptor (WLD) : Inspired by Weber’s
law, (Chen et al., 2010) proposed a robust image descriptor for
texture characterization in optical images with two components:
differential excitation and orientation. The differential excitation
component is a function of the ratio between two terms: 1) the
relative brightness level differences of a current pixel compared
to its neighbours and 2) the brightness level of the current pixel.
The orientation component is the gradient orientation of the cur-
rent pixel. Using both terms, a joint histogram is constructed
giving the WLD descriptor as a result. This filter was adapted for
SAR images (Cui et al., 2013a). Here, the gradient in the original
WLD was replaced by the ratio of mean differences in vertical
and horizontal directions.

As result of the DMG, part of the data model is created and
stored into the database. The generation of the data model us-
ing a TerraSAR-X scene of 8000 x 8000 pixels size takes approx-
imately less than three minutes, which is a reasonable computing
time in the big data era. The data model will be completed by us-
ing active learning methods for semantic annotation of the image
content and posteriori it will be complemented with geospatial
information coming from linked open data sources.

1.3 Database Manager System (DBMS)

The Data Model generated by the DMG is wrapped into tables
and columns, and stored into a relation database system. DBMS
provides the tools for accessing and manipulating the tables of the
database as well as enabling and granting the access to the data
mining methods and queries. The main entities in the data model
are: EO product, image, metadata, patch, primitive features, se-
mantic labels and annotation.

1.4 Query Builder

The Query Builder (QB) allows the end-user to pose different
kind of searches by combining several parameters and operators.
In the following, we describe the possible types of queries that
can be performed.

1.4.1 Queries based on metadata :This query uses numeri-
cal descriptors and predefined keywords. In this search the user
express a simple query in the form of a word selected from a pre-
defined list (e.g. sensor type), and a set of numerical attributes
(e.g. longitude/latitude); this is presently the most popular way
to search in EO archives. The state of the art queries are based
on basic image metadata such as coordinate systems, acquisition
time, type of product, etc.
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Upper-left part of Figure 3 shows the GUI of the query based on
metadata. The GUI displays a list of available metadata parame-
ter (eg. mission type, row spacing, latitude, longitude, incidence
angle, etc.), which can be selected by the end-user and later a
value has to be entered. In this example, the parameters “mis-
sion”, “latitude” and “longitude” were selected and the results
are presented in a the lower part of Figure 3.

1.4.2 Queries based on semantics : In the queries based on
standard metadata, the user is limited to little information for
querying rich images databases. More powerful queries can be
performed by including semantics and image content through a
query language. The use of semantics will help the end-user to
better understand the image content.

Queries based on semantic enables an end-user to use a prede-
fined frame to express a more complex sentence, or question
composed by words and numeric descriptors. The syntax is pre-
defined as a set of simple operators (e.g. less than, equals to,
etc.) together with a list of available semantic labels (see upper-
right part of Figure 3), which were predefined by data mining and
knowledge discovery methods. We may distinguish two types of
queries here

e Queries based on Semantic Labels: The user can enter a
”simple” label in the form a text or select form the available
labels in the catalogue to perform the query. The labels are
organized in a hierarchical two level tree. As for example
Bare ground contains Beach, Hills, etc. (see Figure 3).

e Queries based on Ontologies: Using this query, the end-user
can pose queries based on relations between the semantic
labels.

Upper-right part of Figure 3 shows an example of GUI for queries
based on semantics. Here, we can see the available labels grouped
in two level categories. The user select “cliff” as query parameter.
The results are presented in a similar list that the lower-part of the
Figure 3.

More advanced queries can be performed by combined metadata
and semantic labels.

