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ABSTRACT: 

 

Knowing the detailed error structure of a land cover map is crucial for area estimation. Facilitated by the opening of the Landsat 

archive, global land cover mapping at 30-m resolution has become possible in recent years. Two global Landsat-based continuous 

fields of tree cover maps have been generated by Sexton et al. (2013) and Hansen et al. (2013) but the accuracy of which have not been 

comprehensively evaluated. Here we used canopy cover derived from airborne small-footprint Lidar data as a reference to evaluate the 

accuracy of these two datasets as well as the National Land Cover Database 2001 canopy cover layer (Homer et al. 2004) in two entire 

counties in Maryland, United States. Our results showed that all three Landsat datasets captured well the spatial variations of tree cover 

in the study area with an r2 ranging between 0.54 and 0.58, a mean bias error ranging between -15% and 5% tree cover, and a root 

mean square error ranging between 27% and 29% tree cover. When the continuous tree cover maps were converted to binary 

forest/nonforest maps, all three products were proved to have an overall accuracy >= 80% but with significant differences in producer’s 

accuracy and user’s accuracy. Data users are thus suggested to beware of these accuracy patterns when selecting the most appropriate 

dataset for their specific applications.   

 

 

1. INTRODUCTION 

Changes in forest cover significantly affect the global carbon 

cycle, the hydrological cycle and biodiversity richness (Foley et 

al., 2005). Satellite observations, owing to their synoptic and 

repetitive nature, are commonly used for characterizing forest 

cover and monitoring forest cover change, especially in remote 

regions. Among various types of satellite data, optical imagery is 

often the primary data source for characterizing forest cover and 

detecting forest cover change owing to its large data availability. 

In particular, the Landsat series of satellite have been providing 

consistent moderate spatial resolution data since 1972. Recent 

opening of the Landsat archive and distribution of standardized 

radiometric images by the United States Geological Survey 

(USGS) have ignited the use of Landsat data in a wide range of 

scientific applications, including global land cover mapping at 

30-m resolution (Wulder et al., 2012).  

 

Global land cover mapping has been historically relying on 

coarse spatial resolution data. Since the generation of the first 

satellite-based land cover product debuted in the mid-1990s 

(Defries and Townshend, 1994), many global land cover maps 

have been produced at resolutions from 300-m to 1-km 

(Bartholomé and Belward, 2005; Bicheron et al., 2008; Friedl et 

al., 2002; Hansen et al., 2000; Loveland et al., 2000). The 

proliferation of available datasets provides users rich alternatives 

yet simultaneously creates some confusion as to which data to 

choose for their specific applications. This confusion is mainly 

caused by the lack of a comprehensive accuracy assessment of 

each available product. Many datasets have simply not been 

comprehensively evaluated. For those validated maps, the 

accuracy numbers are often generated using diverse reference 

data and thus are not directly comparable (Fritz and See, 2008; 

Pflugmacher et al., 2011; Zhao et al., 2014). Many studies have 

been conducted on comparing different products to identify the 
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relative strength and weakness of each one and in rare cases 

integrating different datasets for an improved land cover 

characterization (Jung et al., 2006; Schepaschenko et al., 2015; 

Song et al., 2014a). However, absolute error estimation of a land 

cover map is still and always needed because accuracy 

information is a crucial input for subsequent applications, such as 

area and associated uncertainty estimation and land cover change 

detection (Olofsson et al., 2013; Sexton et al., 2015; Song et al., 

2014b). 

 

The last few years have witnessed the production of global land 

cover maps at 30-m spatial resolution using Landsat data (Chen 

et al., 2014; Gong et al., 2013; Townshend et al., 2012). Two 

global, Landsat-derived continuous fields of tree cover products 

have been generated for free public access (Hansen et al., 2013; 

Sexton et al., 2013). The spatial details revealed by these 

Landsat-based products are 100-1000 times more than those 

coarse-resolution maps. However, users may still face the same 

choice confusion as with their coarse-resolution counterparts 

because neither product has been comprehensively validated 

(Pengra et al., 2015), even though Sexton et al. (2013) applied 

error estimation of their map in four selected forest sites. Till 

now, no direct comparison analysis which may inform users on 

the agreement and discrepancy of the two datasets has been 

conducted yet.  

 

The availability of high-quality reference data is a major 

constraint to global land cover validation (Strahler et al., 2006). 

