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ABSTRACT: 

Most data sets and streams have a geospatial component. Some people even claim that about 80% of all data is related to location. In 

the era of Big Data this number might even be underestimated, as data sets interrelate and initially non-spatial data becomes 

indirectly geo-referenced. The optimal treatment of Big Data thus requires advanced methods and technologies for handling the 

geospatial aspects in data storage, processing, pattern recognition, prediction, visualisation and exploration. On the one hand, our 

work exploits earth and environmental sciences for existing interoperability standards, and the foundational data structures, 

algorithms and software that are required to meet these geospatial information handling tasks. On the other hand, we are concerned 

with the arising needs to combine human analysis capacities (intelligence augmentation) with machine power (artificial intelligence). 

This paper provides an overview of the emerging landscape and outlines our (Digital Earth) vision for addressing the upcoming 

issues. We particularly request the projection and re-use of the existing environmental, earth observation and remote sensing 

expertise in other sectors, i.e. to break the barriers of all of these silos by investigating integrated applications. 

1. INTRODUCTION

Today, more and more data becomes available (discoverable 

and accessible) – on purpose, or unintended. In this era of “Big 

Data” – i.e. in a situation in where the volume, variety, velocity 

and veracity (3+1 Vs) in which data sets and streams become 

available challenges current management and processing 

capabilities (Hey et al, 2009) – we undergo a paradigm shift 

from the mentality to ask for all images related to theme X in 

region Y at time Z, to requests such as: “give me all that you 

have that is related to this area” or “give me all that you have 

that is related to that object”. Potentially relevant data does not 

any more come from a known (small) community, but from 

everywhere. This naturally leads to a clash of working practices 

and cultures. 

With this in mind, our work exploits earth and environmental 

sciences for existing interoperability standards, and the 

foundational data structures, algorithms and software that are 

required to meet the geospatial information handling tasks in 

Big Data research. Furthermore, we are concerned with the 

arising needs to combine human analysis capacities 

(intelligence augmentation) with machine power (artificial 

intelligence) in order to advance knowledge discovery across 

data sets and streams from open, commercial and civic sources.  

This paper provides an overview of the emerging landscape and 

outlines our (Digital Earth) vision for addressing the upcoming 

issues. We particularly request the projection and re-use of the 

existing environmental, earth observation and remote sensing 

expertise in other sectors, i.e. to break the barriers of all of these 

silos by investigating integrated applications. 

The remainder of this paper is structured as follows. The next 

section presents the emerging Big Data landscape both on the 

general level, as well as in relation to geospatial information, 

earth and environmental sciences. Thereafter, in Section 3, we 

briefly outline our recent activities that explore multiple facets 

of geospatial data analysis and visualisation, particularly 

considering new data sources, novel technologies, and means 

for integration. Section 4 discusses the findings from these 

activities and sets them into the technical, semantic and 

organisational context, just before we draw our conclusions and 

derive future work items in Section 5. 

2. BIG DATA LANDSCAPE

It only requires a quick look at www.bigdatalandscape.com to 

understand that the landscape of Big Data technologies, 

architectures and applications is complicated. While a few 

prominent players could already establish themselves, many 

specialised products are equally available. Below, we report on 

our impressions of the mainstream technologies, as well as of 

dedicated geospatial information handling tools. 

2.1 Overall landscape 

Although the overall functional requirements and system 

components have been identified (see e.g. the work of the US 

National Institute of Standards and Technology – NIST 

(bigdatawg.nist.gov)) on the general level and (Lee and Kang, 

2015) for a representative example that is particularly related to 

Big Geospatial Data), the underlying technologies are still 

evolving, and their landscape remains dynamic. We might 

expect stabilization only in the medium term. 

