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ABSTRACT: 
 
In this paper, we explore the possibility of sparse regression, a new direction in unmixing, for vegetation and urban area 
classification. SUnSAL (Sparse unmixing via variable splitting and augmented Lagrangian) in both unconstrained and constrained 
forms (with the abundance non-negativity and abundance sum-to-one constraints) were used with a set of global endmembers 
(substrate, vegetation and dark objects) to unmix a set of computer simulated noise-free and noisy data (with Gaussian noise of 
different signal-to-noise ratio) in order to judge the robustness of the algorithm. The error in the fractional estimate was examined for 
varying noise power (variance): 2, 4, 8, 16, 32, 64, 128 and 256. In the second set of experiments, a spectrally diverse collection of 
11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data representing an agricultural setup in Fresno, California, USA 
were used. The corresponding ground data for validation were collected on the same days of satellite overpass. Finally in the third set 
of experiments, a clear sky Landsat-5 TM data for an area near the Golden Gate Bridge, San Francisco (an urbanized landscape), 
California, USA were used to assess the algorithm. The fractional estimates of the 30 m Landsat-5 TM data were compared with the 
fractional estimates of a high-resolution World View-2 data (2 m spatial resolution) obtained using a fully constrained least squares 
algorithm. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success and bivariate 
distribution function, which showed that constrained model was better than unconstrained form. 

1. INTRODUCTION 

The conversion of vegetation land cover (LC) such as forest and 
farmland to impervious surfaces are sites of significant natural 
resource transformation. These impervious surfaces are 
categorised as settlements or urban areas and are currently 
among the most rapidly changing LC types and the loci of 
human population activities (Lambin et al., 2001). This 
unprecedented LC change is leading to environmental 
degradation and ultimately influencing weather and climate 
from local to global levels. Therefore, mapping and assessing 
the status of LC at various scales and time frames is required for 
mitigation, planning, and decision making. The LC patterns can 
be captured through multi-resolution space-borne remote 
sensing (RS) data that facilitate observations across larger 
extent of the Earth’s surface. 
 
Usually, vegetation and urban areas have more heterogeneity 
with contrasting features compared to other LC classes. Since, 
these LC features occur at finer spatial scales than the resolution 
of the primary satellites, observed data are mixture of two or 
more LC classes, representing a mixed pixel. Therefore, these 
two environments are particularly difficult to model because of 
considerable spatial and spectral variation and deriving 
accurate, quantitative measures over such regions remains a 
challenge (Forester, 1985; Lu and Weng, 2004; Xian and Crane, 
2005). The solution to mixed pixel problem typically centers on 
spectral unmixing techniques (Ceamanos et al., 2011) such as 
linear mixture model (LMM), which estimates the abundance or 
proportion of each class within individual pixels assuming that 
the reflectance spectrum of a mixture is systematic combination 
of the component reflectance spectra in the mixture (called 
endmembers). The optimal solution of the mixture models can 

be unconstrained or constrained (when the abundance 
nonnegativity constraint (ANC) and abundance sum-to-one 
constraint (ASC) are imposed). ANC restricts the abundance 
values from being negative and ASC confines the sum of the 
abundance values of all the classes to one. The abundance maps 
render more accurate fractional estimates of each class 
compared to assignment of a single class per pixel as in the 
traditional hard classification scheme. 
 
In this paper, we investigate the possibility of using sparse 
regression (Bioucas-Dias and Figueiredo, 2010) for unmixing of 
mixed pixels. We use SUnSAL (Sparse unmixing via variable 
splitting and augmented Lagrangian) (Iordache et al., 2011) in 
an unconstraint form, and in the presence of both ANC and 
ASC imposed on the solution (i.e. SUnSAL in the constrained 
form – Constrained SUnSAL or CSUnSAL, and the problem is 
referred to as constrained sparse regression) to obtain class 
information at subpixel level with computer simulated data, and 
Landsat data of an agricultural landscape and an urban scenario. 
In the first set of experiments, computer simulated noise-free 
data and noisy data of different signal to noise ratio (SNR) are 
used to estimate the fraction of different endmembers. In 
separate tests, Gaussian noise (a random variable with 0 mean 
and fixed variance) was added to the data. Secondly, a 
spectrally diverse collection of 11 cloud free scenes of Landsat-
5 TM data representing an agricultural landscape in Fresno, 
California, USA were unmixed with three global endmember 
(substrate, vegetation and dark objects) and validated using 
ground vegetation proportion. In the third set of experiments to 
study the urban environment, Landsat-5 TM data (at 30 m 
spatial resolution) for an area of San Francisco, California, USA 
was unmixed and the abundance maps were compared with the 
fractional estimates of World View 2 (WV-2) data (2 m spatial 
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resolution) for validation. The results were evaluated using 
descriptive statistics, Pearson product-moment correlation 
coefficient (cc), root mean square error (RMSE), probability of 
success and bivariate distribution function (BDF). 
 
