
HYPERSPECTRAL ANALSIS OF SOIL TOTAL NITROGEN IN SUBSIDED LAND 

USING THE LOCAL CORRELATION MAXIMIZATION-COMPLEMENTARY 

SUPERIORITY METHOD 

 
 

L.X. Lin, Y.J. Wang*, J.Y. Teng, X.X. Xi 

School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, 

China-wyj4139@cumt.edu.cn 

 
Commission VII, WG VII/6 

 

 

KEYWORDS: hyperspectral analysis, local correlation maximization-complementary superiority (LCMCS), soil total 

nitrogen, subsided land 

 
 
ABSTRACT:  
 

The measurement of soil total nitrogen (TN) by hyperspectral remote sensing provides an important tool for soil 

restoration programs in areas with subsided land caused by the extraction of natural resources. This study used the local 

correlation maximization-complementary superiority method (LCMCS) to establish TN prediction models by considering 

the relationship between spectral reflectance and TN based on spectral reflectance curves of soil samples collected from 

subsided land determined by synthetic aperture radar interferometry (InSAR) technology. Based on the 1655 selected 

effective bands of the optimal spectrum (OSP) of the first derivate differential of reciprocal logarithm ([log{1/R}]'), 

(correlation coefficients, P < 0.01), the optimal model of LCMCS method was obtained to determine the final model, 

which produced lower prediction errors (root mean square error of validation [RMSEV] = 0.89, mean relative error of 

validation [MREV] = 5.93%) when compared with models built by the local correlation maximization (LCM), 

complementary superiority (CS) and partial least squares regression (PLS) methods. The predictive effect of LCMCS 

model was optional in Cangzhou, Renqiu and Fengfeng District. Results indicate that the LCMCS method has great 

potential to monitor TN in subsided land caused by the extraction of natural resources including groundwater, oil and coal. 
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1.  INTRODUCTION 

In recent years, land subsidence caused by the extraction 

of natural resources such as groundwater 

(Pacheco-Martinez et al., 2013; Bakr, 2015) oil 

(Moghaddam et al., 2013) and coal (Xu et al., 2014; 

Demirel et al., 2011) has created a severe and widespread 

hazard in China, resulting in new ecological and 

environmental issues such as soil degradation and a loss 

of biodiversity. As an essential element for plant growth, 

soil total nitrogen (TN) plays an important role in soil 

restoration programs. Monitoring of TN has stirred the 

interest of many scholars and resulted in a series of 

achievements recently (Endale et al., 2011;Reynolds et 

al., 2013); however, most approaches are based on 

traditional methods, which tend to be time consuming, 

laborious, and expensive (Chang et al., 2001). Therefore, 

researchers have sought real-time methods of monitoring 

of TN content of soils.  

Hyperspectral remote sensing provides an abundance of 

spectral information suggesting a potential method for 

estimating TN (Dematte et al., 2004). Compared with 

traditional laboratory methods, hyperspectral techniques 

are more rapid, less costly, and can eliminate the need for 

sample preparation and chemical reagents (Chang et al., 

2002; Dematte et al., 2004). Therefore, many studies 

have reported on various TN monitoring models (Fystro, 

2002; Mutuo et al., 2006). For example, Dalal et al. 

(Dalal and Henry, 1986) and Morra et al. (Morra et al., 

1991) both used stepwise multiple linear regression for 

the rapid quantification of TN contents. Sun et al. (Sun et 

al., 2014) estimated TN using wavelet analysis and 

transformation. Zheng et al. (Zheng et al., 2008) 

quantified TN content through near-infrared reflectance 

(NIR) spectroscopy and use of a BP neural network.  

Partial least squares regression (PLS) has advantages in 

treating very large data matrices such as those typically 

employed with hyperspectral reflectance data; therefore, 

this technique has been successfully applied to spectral 

data for predicting soil nitrate (Ehsani et al., 1999) and 

organic matter content (Nocita et al., 2011; Vohland et 

al., 2011), and also has been employed for predicting TN 

(Pan et al., 2012; Kuang and Mouazen, 2013). Shi et al. 

(Shi et al., 2013) compared three methods for estimating 

TN content with visible/near-infrared reflectance 

(Vis/NIR) of selected coarse and heterogeneous soils, 

and the PLS model performed best. Chang et al. (Chang 

et al., 2005) integrated near-infrared reflectance 

spectroscopy (NIRS) and PLS to predict several soil 

properties including TN. In general, many studies have 

confirmed that PLS was one of the most efficient 

methods used for constructing reliable models in wide 

range of fields, including in the field of hyperspectral 

remote sensing (Nguyen and Lee, 2006). 

Adaptive neuro-fuzzy inference systems (ANFIS), 

which combine the aspects of a fuzzy system with those 
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of a neural network, have been widely used in many 

fields because of its usefulness with complex nonlinear 

problems (Sharma et al., 2015; Jang, 1993; Paiva et al., 

2004; Abbasi and Abouec, 2008; Mukerji et al., 2009; 

Pramanik and  Panda, 2009; Yan, 2010); ANFIS has 

also been applied to the hyperspectral assessment of soil 

properties (Tan et al., 2014). Although it is difficult to 

make full use of hyperspectral data because of the 

restriction on the number of input variables, ANFIS may 

be a promising technique in the field of hyperspectral 

remote sensing. 