The required ecosystem of technologies and infrastructures 

demands contributions from a wide community and it is 

difficult to provide full-fledged solutions off-the-shelf. Looking 

into the technologies and infrastructures, some commercial 

tools tend to become open source, and many are even 

undergoing the incubation process of the Apache Software 

Foundation (www.apache.org). Several products/components 

both in the Apache Hadoop stack (hadoop.apache.org) and in 

commercial products – even within the same company – have 
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overlapping functionality. It appears that, if an organisation 

envisages a wide range of Big Data applications, then it is most 

likely best served with an open source solution. The specialised 

commercial products might - on the one hand - not adopt to all 

needs, and - on the other hand - many of the provided more 

generic capabilities might remain unused. Still, the rich set of 

application areas lead to case-dependent adaptations of the 

available solutions, for example, many of the Big Data analytics 

platforms criticize the pure MapReduce (Dean and 

Ghema,2004) and provide their optimized versions or simply 

replace it, e.g. using Drill (http://drill.apache.org). 

Nevertheless, we witness some consistency across current 

approaches when voluminous data has to be handled quickly. 

Here, incoming data is channelled into processing pipes. The 

control of the data flow (together with resource allocations) is 

often separated from the specific algorithms that are required in 

each processing step. These might even be realized with diverse 

programming language, such as R (www.r-project.org) or 

Python (www.python.org). It might be possibly to consider a 

generalization over all approaches, but it remains to be seen if 

the most common denominators are still meaningful or resolve 

in common sense. Abstractions of workflows as interconnected 

functions might prove useful. 

All in all, Big Data as such does not necessarily imply the need 

for huge computing power, or (for the geospatial information 

science, earth observation and remote sensing communities) to 

focus on computational capacities. Storage and computing 

facilities are advancing while they become increasingly 

requested. Undoubtedly, this area requires dedicated and 

coordinated action, but the related concerns should be 

addressed by computer scientists and system engineers so that 

the required supporting technologies are provided across 

application domains. In the end this should lead to the optimal 

e-Infrastructure that offers cross cutting support to (Research 

Infrastructures of) multiple application areas – including remote 

sensing, but also helping to breach out into other fields. 

2.2 Landscape on geospatial capabilities for Big Data 

handling 

Ultimately, most data sets and streams have a geospatial 

component. Years ago, some people claimed that about 80% of 

all data is related to location. In the era of Big Data this number 

might even be underestimated, as data sets interrelate and thus 

initially non-spatial data becomes indirectly geo-referenced (by 

associating it to some spatial data set). Consequently, any 

ignorance of expert geospatial solutions for Big Data challenges 

unavoidably limits knowledge extraction and thus fails to 

exploit hidden potentials. 

Indeed, geospatial intelligence increasingly finds applications 

across sectors, not only within earth and environmental sciences 

- where it is traditionally applied. Some of the many examples 

include health care, utilities, transport and retail (Buchholtz et 

al, 2014). All of these sectors – and many more – currently 

investigate possible benefits from the use of the spatially-

enabled Internet of Things (IoT), geo-located social media, and 

more general aspects of geospatial information handling. 

When talking about Big Data in geospatial intelligence, we 

particularly see the following match with the 3+1 Vs: 

 Volume: large data volumes primarily appear from remote

sensing (usually 2D images, such as those delivered by

the Sentinels of the European Space program

(Copernicus), or point clouds in 3D, such as LIDAR), or 

from intense modelling as mostly done for immediate and 

medium range weather forecasting (see e.g. 

www.ecmwf.int) and climate modelling (see e.g. 

www.noaa.gov). Array data bases and (for point clouds) 

columns stores are applied (Baumann et al, 2014). 

 Velocity: high throughput appears while transmitting and

processing large single volumes or continuous inputs - of

the same type but from massive amounts of sources, e.g.

in the context of the IoT. In stream processing and

distributed computing (e.g. cloud or HPC) are applied.

Parallelization algorithms depends on the applied tools

(such as STORM/trident (storm.apache.org) or Kafka

(kafka.apache.org)).

 Variety: given any place on earth (or elsewhere), we

already today receive spatially-related data sets and

streams for multiple sources. These are expected to grow

and accumulate over time. Using spatial co-occurrence,

classical geospatial technology and the possibility to

ground information in physical space already provide

huge asserts for data integration. However, - as in many

other domains - data integration from multiple sources

still poses huge organizational, legal, semantic and

technical interoperability challenges. Some of the

promising approaches that require further investigations

include: brokering (Nativi et al, 2012), linked data (Auer

et al, 2009) and semantic integration/fusion (Mau é and

Schade, 2009).