Reference data can be collected from ground surveys, which are 

often unavailable because of the associated high economic cost. 

They can also be derived from higher-resolution imagery or other 

data sources which depict land cover reliably. A conceptually 

different and potentially more reliable way of characterizing tree 

cover is using light detection and ranging (Lidar) data. Lidar is a 

newly developed active remote sensing technology. It can 
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accurately determine the actual position of objects in three-

dimensional space by counting the roundtrip time of emitted laser 

between sensor and target (Lefsky et al., 2002). The laser is 

typically operated at a wavelength of either green or near-infrared 

range with very fine resolution footprint (0.5 m or less) and high 

scanning frequency (typically 50 khz to 100 khz) in studies of 

terrestrial ecology. The high density of Lidar scanning shots can 

depict detailed structure of forest and thus allows a highly 

accurate virtual re-construction of individual trees (Dubayah and 

Drake, 2000). Such advantage makes Lidar a powerful and 

popular tool in measurements of different forest attributes, 

including canopy height, aboveground biomass, leaf area index, 

as well as canopy cover (Falkowski et al., 2008; Korhonen et al., 

2011; Lovell et al., 2003; Morsdorf et al., 2006; Tang et al., 2014; 

Tang et al., 2012). 

 

The objective of this paper is to demonstrate the applicability of 

airborne Lidar data as reference to evaluate land cover products 

generated from optical satellite data. Two unique advantages of 

small-footprint Lidar allow itself to be an excellent reference 

data: (1) a high spatial resolution and (2) an explicit 

characterization of canopy height as well as canopy cover. Here 

we use wall-to-wall Lidar-derived canopy cover above 2.5-m 

height to evaluate the accuracy of three Landsat-based 

continuous fields of tree cover maps in the eastern United Sates.  

 

2. MATERIALS AND METHODS 

2.1 Study Area 

The study area encompasses two counties–Howard County and 

Anne Arundel County in the State of Maryland, United Sates 

(Figure 1). Bordering the Chesapeake Bay, the study area has a 

seasonal climate and flat terrains. Located in the corridor of two 

metropolises–Washington D.C. and Baltimore, it has a typical 

North American suburban landscape consisting of residential 

lands, agricultural fields, and fragmented forests. Large patches 

of forest are mainly located in state and local park reserves, 

largely dominated by broad-leaf deciduous trees mixed with 

some needle-leaf evergreen trees. As a well-developed region, 

land cover change in this area is relatively rare and mainly in the 

form of housing development on forested or agricultural lands. 

 

 

Figure 1. Study area. 

 

2.2 Landsat-derived continuous fields of tree cover maps 

Three Landsat-derived vegetation continuous fields (VCF) of 

tree cover products were evaluated in this study. The first dataset 

(hereafter referred as DS1) was developed by Sexton et al. 

(2013). The basic input data were Landsat Thematic Mapper 

(TM) and Enhanced Thematic Mapper Plus (ETM+) images from 

the Global Land Survey (GLS) collection circa 2000 (Gutman et 

al., 2013). Leaf-off images were replaced with leaf-on images 

selected from the USGS Landsat archive based on phenological 

information from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) (Channan et al., 2015). All images 

were converted to surface reflectance (SR) using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

(Masek et al., 2006). Water, cloud and shadow pixels were 

identified using methods reported in Huang et al. (2008) and 

Huang et al. (2010). 30-m Landsat SR data were first spatially 

aggregated to 250-m resolution. Regression tree models were 

trained for each Landsat Worldwide Reference System (WRS)-2 

tile using reference data derived from spatiotemporally 

collocated 250-m MODIS VCF product and then applied to 30-

m Landsat SR to predict percent tree canopy cover per pixel. This 

dataset is available at http://glcf.umd.edu/data/landsatTreecover/. 

 

The second dataset (hereafter referred as DS2) was developed by 

Hansen et al. (2013). The basic input data were all Landsat ETM+ 

images of year 2000 in the USGS archive. Landsat data were 

converted to top-of-atmosphere (TOA) reflectance, normalized 

to surface reflectance according to MODIS SR, and corrected for 

surface anisotropy (Hansen et al., 2008; Potapov et al., 2012). 