The paper is organized as follows: section 2 discusses linear 
mixture model, section 3 discusses sparse regression and the 
SUnSAL algorithm and section 4 details the data used in this 
analysis. Results and discussion are presented in section 5 with 
concluding remarks in section 6. 
 
 

2. LINEAR MIXTURE MODEL (LMM) 

If there are M spectral bands and N classes, then associated with 
each pixel is a M-dimensional vector y whose components are 
the gray values corresponding to the M bands. Let E = [e1, …en-

1, en, en+1 ..., eN] be a M × N matrix, where {en} is a column 
vector representing the spectral signature (endmember) of the 
nth target material. For a given pixel, the abundance or fraction 
of the nth target material present in the pixel is denoted by αn, 
and these values are the components of the N-dimensional 
abundance vector α. Assuming LMM (Shimabukuro and Smith, 
1991), the spectral response of a pixel in any given spectral 
band is a linear combination of all the endmembers present in 
the pixel at the respective spectral band. For each pixel, the 
observation vector y is related to E by a linear model written as 

      
  𝐲 = 𝐄𝛂 + 𝛈   (1)  

where 𝛈 accounts for the measurement noise. We further 
assume that the components of the noise vector 𝛈 are zero-mean 
random variables that are i.i.d. (independent and identically 
distributed). Therefore, covariance matrix of the noise vector is 
σ2I, where σ2 is the variance, and I is M × M identity matrix. 
 
 

3. SPARSE REGRESSION 

Sparse regression (Iordache et al., 2011) is a new direction in 
unmixing which is related to both statistical and geometrical 
frameworks. A mixed pixel with sparse linear mixtures of 
spectral signatures from a library (available a priori) is fitted. 
Estimating or generating the endmembers from the data is not 
required here. The method depends on searching an optimal 
subset of signatures that can model each mixed pixel in the data. 
The degree of coherence (isometry) between the data matrix and 
sparseness of the endmember signals decides the ability to 
obtain sparse solutions for an underdetermined system. When 
the data matrix has low coherence and the signals are sparse, it 
is an ideal situation for sparse unmixing. 
 
Endmember search is conducted in a large library, say 
𝐄 ∈ ℝ!  !  !, where M < N and 𝛂 ∈ ℝ!. It is possible that only a 
few signatures contained in E would involve in the mixed pixel 
spectrum. Therefore, 𝛂 will contain many values of zero and is 
a sparse vector. The sparse regression problem is expressed as 

 
              min𝛂 𝛂 !     subject to     𝐲 − 𝐄𝛂 ! ≤ δ,               (2) 
  

𝛂 ≥ 0,   𝟏!𝛂 = 1 
 
where 𝛂 ! denotes the number of nonzero components of 𝛂, 
and δ ≥ 0 is the noise and modeling error tolerance. Note that δ 
in (2) is the error tolerance and 𝛈 in (1) is a M x 1 vector 
collecting errors affecting the measurements at each spectral 
band. 𝛂 ≥ 0  and 𝟏!𝛂 = 1 refers to ANC and ASC, 

respectively. A set of sparsest signals belonging to the (N-1) 
probability simplex satisfying error tolerance inequality defines 
the solution of (2). 
 
3.1 SUnSAL (Sparse unmixing via variable splitting and 
augmented Lagrangian) 

When the fractional abundances from sparse regression follow 
ANC and ASC, the problem is referred to as constrained sparse 
regression (CSR). The general CSR problem is defined as 
 

min𝛂 1/2 𝐄𝛂 − 𝐲 !
! + λ 𝛂 !                   (3) 

 
subject to:     𝛂 ≥ 0, 𝟏!𝛂 = 1 

 
where 𝛂 ! and   𝛂 ! are the l2 and l1 norms and λ ≥ 0 is a 
weighing factor between the l2 and l1 terms. 
 