 Veracity: the question of reference data and differentiation

between ‘authoritative’ sources and user-contributed

contend (sometimes Volunteered Geographic Information

(Goodchild, 2007) is still heavily discussed in the

geospatial community (a, for example, during the

Geospatial Information Observatories workshop at last

year’s GIScience conference), and – closely related - also

in statistics research (see for example the latest conference

on New Techniques and Technologies for Statistics).

In terms of available geospatial information handling 

capabilities, we see mature support in the area of gridded data 

sets (and streams), which usually represent field-like 

phenomena in space time – including point clouds from radar, 

images, grids of all kinds – these mostly support earth 

observation and climate sciences, but also some areas of 

hydrology and hydrography. Native support for vector formats 

(except grids) remains in its infancy. Apart from some support 

of (2D) geospatial indexing and simple geospatial filters for 

data queries, we currently do not see much sophisticated Big 

Data capabilities for the processing of geospatial objects. This 

observation follows the overall support of geospatial data 

handling by mainstream Information and Communication 

Technology (ICT), which usually does not expand beyond point 

data (latitude/longitude). We see room for extended research 

and innovation relating to the spatial-temporal processing of 

object related data, including 3D, such as trajectories of all sorts 

of entities (e.g. from RFID, GPS, Galileo or mobile phone data) 

and data streams from the IoT. 

Together with new modes of immersive and collaborative visual 

analytics for use in education and science, these capabilities will 

enable the implementation of a next-generation Digital Earth 

(Goodchild et al, 2012). Accordingly, within the context of this 

paper, we call the solutions for Big Data analysis and 

visualisation in the environmental and earth sciences, which can 
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be used for small as well as large heterogeneous datasets, 

Digital Earth platforms. 

3. OVERVIEW OF CASE STUDIES

Last year (2014), we carried out ten case studies in order to (i) 

examine components of such Digital Earth platforms; (ii) 

identify some new possibilities; and (iii) gain hands-on 

experiences from both, the examination of new data sources, as 

well as the projection of already ongoing work into a Big Data 

context. In order to illustrate parts of the arising capabilities and 

to provide a basis for discussion, we briefly present all ten case 

studies below, grouped by the underlying motivation, and 

including pointers to further readings – where available. 

3.1 3D platform for geospatial data handling 

In order to investigate the current opportunities for handling 3D 

geospatial visualizations and thereby identify promising ways to 

provide a core baseline for any Digital Earth platform, we 

investigated two technology options for the potential of the 

“Core003” data set, a Very High Resolution (VHR) optical 

coverage over the member and cooperating countries of the 

European Environment Agency (EEA) that was generated from 

SPOT-5 data through multi-spectral 2.5 meters resolution data 

ortho-rectified with a geo-location accuracy of less than 5 

meters Root Mean Square Error (RMSE): 

 3D browser based viewer: We initiated an experiment to

advance the current Core003 viewer (JRC, 2014) that has

been developed by our colleagues. The new activity aims

to develop a web viewer showing a detailed 3D

representation of the European land, using the 2.5 meters

Core003 true colour mosaic as a raster overlay. The

implementation is realized with Cesium and WebGL

(cesiumjs.org), and allows to overlay visualisations from

standard conform Web Map Services (WMSs) (OGC,

2006). 

 Advanced 3D application: In parallel to the viewer, and in

order to compare the potentials of a browser-based

solution with the capabilities of a stand-alone application,

we started the development of a second platform. This

should provide a powerful 3D desktop application with

advanced functionality. Furthermore, the experiment has

the goal to also work on large touch screen systems,

allowing a direct interaction with the “hands on” the 3D

model representations.

Considering 3D visualisation, and particularly the application of 

Cesium and WebGL, we found a mature, highly customizable 

and open software solution that is able to deal with voluminous 

geospatial datasets. The Cesium platform is open to all affirmed 

and emerging standards in the 3D visualisation field to design 

and integrate detailed models into the virtual globe and is a 

highly powerful spatio-temporal platform. However, if we 

desire to apply advanced visualisation technologies efficiently 

and effectively, then these investigations teach us that – at least 

currently – we have to rely on desktop applications. 