1.4.3 Queries based on image content : This query enables
the user to select the content of a desired image and to get a set of
similar images back. This query uses the concept of query based
on example. It is implemented using primitive features to de-
scribe the image content and distance measures to discover sim-
ilar content in the database. In this kind of queries the image
content is used as query parameter, the process starts when the
user selects a patch of interest, which is passed through the sys-
tem, the primitive features from this patch are extracted and later
a similarity metric between the features of the query patch and the
all features stored in the database are computed. The results are
ranked according to this metric and displayed on the screen. In
order to have a objective retrieval evaluation of the results, we can
compute the precision and recall metrics (Manning et al., 2008).

In the following, we present some examples of query by example
using UC Merced Land Use data set (Yang and Newsam, 2010).
This data set has 2100 images grouped in 21 image categories
and 100 images per category. Each image has 256x256 pixel size
with a resolution of 30 cm. We selected this data set because this
is reliable and it can be considered as ground-truth for the eval-
uation as well as to help the reader with the visual interpretation
of the query results.
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Figure 3: (left-right) GUI of the Query Builder: Examples of
query based on metadata, query based on semantic.

Figure 4 shows an example of GUI for queries based on example.
The upper-left part shows that the user selected patch with the
content of interest for example “’forest” and the system retrieves a
list of similar images. From the query results can be visually ob-
served that the most retrieved patches belongs to forest category,
therefore the precision values are high, ranging between 90 and
70 percentage at retrieval 100. It shows some confusions starting
from retrieval@70. However, the confusions are with class less
similar in colour like river, which contains forest and water.

In the upper-right part of Figure 4, the user selected the seman-
tic category “chaparral”. From the query results can be visually
observed that the retrieved patches belongs to the desired class
therefore the precision values are high ranging between 90 to 80
percentage.

Figure 4: GUI of Query by Example tool. Examples show results
using “forest” and “chaparral” categories as query parameters.
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1.5 Data Mining and Knowledge Discovery

The Data Mining and Knowledge discovery component concen-
trates on investigating new semi-supervised learning methods to
cope with heterogeneous spatial-temporal image data and to take
into account contextual information in order to create semantic
descriptors and annotated image patches.

This component is based on machine learning methods and re-
lies on 1) feature extraction methods providing the most rele-
vant descriptors of the images,which are provided by the data
model generation, 2) Support Vector Machine (SVM) as classi-
fier (Chang and Lin, 2011) grouping the image descriptors into
generic classes (without semantic), and 3) relevance feedback in-
teracting with the end user (Costache et al., 2006).

The knowledge discovery component starts presenting a list of
available images where the user selects a content of interest by
giving positive and negative examples. SVM as active learning
method for semantic definition (Cui et al., 2013b) uses as in-
put the training data sets obtained interactively from the GUIL
The training dataset refers to a list of images marked as positive
or negative examples. The output is the verification the active
learning loop sent to GUI and the semantic annotation written in
the database catalogue. The methods combine labelled and unla-
belled data during training to improve the performance of classi-
fication and the generation of categories (number of classes).

The work-flow of the image annotation with semantic descriptors
based on Support Vector Machine is described as follows

1. Access to the database and select the patches to be used and
load their feature vectors.

2. Normalize the features and transform them to SVM format.

3. Display the available patches to the end-user through the
GUL

4. Training by the user interaction through given positive and
negative examples.

5. Perform the SVM training and obtain the prediction (active
learning).

6. Update the results on the screen ordering according to the
prediction value.

7. Stop the loop when the user is satisfied with the results.

8. Store the new semantic label into the database.

During the active learning two goals are tried to achieve: 1) learn
the targeted image category as accurately and as exhaustively as
possible and 2) minimize the number of iterations in the relevance
feedback loop.

Figure 5 shows an example of implementation. Here a TerraSAR-
X scene is presented in the right part of the screen and its patches
are displayed on the left-part. The end-user selects a set of pos-
itive examples by clicking with left-button on the image content
and a set of negative examples (right-button). In this example,
the end-user is looking for urban areas, therefore 6 tiles with ur-
ban area content are marked in green, and he discarded 5 tiles
containing agricultural area which are marked in red. The tool
creates a training data based on these examples and passes them
to the SVM, which performs the prediction. This process can be
repeated several times until the user is satisfied with the result,
then the class is stored into the database.