After screening cloud, shadow and water, a per-pixel 

composition was carried out to create a series of phonological 

metrics (Hansen et al., 2013; Potapov et al., 2015). Regression 

tree models were trained using reference data derived from high-

resolution imagery and then applied to Landsat metrics to predict 

percent tree canopy cover per pixel. This dataset is available at 

http://earthenginepartners.appspot.com/science-2013-global-

forest/download_v1.1.html. 

 

The third dataset (hereafter referred as DS3) was the National 

Land Cover Database 2001 (NLCD2001) tree canopy cover layer 

developed by Homer et al. (2004). Advanced Very High 

Resolution Radiometer (AVHRR)-derived Normalized 

Difference Vegetation Index (NDVI) was used to select Landsat 

TM or ETM+ images acquired in early, peak and late of 

vegetation growing seasons. Selected Landsat images were 

converted to at-satellite reflectance for the six reflective bands 

and to at-satellite temperature for the thermal band and 

subsequently transformed to brightness, greenness and wetness 

indices through a Tasseled Cap Transformation (Huang et al., 

2002; Kauth and Thomas, 1976). Similar to the other two global 

products, regression tree classifiers were trained using reference 

data obtained from aerial photographs, field-work as well as the 

Forest Inventory Analysis (FIA) database and applied to multi-

season Landsat image triplets to predict percent tree canopy 

cover per 30-m pixel. This dataset is available at 

http://www.mrlc.gov/nlcd01_data.php. 

 

2.3 Reference tree canopy cover derived from Lidar 

The Lidar data were obtained from the Maryland Department of 

Natural Resources in primary support of shore erosion studies 

along the Chesapeake Bay. They were later made available in 

support of the National Aeronautics and Space Administration 

(NASA) Carbon Monitoring System (CMS) projects. The 

original Lidar point cloud was collected from April to May 2004 
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over two entire counties of Maryland (Anne Arundel and 

Howard). Canopy cover was calculated as the percentage of Lidar 

points above 2.5-m height in total Lidar points within each 30-m 

grid. Lidar point cloud data were also processed to derive digital 

elevation model (DEM) and canopy height model (DSM) at 2-m 

spatial resolution. 

 

2.4 Evaluation metrics 

The accuracy of the Landsat-based continuous tree cover was 

evaluated against Lidar-derived percent canopy cover using four 

metrics: mean bias error (MBE), mean absolute error (MAE), 

root mean square error (RMSE) and r2 (Willmott, 1982): 
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where  i = pixel index 

 tci = percent tree cover of each product 

 ri = reference percent tree cover from Lidar 

 r  = mean of reference percent tree cover 

 n = sample size 

 

In addition to the above continuous error metrics, we also 

converted the continuous tree cover maps to discrete 

forest/nonforest classification maps and constructed traditional 

confusion matrixes for each classification product. Following the 

International Geosphere-Biosphere Programme (IGBP) 

definition of open forest, a 30% tree cover threshold was applied 

to categorize tree cover pixels into either forest or nonforest class 

(Belward, 1996). Producer’s accuracy (1 - omission error), user’s 

accuracy (1 - commission error) and overall accuracy for both 

classes were then summarized from the confusion matrixes for 

each product.  

 

3. RESULTS AND DISCUSSION 

3.1 Qualitative Assessment 

All three products depict well the spatial variations of tree cover 

over the study area (Figure 2). Dense tree cover patches of 

riparian forests and the Patuxent Research Refuge (center of the 

study area) are clearly shown on all maps. A close visual 

examination concludes that DS1 underestimates high-end tree 

cover (i.e. less pixels with high tree cover than the reference), 

DS2 overestimates high-end tree cover, whereas DS3 

overestimates low-end tree cover. 

 

The frequency distributions of tree cover from the four datasets 

confirm the conclusions drawn from the visual examination 

(Figure 3). All three datasets show a bimodal distribution. Both 

DS1 and DS2 have a close agreement with the reference at low 

canopy cover but DS1 saturates at about 80% with its peak 

located at around 60% canopy cover. The maximum value of 

DS2 reaches 100% canopy cover but has significantly more 

100% tree cover pixels than the reference. The high-end peak of 

DS3 (~90% canopy cover) has the closest agreement with the 

reference, but DS3 has significantly more 0% tree cover pixels 

than the reference. 

 

 

Figure 2. Maps of percent tree canopy cover in Howard County 

and Anne Arundel County, Maryland. a. Reference data derived 

from airborne Lidar. b. Landsat-based tree cover DS1 (Sexton et 

al. 2013). c. Landsat-based tree cover DS2 (Hansen et al. 2013). 

d. Landsat-based tree cover DS3 (Homer et al. 2004). 