3.2 Investigating usage potential of social media platforms 

Social media provide potential now data sources that might 

complement traditional remote sensing and earth observation 

with “social sensing” in future Digital Earth platforms. We 

focus our examinations on the-re-use of existing software 

libraries and applications of novel data handling technologies 

with the following initial activities: 

 Using new database technologies to store and query

social media data: In order to investigate the particular

capabilities of the NoSQL database MongoDB

(www.mongodb.org), we ran a case study that

investigated its potential use for social media analysis,

here especially focusing on data feeds from the

microblogging site Twitter in Dorset, a small region in the

UK (Juhász, 2014).

 Using social network analysis to sense social behaviour:

We conducted a short-term case study that focuses on

communication patterns in Twitter before and during the

United Nations climate summit in September of 2014.

This activity was conceived as a didactic example of how

to make scientific processes more transparent (and

reproducible) and re-used tools of the first mentioned

experiment.

 Using social media platforms to complement authoritative

vector data: In this case study we investigated the

suitability of social media data (especially from

Foursquare) as a data source for determining building use.

A case study has been conducted in Amsterdam, in an

area of 72.12 km2, where 112,567 buildings are located

(Spyratos et al, submitted).

All three experiments together reveal possibilities and 

limitations when extracting knowledge from these relatively 

new data sources. Any social media analysis has to face 

linguistic issues – not only across languages, but also in respect 

to stop words or modifications of terms, e.g. to express 

sentiments. Issues of geo-location remain, as still approximately 

only 1% of Tweets are geo-located. The extraction of place 

names is of limited success. It has to be particularly considered 

that – due to the usage conditions of most social media 

Application Programming Interfaces (APIs) – we always 

retrieve (unknown) subsets/samples. To this sense, social media 

is a fragile source and results are thus rather indicative than 

conclusive. More operational activities would benefit from full 

access, which mostly would mean purchase of the full data set. 

If social media data is used for a new purpose, it cannot be 

expected to fully replace a targeted method that is already in 

place. However, it might provide useful complementing 

insights. The use of social media data in combination with other 

sources (e.g. coming from the public sector) remains a 

promising research direction. Still, if should also be noted that 

such applications are highly case dependent, i.e. each 

application area requires a dedicated set-up, calibration and 

evaluation mechanism. In any case, data from social media 

always cover only a non-representative part of society. 

3.3 Sensing technologies and the Internet of Things 

As sensor networks remain to flourish with the IoT paradigm 

(Kortuem et al, 2010), we also began to investigate potential 

processing mechanisms and tools. Here, applications exceed 

way beyond current (environmental) monitoring networks, due 

to the increased integration of industrial sensing devices into all 

sorts of manufactured goods, but also the use of low-cost 

sensors by layman (as a form of Citizen Science (Haklay, 

2012)). We particularly investigated two mechanisms: 

 Real-time event detection from sensor networks: Each

sensor in each network produces a stream of data and has

the capacity to send a large number of observations. It
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becomes difficult to analyse all of these observations in 

the moment that the raw values are obtained. This case 

study was targeted to this this particular Big Data 

challenge and investigated mechanism to analyse the 

arising flood of monitoring data. We provided a proof of 

concept implementation based on the Storm framework 

and tested in with a regional environmental sensor 

network (Trilles et al, 2015, Trilles et al, submitted). 

 Service-Enabled Sensing Platform for the Environment:

Considering the particular challenges of handling

information from sensor networks and taking an approach

of reducing the data transfer and storage needs outside the

originally data producing agents (the sensors), we

investigated a novel methodology for handling data within

networks of distributed sensors. This case study

concentrated on the underlying architectural

considerations and possibilities of deploying sensor-near

processing facilities in order to deal with Big Data

originating from the IoT. The first developments focused

on a test set-up in the area of air quality monitoring

(Kotsev et al, 2015).

These solutions do not only address (big) data velocity. Each of 

them also covers aspects of scalability and flexibility, two 

essential requirements when dealing with large data volumes in 

future Digital Earth platforms. Last but not least, although both 

case studies were carried out with specific environmental data 

sources, they offer topic independent designs and could also be 

applied to data integration, i.e. resolving issues of (big) data 

variety. The surrounding methodology and essential software 

components could be identified and facilitated. These more 

general capabilities provide room for continues and extended 

testing. 