SUnSAL is based on the alternating direction method of 
multipliers (ADMM)  (Eckstein and Bertsekas, 1992; Gabay 
and Mercier, 1976 in Bioucas-Dias and Figueiredo, 2010). 
ADMM can be derived as a variable splitting procedure 
followed by the adoption of an augmented Lagrangian method 
to solve the constrained problem. The algorithm is briefly stated 
here. For more detailed derivation, the readers are encouraged 
to refer (Iordache et al., 2011). Assume that matrix E is known 
and corresponds to underdetermined systems (N > M) rather 
than obtained from an endmember extraction algorithm (where 
N < M). Consider arbitrary 𝜇 > 0, 𝐮!,  𝐝! ∈   ℝ!""_!"# (where 
aff_dim is an affine dimension), and {𝛂! ∈   ℝ!,  𝐮! ,𝐝! ∈
  ℝ!""_!"#, where i = 0, 1, …}. 

 
Step 1: Let i = 0, select 𝜇 > 0, u0, d0 
Step 2: Continue step 3 to step 8 until specified condition is 
achieved. 
Step 3: Compute 𝐰 = 𝐄!𝐲 + 𝜇(𝐮! + 𝐝!) 
Step 4: Compute 𝛂!!! = 𝐁!!𝐰 − 𝐂  (1!𝐁!!𝐰 − 1) 
Step 5: Compute 𝛎! = 𝛂!!! − 𝐝!  
Step 6: Compute 𝐮!!! = max  {0, soft 𝛎! , λ 𝜇 } 

Step 7: Compute 𝐝!!! = 𝐝! −   (𝛂!!! − 𝐮!!!) 
Step 8: Increment i by 1 
Step 9: Exit  
 
where  
 
𝐁 ≡ 𝐄!𝐄 + 𝜇𝐈, 𝐂 ≡ 𝐁!!𝟏(𝟏!𝐁!!𝟏)!! and λ is a parameter 
controlling the relative weight.  
(Note: the symbol ≡  means “is defined as” or “equivalence”). 
Soft threshold function is discussed in Chen et al., (1995). 
 
 

4. DATA 

4.1 Computer Simulations 

Simulation of imagery was carried with a set of global spectra 
of the three endmember libraries (available at: 
http://www.ldeo.columbia.edu/~small/GlobalLandsat/styled-
3/index.html) to generate three abundance maps. Then the linear 
mixture model in (1) was inverted (with ANC and ASC 
imposed) to generate computer simulated synthetic noise free 
data of 6 bands of size 512 x 512. In a separate set of 
experiments, error in the estimate was examined as the noise 
power (variance) was set to 2, 4, 8, 16, 32, 64, 128 and 256. 
This noise is a random number drawn from a Gaussian 
distribution where the mean of each endmember is set to 0 and 
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the variability is controlled i.e., Gaussian noise = mean + 
random perturbation; random perturbation is a Gaussian random 
variable of specific variance. 
 
4.2 Landsat data 

For the agricultural landscape, a spectrally diverse collection of 
11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM 
16 bit (path 43, row 35) of Fresno, California (figure 1) were 
used. These data were captured on April 4 and 20, May 22, June 
7 and 23, July 9 and 25, August 26, September 11 and 27 and 
October 13 for the year 2008 and were calibrated to 
exoatmospheric reflectance using the calibration approach and 
coefficients given in Chander et al., (2009). These scenes were 
selected because a coincidental set of ground canopy cover were 
available for a number of surveyed field within the footprint of 
Landsat WRS path 43, row 35. The atmospheric reflectance 
were converted to surface reflectance correcting for atmospheric 
effects by means of the 6S code implementation in the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) 
atmospheric correction method (Masek et al., 2006). 74 
polygons of the fractional vegetation cover were generated from 
digital photographs taken with a multispectral camera mounted 
on a frame at nadir view pointed 2.3 m above the ground at the 
commercial agricultural fields of the San Joaquin Valley (in 
central California) on 11 dates mentioned above, except for one 
date when the Landsat acquisition preceded the ground 
observation by one day. For each date, 2-4 evenly spaced 
pictures were taken for an area of 100 m x 100 m with center 
location marked by a GPS (Johnson and Trout, 2012). These 
fractional measurements belonged to a diverse set of seasonal 
and perennial crops in various developmental stages, from 
emergence to full canopy that represented an agricultural 
scenario/environment in the RS data. 
 