Figure 5: GUI of the Knowledge Discovery tool. Left part dis-
plays a the image patches while right-part presents the quick look
of the main image. The training is done by giving positive exam-
ples in green and negative examples in red. In this example the
user is searching for urban areas marked in green.

1.6 Visual Data Mining

Visual Data Mining (VDM) component focuses on designing and
elaborating Human Machine Interfaces (HMI) techniques with
the users in the loop to optimize the visual interaction with huge
volumes of data of heterogeneous nature. Since human percep-
tion is limited in communication capacity, the HMI paradigm is
supported by special methods that increase the information being
transmitted (Espinoza-Molina et al., 2014).

VDM component is able to interactively visualize feature spaces
of large repositories of images. It provides to the end-user an intu-
itive tool for data mining by presenting a graphical interface with
functionalities such as browsing, querying, zooming, etc., thus,
enabling the end-user to explore and exploit the image database,
where the selection of different images and/or image content in
2-D or 3D space is achieved through visualization techniques,
data reduction methods, and similarity metrics to group the im-
ages. The dimensionality reduction deals with converting the n
dimension feature vector into vector of much lower dimension-
ality (i.e. 3 dimensions) such that each dimension convey much
more information. As for example, the Gabor feature vector with
48 dimensions is converted into vector of 3 dimensions. Later, the
3 dimensions are projected on the axis and the content presented
on the screen.

Figure 6 displays an example of the VDM component and its
GUL For this example, we selected about 7 TerraSAR-X scenes
over Germany and processed them using the DMG component to
extract the primitive features and to cut the image into patches
giving as result a total of 10.000 patches with 160x160 pixels
size. Each patch has a feature vector with 48 dimensions. In Fig-
ure 6 we can observe that most of the patches are grouped into one
big cluster. However, patches containing natural scenes like wa-
ter bodies are grouped around the center of the projection while
patches with man-made structures (e.g cities, etc.) are spread at
the borders. The user can rotate the projection for adjusting the
axis and to have a better view of the data set as well as he can
zoom-in and zoom-out the patch content. This tool also allows to
select a group of patches of interest by using a spherical selection.
This group of patches can be exported to google earth for further
analysis.

2. CONCLUSION

In this paper, we presented several tools for data mining and
knowledge discovery in order to exploit big Earth-Observation
image archives in a fast and efficient way. The architecture is
presented as a modular system integrating several components
with well-defined functionality. The main operation of the sys-
tem starts with the ingestion of different EO data sources during
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Figure 6: 3D visualization of TerraSAR-X patches from Germany
using VDM tool.

the data model generation. The data model generation performs
the tiling of the image content, the feature extraction based on
patch, the quick-looks generation, and the metadata extraction
giving as result a complete model of the EO data, which later will
be enhanced by adding semantic labels using machine learning
methods. The user can query the image archive using the query
builder and several parameters like semantic, metadata and im-
age content. In addition, visual data mining functions allow the
exploration and exploitation of huge image archives (big data)
since it is based on advanced visualization techniques. Finally,
functions like data mining and knowledge discovery enable se-
mantic definition of the image content and finding hidden pat-
terns in the image archive. Summarizing, the system components
can help the end-user to deal with large image collections by ac-
cessing and extracting automatically their content (Data Model
Generation), allowing querying (by means of image content and
semantics), mining relevant information (Query Builder), infer-
ring knowledge about patterns hidden in the image archive (Data
Mining and Knowledge Discovery), and visualizing the complete
image database (Visual Data Mining).

As further work remains to demonstrate the platform functional-
ity by creating study case scenarios as for example monitoring of
land cover changes to detect and quantify local deforestation us-
ing optical and SAR images together with auxiliary information.
Also, a complete evaluation of the system is needed in order to
improve its components and the support for more types of satel-
lite images is required.
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