
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.  INTRODUCTION 

The traditional change detection methods were proposed on the 

basis of stable intensity images such as optical images (Singh 

1989; Rignot and van Zyl 1993; Gamba et al. 2006; Geoffrey 

2001; Kasetkasem and Varshney 2002; Li 2010; Chaabouni-

Chouayakh et al. 2013; Akiwowo and Eftekhari 2013). 

However, because of the unique imaging principle of synthetic-

aperture radar (SAR) images, the radar cross section (RCS) of a 

scene target characterized by the image has certain randomness 

and exhibits stochastic distribution. Moreover, it is seriously 

affected by noise. Therefore, when conventional methods are 

used to detect SAR image changes, the detection results are 

generally not ideal. 

In multipolarimetric SAR image change detection, several 

factors must be considered: how to construct the differential 

image, how to eliminate noise effects, and how to make full use 

of effective information by using various polarization methods 

to improve change detection precision. Noise may be reduced 

by implementing denoising processes (Kharbouche and Clavet 

2013) such as multi-look processing and spatial filtering 

algorithms on the image before changes detection. However, 

when the noise is removed, some useful change information is 

also removed because denoising algorithms cause losses of 

local image information; this is commonly known as the 

“contradiction between noise removal and detail retention”. The 

nonsubsampled contourlet transform (NSCT) is not only able to 

compromise on this problem by both suppressing SAR image 

speckle noise and retaining geometric details, but it can depict 

SAR image change on various scales. Consequently, this paper 

applies NSCT in multipolarimetric SAR image change 

detection and proposes a new type of method of 

multipolarimetric SAR image change detection based on 

multiscale feature-level fusion.  

 

 

2. METHODS 

To aid understanding of our method, in this section we first 

introduce the change detection algorithm for single-polarized 

images in the NSCT domain based on multiscale feature-level 

fusion. This is the kernel part of the entire algorithm framework 

(hereafter referred to as the “kernel operator”). We then 

introduce the change detection method for multipolarimetric 

SAR images based on this kernel operator.  

 

2.1 Kernel operator 

The kernel operator of the proposed change detection algorithm 

is shown in figure 1. 

 

Its main steps are as follows. 

Step 1. Data preprocessing and generation of differential image 

For single-polarized SAR images 1X
 and 2X

 on time phases 

1T
 and 2T

, respectively, conduct geometric correction and 

registration, then run difference operation to yield a differential 

image DX
. 

 

Step 2. For the differential image DX
, conduct multiscale 

decomposition and reconstruct an approximated image 

'

DX
 

To generate the approximated image, we conducted NSCT-

based multiscale decomposition on the differential image DX
 

first to obtain a multiscale series 
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this study, we presented a type of multipolarimetric SAR image change detection approach based on nonsubsampled contourlet 

transform and multiscale feature-level fusion techniques. In this approach, Instead of denoising an image in advance, the 
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integrate the rich information obtained from various polarization images. Because SAR image information is dependent on scale, a 

multiscale multipolarimetric feature-level fusion strategy is introduced into the change detection to improve change detection 

precision; this feature-level fusion can not only achieve complementation of information with different polarizations and on 

different scales, but also has better robustness against noise. Compared with PCA methods, the proposed method constructs better 

differential images, resulting in higher change detection precision. 
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(n = 0, 1,…, N − 1) is the number of decomposition layers. 

When 0n , then DMS XX 0

, i.e. the differential image 

before decomposition. 

n

MSX
 on every scale consists of a low-

frequency image (also referred to as approximate signal) and 

several high-frequency coefficients, i.e. 

 n

J

n

j

nnn

MS DDDCX ,,,,, 1 
, where 

nC  

represents the low-frequency coefficient of the  

decomposition scale image, 

n

jD
 is the high-frequency sub-

band coefficient of the  decomposition scale image in 

which j (j = 0, 1,…, J − 1) is the number of high-frequency sub-

bands. Because the low-frequency coefficient represents the 

approximate information of the original image, whereas the 

high-frequency coefficient contains a large amount of noise, 

then approximated images on different scales are acquired only 

by reconstructing the low-frequency image while neglecting 

high-frequency information. With an increase in the number of 

decomposition layers n, the image features become increasingly 

ambiguous, and the quantity of information decreases until it is 

not sufficient to affect the change detection result. Therefore, 

the most appropriate decomposition scale must be determined. 

We determined the optimal decomposition scale by using the 

minimum entropy difference method. After the optimal 

decomposition scale is determined, the approximated image set 

for differential images on various scales 

'

DX
 can be acquired. 

 '''0'
,,,, L

D

n

DDD XXXX  , 
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Step 3. Multiscale feature-level fusion and differential image 

reconstruction 

 

The approximated differential images on different scales 

contain different difference information, and therefore different 

change detection results can be extracted from differential 

images on different scales. Hence, the difference information 

acquired on different scales can be summarized using the 

feature-level fusion method so as to reduce differential image 

dependence on scale. Multiscale fusion is executed on reliable 

scales only. The multiscale differential images on different 

scales contain different information quantities: the lower the 

scale, the greater the quantity of information the corresponding 

image contains, but the greater the noise component it contains; 

conversely, the higher the scale, the less information the 

corresponding image contains, but the lower the noise 

component it contains. Thus, the differential images on different 

scales were fused by using the weighted average method after 

computing the following formula: 





L

n

n

MS

n

FD XWX
1

'

                                             

where 
nW  represents the weight of the image 

'n

MSX
 on scale 

n, and its value can be obtained by computing the entropies of 

the images on various stable scales and normalizing them. 

FDX
 is simply the reconstructed differential image. 

 

Step 4. Threshold the reconstructed differential image FDX  to 

generate the change detection result. 