 

 

Figure 3. Frequency distributions of percent tree canopy cover 

in the study area from Lidar reference and three Landsat-based 

products. 

 

The agreement and disagreement (over- or under-estimation) 

patterns are more clearly shown on the density scatter plots 

(Figure 4). Bimodal peaks of low and high tree cover are 

represented by the two red regions at the lower-left and upper-

right corners of each figure, respectively. DS1 has a clear overall 

underestimation across the tree cover spectrum (i.e. most data 

points are located above the 1:1 line). DS1 also saturates at 81%, 

a feature inherited from its training data MODIS VCF. DS2 not 

only has an overall overestimation across the range but also 

appears to have a discontinuous structure, especially at moderate 
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tree cover. DS3 has the least overall bias but misses a significant 

amount of tree pixels (i.e. mislabelled as 0%).  

 

a 

 

b 

 

c 

 
 

Figure 4. Scatter plots of Landsat-based percent tree canopy 

cover against Lidar reference. a. DS1 (Sexton et al. 2013). b. 

DS2 (Hansen et al. 2013). c. DS3 (Homer et al. 2004). Colours 

in the legends indicate scatter density. 

 

3.2 Quantitative Assessment of continuous tree cover maps 

Table 1 lists four error metrics calculated for the three datasets. 

The MBE values suggest that both DS1 and DS3 underestimate 

canopy cover while DS2 overestimates canopy cover. All three 

products are comparable in terms of absolute error with MAE 

ranging between 20% and 22% and RMSE ranging between 27% 

and 29%. Additionally, both DS1 and DS2 explain 58% of the 

variation of tree cover captured by the Lidar reference, while DS3 

explains a slightly lower portion (54%) of the variation. 

 

Product 
Metrics 

MBE (%) MAE (%) RMSE (%) r2 

DS1 -15 22 27 0.58 

DS2 5 20 27 0.58 

DS3 -9 20 29 0.54 

 

Table 1. Error metrics of the three Landsat-based tree cover 

datasets. The units of MBE, MAE and RMSE are all percent 

tree canopy cover.  

 

3.3 Quantitative Assessment of re-classified forest/nonforest 

maps 

Table 2 lists the overall accuracy (OA), producer’s accuracy (PA 

or 1 - omission error), user’s accuracy (UA or 1 - commission 

error) summarized from the traditional confusion matrixes, 

which were constructed by categorizing continuous tree cover 

data into discrete forest (F)/nonforest (NF) classification. DS1 

has the highest OA (82%), followed by DS2 (81%) and then by 

DS3 (80%). However, DS2 has the highest PA for the forest class 

(86%), while DS3 has the highest UA for the forest class (92%). 

 

Product OA 
PA UA 

F NF F NF 

DS1 82% 80% 85% 91% 70% 

DS2 81% 86% 73% 85% 74% 

DS3 80% 75% 88% 92% 65% 

 

Table 2. Summary of accuracy numbers of the re-classified 

forest/nonforest maps derived from the three Landsat-based 

continuous tree cover datasets. 

 

4. CONCLUSIONS 

We have demonstrated the applicability of small-footprint 

airborne Lidar data as reference to evaluate the accuracy of land 

cover products generated from optical satellite data. Using wall-

to-wall Lidar-derived canopy cover as reference, we estimated 

the accuracy of three Landsat-based continuous fields of tree 

cover datasets (Sexton et al. 2013; Hansen et al. 2013; Homer et 

al. 2004) in Howard County and Anne Arundel County, 

Maryland, USA. The results showed various error patterns of the 

three percent tree cover datasets, although they were generated 

from similar input data with similar machine learning algorithms. 

All three datasets captured well the spatial variations of tree 

canopy cover with an r2 ranging between 0.54 and 0.58, a mean 

bias error ranging between -15% and 5%, and a root mean square 

error ranging between 27% to 29%. When the continuous tree 

cover maps were converted to binary forest/nonforest maps, all 

three products were proved to have an overall accuracy >= 80%, 
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with various producer’s accuracy and user’s accuracy for the 

forest and nonforest classes. Future research will expand the 

study area to include more study sites in other major forest 

biomes in the United States. 
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