3.4 Handling the complexity of data integration 

With a more integrative view on Digital Earth platforms, and 

following our earlier work on the Infrastructure for Spatial 

Information in Europe (INSPIRE) (Schade, 2013), integrated 

modelling (Granell et al, 2013), as well as a Digital Earth 

Nervous System (De Longueville et al, 2010), the concept of 

the Observation Web (Havlik et al, 2011) we continued our 

investigations of integration mechanisms across multiple types 

of data sources. Those included: 

 Visualisations of complex metadata: As connecting

(linking) rich metadata is increasingly recommended on

top of Big Data, we begin to investigate possibilities to

explore rich metadata and to highlight relevant aspects in

given practical context. Hence, we selected the INSPIRE

metadata that is available from the official INSPIRE

geoportal (inspire-geoportal.ec.europa.eu). It provides an

interesting case for the visual analysis of environment-

related data in an EU policy-making context. With more

than 300.000 metadata records of largely unstructured

data, a web of relationships emerges when visualised

properly. We particularly used Gephi (www.gephi.org) as

a tool to highlight health related themes in the available

INSPIRE metadata about data, services and applications.

 Model transparency: In our digital age, model

transparency, i.e. the access to models, platforms,

frameworks and systems, together with their descriptions,

related input and output data, impact assessments as well

as related documentation of any kind, is one of the holy

grails across all sciences. Addressing transparency often

requires institutional, cultural and technical challenges.

Especially the challenge of complexity closely relates to

the visualisation of varying types of (big) data. 

Accordingly, we related ongoing work of the management 

of models and related access services within the Joint 

Research Centre (JRC) to Big Data challenges on 

integration and visualization (Ostländer et al, submitted). 

 New modes for multi-sensory integration: We began to

exploit the potentials of multi-sensory integration to

further develop the surrounding concept of a Digital Earth

Nervous System, thereby not processing different data

streams in parallel but together. We found that

particularly promising research objectives include the

assessment of a sensor’s observations’ validity through

possibility methods and the use of crowd-sourcing to

supervise machine-learning of algorithms and rules to

filter, sort and organized stimuli into coherent

perceptions. (Ostermann and Schade, 2014).

As already indicated in relation to the case studies on social 

media, but equally true when also considering the IoT, any 

investigation, especially if a combination of data sources is 

considered, required – at least in parts - dedicated data flows 

and particular calibrations considering the targeted questions. A 

generic detection of anomalies for initiating more detailed (and 

specialised) investigations that also consult other data sources 

might be desirable. It also became obvious that not only the 

facilitated data sources will have to be well described, but also 

the used software tools, models, algorithms and underlying 

assumptions. The resulting flood of meta-data requests now 

forms of visual analytics, so that potential users can identify 

potentially relevant information and judge their fitness for 

purpose in respect to their particular contexts – that are largely 

unknown at the time of data gathering. 

4. DISCUSSION

In the light of investigating possible Digital Earth platform(s) of 

the future, we focus our discussion not on particularities of the 

case studies that were just presented above, but reflect on the 

overall experiences and impressions gained from the numerous 

investigations. Taking the standpoint that underlying issues of 

infrastructure and hardware should be addressed by computer 

science and software engineering (see Section 2.1), we found 

three major barriers that should be overcome in order to fully 

address the challenges that the ever growing volume, variety 

and velocity of data are posing to earth and environmental 

sciences (with strong dependencies between each other, as we 

will see in the conclusions). 

4.1 Technical barrier 

Alongside the ten case studies that we carried out and by 

reviewing the current Big Data landscape we saw a wide range 

of architectural solutions, partial implementations and software 

components, which each addressed some issue of geospatial 

information handling and were usually specialized for a 

particular use. Having a rich choice for implementations is 

useful on the one hand because existing resources might be re-

used, but on the other hand puts not only a burden in the 

identification of an appropriate solution to a particular problem 

and potential implications of a technological choice (and 

investment) on the capacities to solve future scientific 

challenges. It also introduces a barrier in sharing experiences 

between any two parties that follow different approaches. This 

might result in a diversification of methodologies and tools, 

already within advanced environmental and earth analytics. We 

see a danger to provide solutions for on-demand knowledge 
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extraction from highly assimilated structures, semi-structured 

and unstructured data (including in-situ measurements, ex-situ 

observations, and remotely sensed images and point clouds) that 

do not work together. Such technical heterogeneities put 

barriers to data integration, one of the main assets promoted by 

the Big Data movement. 