To study an urban scenario, a set of coincident clear sky 
Landsat-5 TM data and WV-2 data for an area of San Francisco 
(SF) were used to assess the algorithm. SF is chosen for the test 
site because of its urbanized landscape as shown in figure 2. 
WV-2 data were acquired a few minutes after the Landsat TM 
data acquisition on May 1, 2010 for an area near the Golden 
Gate Bridge. The spectral range of first four bands (Blue, 
Green, Red and NIR) of Landsat data have a good 
correspondence with the WV-2 bands 2, 3, 5 and 7 in terms of 
wavelength range in the Electromagnetic spectrum and 
therefore they have a similar mixing space. WV-2 data were 
converted to Top of Atmosphere Reflectance values using the 
python program (available at 
https://github.com/egoddard/i.wv2.toar) in GRASS GIS 7.1. 
The Landsat unmixed images were compared with the 
corresponding WV-2 fraction images for accuracy assessment. 
 
4.3 Endmember generation 

Global mixing spaces were sampled by using a spectrally 
diverse LC and diversity of biomes with 100 Landsat ETM+ 
scenes (Small and Milesi, 2013). This defined a standardized set 
of spectral endmembers of substrate (S), vegetation (V), and 
dark objects (D). Vegetation refers to green photosynthetic 
plants, dark objects encompass absorptive substrate materials, 
clear water, deep shadows, etc., and substrate includes soils, 
sediments, rocks, and non-photosynthetic vegetation. For 
simplicity, we refer substrate, vegetation and dark objects as 
“S”, “V”, and “D” (SVD) in the rest of this paper. The SVD 
endmember coefficient, in addition to dates and locations of 
each subscene are available at 

 
Figure 1. Study area: San Joaquin Valley in central California. 
Field data collection site in San Joaquin Valley with surveyed 

boundaries (marked in black color polygons) overlaid on a false 
color composite (FCC) of Landsat data from which ground 

fractional cover were derived for validation. 
 

 
Figure 2. Study area: FCC of a part of San Francisco city. 

Zoomed image of the urban area (marked with rectangle in 
inset) shows mixing of substrate with vegetation, roads, 

shadows and dark objects. 
 
 
http://www.LDEO.columbia.edu/~small/GlobalLandsat/. The 
estimates obtained from the global endmembers have been 
compared to fractional vegetation cover derived vicariously by 
linearly unmixing near-coincidental WV-2 acquisitions over a 
set of diverse coastal environments, using both global 
endmembers and image-specific endmembers to unmix the 
WV-2 images. The strong 1:1 linear correlation between the 
fractions obtained from the two types of images indicate that the 
mixture model fractions scale linearly from 2 m to 30 m over a 
wide range of LC types. When endmembers are derived from a 
large enough sample of radiometric responses to encompass the 
Landsat spectral mixing space, they can be used to build a 
standardized spectral mixture model with global applicability 
(Small, 2004). 
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For validation of computer simulated data, the estimated class 
proportion maps were compared with the synthetic true 
abundance maps using visual investigation and various other 
measures such as descriptive statistics (minimum and maximum 
fractional estimates), cc, RMSE, probability of success (𝑝!) and 
BDF. Considering P = number of observed M-dimensional pixel 
vector, the true abundance 𝛂 = 𝛼!,… ,𝛼!!!,𝛼!,𝛼!!!,… ,𝛼!  
and estimated abundance 𝛂 = 𝛼!,… ,𝛼!!!,𝛼!,𝛼!!!,… ,𝛼! , 
cc (r) is  
 

𝑟 =
(!!!!) !!!  !!

!!!

(!!!!)!!
!!! !!!!

!!
!!!

  (4) 

r ranges from −1 to 1. 1 implies that a linear equation describes 
the relationship between 𝛂 and 𝛂 perfectly with all the data 
points lying on a straight line for which 𝛂 increases as 𝛂 
increases. r = −1 infers that all data points lie on a line for 
which 𝛂 decreases as 𝛂 increases and r = 0 means there is no 
linear correlation between the true and estimated abundances. 
RMSE (Nascimento and Dias, 2005) is defined as:  

RMSE = !
!

!
!

(𝛼!" − 𝛼!"!
!!! )!!