 

An expectation–maximization (EM) algorithm was employed to 

run iterative operations for the reconstructed differential image 

FDX
 to determine the change threshold T. This threshold was 

then used to split the image and to extract the preliminary 

change detection result. Usually, abnormal phenomena such as 

some isolated pixel points or speckle noise will be generated in 

the preliminary change detection result and must be removed 

through post-processing. Because a change is often continuous, 

if a change takes place in the neighbouring pixels of one pixel, 

then the probability of a change occurring to this pixel would be 

greater than that of a change not occurring; conversely, if no 

change takes place in any of its neighbouring pixels, then this 

pixel is more likely to be unchanged. Consequently, the isolated 

pixel points or speckle noise can be processed by using 

greyscale mathematical morphology theory with spatial 

neighbourhood relationships taken into account, to remedy 

small vulnerabilities and remove isolated points, leading to the 

final change detection result CDX
. For post-processing 

detection results of tests, we adopted the change detection post-

processing module of ImageInfo software developed by the 

Chinese Academy of Surveying & Mapping. The post-

processing was achieved using a scaling algorithm to search the 

speckle with the maximum sum of pixel numbers within a given 

window size and to conduct optimal merging. 

 

 

Figure 1. Change detection kernel operator based on multiscale 

feature-level fusion 
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2.2  Multipolarimetric decision-level fusion 

Let the fully polarized SAR images corresponding to time 

phases 1t  and 2t  be 
 k

VV

k

VH

k

HV

k

HH

k XXXXX ,,,
, 

where 
 2,1k

, which represents the number of time phases. 

Owing to antenna reciprocity, HV = VH, only three 

polarimetric images 
 k

VV

k

HV

k

HH

k XXXX ,,
 were 

selected for detection.  

Different polarimetric images contain different change 

information. Therefore, all polarimetric images can be used to 

extract change information respectively, and then decision-level 

fusion is conducted for the acquired change results. The specific 

implementation steps are as shown in figure2. First, for every 

polarimetric image, we implement the kernel operator and 

obtain the respective change detection results

HH

CDX
, 

HV

CDX
, 

and 

VV

CDX
. Then voting is performed for the spatial pixels of 

every change detection result (Klein et al. 2008), which is a 

binary choice for every pixel (change occurring c
, and 

change not occurring u
), and the maximal number of ballots 

),( jiM k ,  cuk ,  received for the pixel ),( ji  is used 

to discriminate the category of the pixel in the ultimate fusion 

image, i.e. change category or non-change category. After 

fusion, the fully polarized change detection result
 
is obtained. 

 

 
 

Figure 2  Decision-level fusion on different polarimetric images 

to detect changes 

 

3. EXPERIMENTS AND ANALYSIS 

The Japanese ALOS satellite were selected as the experimental 

data, which were imaged on 5 January 2011 and 7 December 

2007. The detailed parameters of the acquired data are shown in 

table 1, and figure 3(a) and (b) show pseudocolour synthetic 

images of the polarimetric data at the two time phases. 

 

Parameter Time phase 1 Time phase 2 

Date acquired 20110105 20071207 

Satellite platform ALOS ALOS 

Sensor PALSAR PALSAR 

Mode Fully polarized Fully polarized 

Off-nadir angle 21.5 21.5 

Sampling resolution 12.5 m 12.5 m 

Product format CEOS CEOS 

Number of bits 16 16 

Table 1. Image acquisition properties. 
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Figure 3 Change detection using the proposed method and PCA 

separately 

(a) 2007 PALSAR fully polarized image,  (b) 2011 PALSAR 

fully polarized image, (c) Change detection using the proposed 

method, and (d) Change detection using the PCA 

 

To verify the effectiveness of the proposed approach, a change 

detection test using PCA was performed for the same data. The 

test result is shown in figure 3(c) and 3(d) . By comparing the 

detection results obtained by PCA and those obtained by our 

proposed approach, we can see that the PCA detection result 

contains a large amount of false alarm information and is poor 

in extracting the change of linear features because it exhibits a 

large amount of omission. To quantitatively compare the 

detection performance of the two fusion methods, we obtained 

statistics of the missed detection rate and false alarm rate, as 

shown in table 2. When the missed detection rates are relatively 

close to each other, the false alarm rate of our proposed 

approach is clearly lower than that of PCA. The statistics 

further verify that the PCA detection result contains more false 

change information than the result of our proposed approach. 

Comparison of the detection results  indicates that the missed 

detection rate obtained by our proposed approach mainly arises 

from the difference between the speckle area we detected by 

automatic methods and the change area interpreted manually. 

This is mainly due to the addition of boundary judgment from a 

priori knowledge when manually drawing the reference change 

image, whereas the change detection in an automatic detection 

method is based only on the features manifested by the image 

itself.  

 

Detection method Missed 

detection 

rate 

False alarm rate 

PCA 13.70% 20.51% 

Our proposed 

method 

12.89% 8.93% 

Table 2. Comparison of the detection performance of the 

proposed method and that of PCA 

 

4. CONCLUSION 

Change detection is one important application of 

multipolarimetric SAR images. However, because 

multipolarimetric SAR images have complex electromagnetic 

properties and characteristics such as serious susceptibility to 

noise, change detection in multipolarimetric SAR images is 

difficult. In this paper, we proposed a type of new 

multipolarimetric SAR image change detection algorithm in the 

NSCT domain based on multiscale feature-level fusion, 

primarily targeting the features of the multipolarimetric SAR 

image itself and the existing problems of change detection. This 

algorithm reduces the effect of speckle noise by processing low-

frequency sub-band coefficients for NSCT multiscale 

decomposition. We introduced a multiscale feature-level fusion 

strategy into the change detection algorithm, which then fused 

and improved the information with different polarizations and 

on different scales relatively well.  
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