Having said this, one might assume that the joint development 

of one technical platform for all environmental and earth 

analytics would be the optimal solution. However, apart from 

cultural and political issues, this is highly unlikely to happen 

because of reasons of complexity and complication. The use of 

earth observation and environmental data is already so diverse 

that the optimisation of a solution for one particular field of 

expertise would not fit the others. Furthermore, why should 

some researcher be forced to use a universal tool that by 

definition would be hard to learn when (s)he has only a very 

dedicated small data handling task to complete? In other words, 

a Digital Earth platform should never be the next-generation 

Geospatial Information System (GIS) or Spatial Data 

Infrastructure (SDI). 

In essence, although present solution, such as NASA World 

Wind (worldwind.arc.nasa.gov) or Google Earth Engine 

(earthengine.google.org) exist, we should not expect one single 

solution for all possible purposes. On the contrary, we should 

not focus on the one fits all technical solution, i.e. to develop 

yet another platform that is supports all possibly required 

analysis tasks, but consider an un-platform, in the sense that 

allows to re-use and connect already existing pieces and 

captures the meta level of describing performed experiments 

and lessons learned. 

4.2 Semantic barrier 

The wide range of architectural solutions, partial 

implementations and software components, can equally be 

witness beyond the earth and environmental sciences. 

Accordingly, we see a strong requirement to provide easier 

access and means for connecting ‘foreign’ (i.e. non- geospatial, 

environmental, remote sensing and earth observation) domains. 

While a few trends, such as the move from Hadoop (and thus 

MapReduce) to Scala (scala-lang.org) or the separation between 

the handling of data flows and the execution of algorithms to 

the content emerge, portability between knowledge 

communities remains difficult. This is particularly a problem for 

Big Data, because – as already mentioned in the first paragraph 

of this paper – potentially useful data does not reside inside a 

well-known community any more, but might be offered by any 

third-party. Work across currently existing communities, 

including the earth observation and remote sensing 

communities, can only be established large scale if we do not 

bind the use of the community data sets and related tools to one 

(or few) community specific tools. We have to find a way to 

easily and quickly understand third-party data sets, their fit for 

purpose, and the required processing capabilities. 

Consequently, proposed solutions should not (only) work 

together, but it should be easy to transfer generated knowledge 

between specific institutions, infrastructures and technological 

components, as well as to replace and customize parts of the 

methodology with another implementation or even architecture, 

especially across knowledge domains. 

4.3 Organisational barrier 

The interdisciplinary work that we just argued for obviously has 

to overcome organizational issues, including not only the 

crossing of scientific cultures such as the collaboration between 

the natural sciences and the social sciences. It also has to 

address the relation between science, industry and the public. 

Issues of privacy and ethics obviously arise when dealing with 

data from as many sources as possible and by deriving new 

findings out of their combination. These items have to be 

addressed in any serious Big Data research and citizen 

engagement seems a promising (if not the only) pathway. 

Some of the already existing platforms allow to reduce 

complexity that far, that also stakeholders without any scientific 

background can be involved in the analysis activities. Until 

some years ago, the use of complex algorithms and analysis 

methodologies were only available to scientists. Now, advanced 

visual analytics also allow citizen participation to integrative 

research in a trans-disciplinary way which foresees tightly 

integrated research, the latter involving participants without any 

academic background. 