!!!      (5) 

 
Smaller the RMSE, better the unmixing result and higher is the 
accuracy. 𝑝! is an estimate of the probability that the relative 
error power is smaller than a certain threshold (Iordache et al., 
2011) i.e. 𝑝! ≡ 𝑃( !!! !

! ! ≤ threshold). If threshold is 10, and 
𝑝! = 1, it suggests that the total relative error power of 
proportional abundances is less than 1/10 with a probability of 
1. Estimation result is accepted when !!! !

! ! ≤ 0.95 (5.22 dB). 
0.95 is the average of the 99th percentile of all the abundances of 
the three endmembers for noise variance 8. At this noise 
variance, the SNR which is the logarithm to the base 10 of the 
ratio of sum of the square of the true abundances to the sum of 
the square of the difference between the estimated and the true 
abundances turns out to be 5.22 dB. Empirically, we found that 
when 𝑝!=1, then 1 dB ≤ the SNR for the entire pixels in the 
abundance ≤ 8 dB for our data set. BDF was used to visualize 
the accuracy of prediction by mixture models. Points along a 
1:1 line on the BDF graph indicate predictions that match 
completely with the real/actual/reference proportions. The 
smaller the difference between reference and estimated 
proportions, the closer the points will lie to the diagonal 1:1 
line. 
 
The SUnSAL programs in Matlab were obtained from the 
authors which are also available online for download 
(http://www.lx.it.pt/~bioucas/code/sunsal_demo.zip). GRASS 
(Geographic Resources Analysis Support System) – a free and 
open source package was used for visualization of results and 
statistical analysis was carried in R statistical package in a 
Linux system environment on the NASA Earth Exchange at the 
NASA Advanced Supercomputing Facility. The parameter λ in 
SUnSAL was set to 0.001, maximum number of iterations was 
set to 100 and all other parameters were set to default. 
 
 

5. RESULTS AND DISCUSSION 

5.1 Computer simulations 

Figure 3 (a-c) shows noise free synthetic abundance maps for 
endmember 1, 2 and 3. Figure 3 (d-f) shows estimated 
abundance maps obtained for each signature class (for the three 

endmembers) corresponding directly to the gray scale values for 
each image from SUnSAL, (g-i) from CSUnSAL with the range 
of abundance fraction values specified in square bracket 
[minimum abundance value – maximum abundance value] 
underneath each figure. Visual examination of the abundance 
maps of each category revealed that they were similar in terms 
of the relative fractions. Table 1 reveals that for the noise free 
data, both models have high cc, low RMSE and 𝑝! = 1. At noise 
variance 256, CSUnSAL showed higher cc and lower RMSE. 
At 256 noise level, SUnSAL has worst performance for all the 
endmembers. The details of other noise variances are omitted 
due to space constraints. For each endmember, both SUnSAL 
and CSUnSAL showed high cc (close to 1) when variance in the 
noise was increased till 16, beyond which cc gradually 
decreased and reached a minimum of 0.12 for endmember 3 for 
SUnSAL. To a certain noise level (noise variance 32), both the 
models were robust, however as noise increased in the data, 
they tend to produce higher RMSE following a hyperbolic 
curve. The analysis revealed that the unconstrained model 
performed well in identification and discrimination of the 
classes, however it did not provide accurate abundance 
estimation. 
 
5.2 An agricultural landscape  

Each of the 11 atmospherically corrected Landsat scenes was 
unmixed to obtain the abundance estimates within each pixel. 
Figure 4 shows sample estimated abundance maps from one of 
the Landsat scenes for S, V and D classes obtained from 
CSUnSAL. For each scene, the proportions of vegetation 
fraction in the image were compared with the ground 
observations. 
 

 
Figure 3. Abundance maps: (a - c) synthetic abundance for 

endmember 1-2-3; (d – f) abundance maps from SUnSAL, and 
(g – i) abundance maps from CSUnSAL from noise free data. In 

the figure, black indicates absence of a particular class (the 
minimum abundance value) and white indicates full presence of 

that class in a pixel (the maximum abundance value). 
Intermediate values of the shades of gray represent mixture of 

more than one class in a pixel. 
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Table 1. Cc, RMSE and 𝑝! for endmember 1, 2, and 3 (E1, E2, 
E3) for noise variance 0 and 256  

 
Models cc RMSE 𝑝! 

E1 E2 E3 E1 E2 E3 
Noise 𝜎!  = 0 

SUnSAL 1 1 0.99 0 0 0 1 
CSUnSAL 1 1 1 0 0 0 1 

Noise 𝜎!  = 256 
SUnSAL 0.32 0.42 0.12 0.84 0.90 64.4 0.46 

CSUnSAL 0.74 0.87 0.83 0.26 0.20 0.14 0.92 
 
 

 
 
Figure 4. Abundance maps obtained from CSUnSAL for SVD 

classes. In the legend, 0 (black) indicates absence of a particular 
class and 1 (white) indicates full presence of that class in a 
pixel. Intermediate values of the shades of gray represent 

mixture of more than one class in a pixel.   
 
Figure 5 shows BDF plots of the real/true vegetation fractions 
against estimated abundances along with the regression line and 
R2 values. MAE of vegetation fraction for SUnSAL and 
CSUnSAL was 0.08 and cc between fractions of vegetation 
ground polygons to the fraction abundance estimates was 0.98. 
 
A comparison of the satellite derived vegetation fraction with 
ground measurements showed that both models provided a 
reasonably accurate direct estimation of fractional cover from 
Landsat data in the context of this study, accurately reproducing 
the proportions of SVD endmembers in the 11 scenes under 
investigation. There could be effect of a few factors contributing 
to the errors in abundance estimates from the images. For the 
Fresno area, the acquisitions were taken during clear sky 
conditions (except for 3 days) and also coincided with the 
approximate time of the satellite overpass that took into account 
the illumination effect. The images were corrected to surface 
reflectance to curtail the effect of atmospheric noise. To avoid 
the geolocation errors caused due to misregistration, 
atmospheric effects, presence of background mixed with 
substrate, etc. a matrix of 3 x 3 pixels centered over the GPS 
location was used. Thus estimates of ground fractional cover 
from the 2-4 digital photographs well represented the field 
conditions within the Landsat IFOV of the 3 x 3 pixels window 
to which they were compared. Nevertheless, since fraction 
estimates from digital images were based on image 
segmentation and thresholding identified from distribution of 
camera pixels, there could be issues while resolving the ground 
cover estimates with the mixture model outputs. Field data were 
gathered in the absence of topography, so soils from two 
different field conditions may differ, causing minor errors in 
abundance estimates of substrate and dark objects. This 
difference is anticipated to be more with lower vegetation  

 
 

Figure 5. BDF plots of vegetation fraction at each of the 
sampled locations and regression lines of ground cover 

proportions (real abundances) versus estimated abundances 
from SUnSAL and CSUnSAL.   

 
fraction cover than at dense vegetation sites, but the image 
derived fraction estimates closely matched the ground 
observations on sparse vegetation conditions, appreciating the 
fact that vegetation fraction from the image is modelled only for 
the portion that is illuminated by sunlight and the shaded 
portions of the canopy are likely to be assigned to the dark 
fractions. The algorithm with the available global endmembers 
accounted for the variance in the soil by substrate and dark 
object fractions, given the fact that crop conditions were overall 
very uniform. 
 
5.3 An urban scenario 

Landsat and WV-2 data of SF (figure 6) were unmixed using 
the global endmembers (SVD) to study the performance of the 
algorithm. WV-2 data were unmixed using fully constrained 
least squares (FCLS) method (Chang, 2003) since it is robust 
and is often used as a benchmark for comparing the 
performance of other unmixing techniques. Figure 7 shows the 
estimated abundance fraction corresponding directly to the gray 
scale values for each abundance map from Landsat and WV-2 
data for SVD classes. 2 m resolution is adequate to capture 
small to medium sized buildings, sidewalks, streets and trees as 
evident from figure 8. At 30 m resolution, each 2 m WV-2 pixel 
is even less than 0.5% of the area within the 30 m full width 
half maximum of Landsat point spread function.  
 
The 2 m WV-2 fractions were convolved with a Gaussian low 
pass filter having 30 m full width half maximum, with the point 
spread function of the Landsat sensor and resampled to 30 m. 
Convolution followed by resampling of the high resolution data 
to 30 m resolution allowed assessing the geo-correction and 
comparison of the two data sets. Coordinate comparison of the 
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high and low-resolution data sets at many random pixels 
corresponding to same spatial locations did not reveal any 
systematic image registration error. The WV-2 SVD fractions 
were then compared to Landsat SVD fractions through MAE 
and cc for each abundance map. MAE of S, V, and D fractions 
for SUnSAL was 0.11, 0.07 and 1.99. SUnSAL had cc 
(statistically significant at 0.99 confidence level, p-value < 2.2e-

16) 0.86 for S, 0.88 for V and -0.03 for D classes. 
 