This finally moves us into an era that breaks barriers for Citizen 

Science. Here, GalaxyZoo or the many other projects of 

Zooniverse (www.zooniverse.org) provide impressive examples 

of successful storytelling and the use of gamification techniques 

–many of which largely benefit from the increased resolution in

earth observation, as people become able to identify objects in 

pictures and can get engaged because they see their house or 

local neighbourhood from a birds-eye-perspective. These 

developments open a whole new range of applications driven by 

earth observation products, way beyond the traditional use in 

expert systems or as pure background imagery. In this way, 

latest visualisation and visual analytics technologies empower 

us to move beyond social sensing - in which laymen collect data 

- to (social) co-delivery of scientific evidence. With solutions 

such as Geo-Wiki (www.geo-wiki.org), and follow-up activities, 

everybody gets empowered to also analyse his/her own data, 

information collected by others, and much more. The 

convergence of (a) increasing data volumes from earth 

observation (and space) technologies, which pose data 

processing challenges and excel the limits of automated feature 

detection from imagery; and (b) enabling essentially everybody 

who can use a web-based application, is a huge chance for 

massive social engagement. This provides immense new 

possibilities in developing the “social machine” (de Roure, 

2014), i.e. the optimised combination of human analysis 

capacities (intelligence augmentation) with machine power 

(artificial intelligence) in which simplification, pattern 

recognition and ground truthing by humans feeds into self-

learning algorithms and vice versa. 

With this we reach a state in which it becomes clear that we 

should not (only) address the technocratic dimension of Big 

Data, but increase investigations of the social and behavioural 

dimension, i.e. real stakeholder engagements, community 

building, and possibly before all other, citizen participation. 

5. CONCLUSION

In this paper we investigated the ongoing work around the 

notion of Big Data from an exploratory point of view and 

introduced the notion of Digital Earth platforms which might 

integrate traditional remote sensing and earth observation tools 

with newly arising knowledge sources powered by concepts 
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such as social sensing and the IoT. We our view on the 

emerging landscape, explained the way we try to learn about 

this arising field ourselves, while deriving findings that might 

be valuable for the wider community. This last point seems 

particularly timely and valuable because many research 

organisations are currently testing and taking first steps in the 

Big Data landscape, while large scale roll outs and operational 

deployments are still rare. We particularly underline the 

requirement to exchange knowledge between communities and 

grow together. 

On the technical level, we promote advanced environmental and 

earth analytics services to provide on-demand knowledge 

extraction from highly assimilated structures, semi-structured 

and unstructured data (including in-situ measurements, ex-situ 

observations, and remotely sensed images and point clouds). 

Considering semantic interoperability we stress the requirement 

to provide easier access and means for connectivity ‘foreign’ – 

i.e. non- geospatial, environmental, remote sensing and earth 

observation – domains. Organisationally, we argue for a social 

and behavioural approach that crosses scientific cultures 

(including thematic practices, open research and citizen science) 

and thus fostering inter-disciplinary work. 

Considering the three barriers that we identified for the earth 

and environmental sciences – do not develop (yet) a(nother) 

platform, do not (only) work together, and do not (only) be 

technocratic – we might conclude that the real elephant in the 

room, which so many are searching for, is real openness; or in 

other words: do not (only) address the easy part of Open Data. 

As Adams and Gahegan (2014) pointed out recently, we have to 

extend the data producers view to also include the data 

consumers perspective. Here, data should not only be 

understood in the narrow sense, but it should also include 

generated code, methodologies, description of experiments, and 

much more. The description and sharing of such contextual 

information in a way that can be perceived and unambiguously 

understood by potentially interested users is the major future 

challenge when aiming at optimal data re-use. 

In order to improve the joint understanding of the real potential 

and feasibility of Big Data analysis capabilities, we will have to 

include investigations on the potential requirements for large 

scale operations and set those into relation with the gained 

benefits (and threads). In our future work, we will further 

investigate a structured methodology to derive these findings 

from the many existing case studies and use it for the planning 

of new activities. We are currently investigating the use of RM-

ODP (www.rm-odp.net) for this purpose. It seems promising to 

use this standard methodology to describe information systems 

that is already widely used in the geospatial information domain 

to develop a high-level view on Digital Earth platforms. 

With this we hope that we could illustrate some of the most 

eminent challenges of our data-driven age, particularly in 

relation to earth and environmental science and geospatial 

information handling. Many more case studies have been 

developed across the globe and we certainly took our first steps 

on the long trail of successful and useful knowledge and thereby 

value extraction from small and big data – and their 

combinations. We hope that the required barriers will be 

overcome and remind all of us to take to time to occasionally 

check if we are still on the right track. 
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