 
 

Figure 6. FCC of San Francisco area in Landsat and WV-2 
resolution. 

 

 
 
Figure 7. Endmember fractions of SVD from Landsat data using 
SUnSAL (first row), CSUnSAL (second row) and from WV-2 
data (third row). For SUnSAL, the range of abundance fraction 

values for S, V and D are specified in square brackets 
underneath each figure [minimum abundance value – maximum 

abundance value]. For other abundance maps, 0 (black) 
indicates absence of a particular class and 1 (white) indicates 
full presence of that class in a pixel as shown in the legend. 

Intermediate values of the shades of gray represent mixture of 
more than one class in a pixel. 

 
Note that the third endmember (D – Dark objects) has not been 
classified properly with the unconstrained form of the 
algorithm. The minimum and maximum abundance values for 
the third endmember (D) obtained from SUnSAL were (-20, 
57). For the constrained form, minimum and maximum 

 
 

Figure 8. FCC of validation site near Golden Gate Bridge, SF at 
Landsat and WV-2 spatial resolution. 

 

 
 
Figure 9. BDF plots of SVD fractions from WV-2 and Landsat 
and regression lines of WV-2 estimates (real abundance) versus 

estimated abundance from SUnSAL and CSUnSAL.   
 
 
abundance values were almost between 0 and 1. CSUnSAL had 
MAE of 0.09 (for S), 0.06 (for V and D). Cc between true 
fractions (of S, V and D) and estimated fractions from 
CSUnSAL were 0.87, 0.88 and 0.63. Figure 9 shows BDF plots 
of the S, V, and D fractions of the true (WV-2) abundances 
against the estimated abundances along with the regression line 
and R2 values for SUnSAL and CSUnSAL. 
 
For the SF area, most of the urban pixels were either mixed with 
vegetation (urban forest), roads, shadows or appear like dark 
objects because of the different materials used in the 
construction of the terrace. Nevertheless, this study shows that 
urban reflectance can be accurately modelled with a three 
endmember mixture model using Landsat and WV-2 data. Error 
in SF Landsat data fraction estimation could be either due to 
error in estimates from the algorithm or geo-registration or both. 
SVD model represented the land surface as independent 
constituents with different landscape properties such as 
vegetation and urban. It characterized the fraction of illuminated 
vegetation, substrate or impervious materials and the shadowed 
or nonreflective surfaces such as water, roofing tar, etc. High 
substrate fractions are rational estimates of the impervious 
surface in developed land in temperate and tropical regions as 
pervious surfaces are mostly covered by some kind of 
vegetation and exposed substrate are most likely impervious. 
Sometimes, if both pervious and impervious surfaces are 
exposed and illuminated, then this leads to ambiguity, a tricky 
classification in arid and semi arid regions. Small and Lu (2006) 
suggests to use vegetation fraction as a proxy for fractional 
pervious surface because vegetation cannot thrive on 
impervious surface, so presence of vegetation implies presence 
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of some amount of pervious surface. Therefore, using detectable 
vegetation as an indicator of permeable surface can account for 
the range of natural and built surfaces.  
 
Sparse techniques are meant to fundamentally look for the 
endmembers in a spectral library containing spectra of many 
materials, with only a few of them present in a pixel, i.e., the 
vector of fractional abundances is sparse and enforce the 
sparsity of the solution explicitly. However, sparse unmixing 
demonstrated good performance in this study even though the 
number of endmembers in the available library were only three. 
In future studies, the algorithm would be implemented on 
hyperspectral data with a large library of spectral endmembers 
to assess its robustness. In the absence of spectral library, the 
technique can also be used with image derived endmembers. 
 

6. CONCLUSION 

In this paper, sparse regression was explored to unmix Landsat 
data of an agricultural and urban scenario. It was observed that 
the areas with high fractional abundance of the considered 
endmember were well delineated while mixed regions with low 
abundance were more homogeneous. The abundance maps 
obtained from both unconstrained and constrained form of the 
algorithm have spatial consistency with good accuracy in the 
spatial distribution of the classes. The outcome of this study 
revealed that the constrained form of the algorithm could 
adequately model the data for unmixing better than the 
unconstrained form. 
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