In summary, some research achievements have been 

accumulating with respect to estimating TN using 

hyperspectral remote sensing technology. Nevertheless, 

very little study has been undertaken in areas of subsided 

land where serious soil degradation is typical. In 

addition, almost no analysis of TN in subsided land 

caused by the extraction of various resources currently 

exists. Therefore, several issues should be considered to 

provide satisfactory prediction accuracy, such as 

whether the existing TN estimation models are suitable 

for used in this type of area experiencing subsidence, 

how to reduce noise while retaining as much useful 

information as possible in remotely sensed hyperspectral 

data, and how to realize the complementary superiority 

of PLS and ANFIS to further improve the accuracy of 

estimates of TN. 

In this study, the local correlation maximization (LCM) 

de-noising method was used to maximize the use of TN 

response information and eliminate the interference of 

noisy data. Then based on the complementary 

superiority of PLS and ANFIS to each other, the LCMCS 

models were built and assessed. 

 

2.  MATERIALS AND METHODS 

2.1  Experimental Section 

2.1.1  Sample Preparation 

The topsoil (0–20 cm) samples analyzed in this study had 

been randomly collected from different soil types at 280 

randomly selected sites in land that had subsided (red 

regions in Figure 1) of Cangzhou (Figure 1c; 38°32′N, 

116°45′E), Renqiu (Figure 1d; 38°42′N, 116°7′E) and 

Fengfeng District (Figure 1e; 36°20′N, 114°14′E), all in 

Hebei Province, China. Subsidence had been caused by 

the excessive extraction of groundwater, oil and coal in 

these three areas, respectively. In this study, the 

subsidence deformation data of Cangzhou and Renqiu 

were obtained by permanently scattered interferometric 

synthetic aperture radar technology (Perrone et al., 

2013), while data for Fengfeng District were captured by 

differential synthetic aperture radar interferometry 

technology (Chatterjee et al., 2006). All 280 soil samples 

were air dried, gently crushed, passed through a 2-mm 

sieve, and then pulverized by grinding. The samples 

were split into two parts with the two parts used for 

chemical analysis and spectral measurement, 

respectively. The percentage of TN in each soil sample 

was determined by the Institute of Soil Science, Chinese 

Academy of Sciences, Nanjing, China.  
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Figure 1. (a) Vicinity map of Hebei Province within China; (b) Vicinity map of the Changzhou, Fengfeng, and Renqiu 

study sites within Hebei; Soil sample collection sites from subsided land (red regions) of Changzhou (c), Renqiu (d) and 

Fengfeng (e). 

2.1.2  Measurement and Data Processing 

An ASD FieldSpec 3 spectroradiometer (Analytical 

Spectral Devices, Boulder, CO, USA) was used to 

measure the spectra of soil samples over wavelength 

ranges of 350–1000 nm and 1000–2500 nm, with 

increments of 1.4 nm and 2 nm, respectively. The 

spectral resolution at 700 nm was 3 nm; at 1400 nm and 

2100 nm it was 10 nm. Each soil sample was placed in a 

10 cm diameter, 2 cm deep container and illuminated 

from above using a halogen lamp. After adjusting the 

zenith angle and the distance between the light source 

and soil surface, 10 scans for each sample were acquired; 

calibration was done using a white reading with a white 

panel. All these operations were performed in a dark 

room to avoid the effects of stray light (Farifteh et al., 

2008). By dividing the mean radiance of 10 consecutive 

scans by the radiance over the Spectralon panel, the 
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spectral reflectance of the soil samples was calculated, 

which was regarded as the original spectrum (Shi et al., 

2014). 

2.1.3  Spectral Transformations  

Derivative processing helps to reduce the influence of 

low-frequency noise (Ghiyamat et al., 2013; Liaghat et 

al., 2014). In the reciprocal logarithm mode, spectra 

differences of the visible-light region can be highlighted 

and the influence of changes in illumination can be 

minimized (Wang et al., 2009). In this study, each 

original spectral reflectance (REF) was mathematically 

manipulated into the first derivative differential (FDR), 

reciprocal logarithm (log[1/R]) and the first derivative 

differential of reciprocal logarithm ([log{1/R}]'). 

2.1.4  Retrieval Model 

As many studies have confirmed that PLS was one of 

the most efficient methods used in constructing reliable 

models in the field of hyperspectral remote sensing; 

therefore, this paper used PLS analysis to analyze the 

first issue of whether the existing TN estimation models 

are suitable to land that had subsided because of the 

excessive extraction of different resources. And LCM 

and CS methods were specifically aimed at second and 

third issues considered in this study. Finally, in order to 

solve all three isssues, the LCMCS method was used to 

retrieve the TN content. And the results were compared 

and evaluated.  

In this study, 150 soil samples were used to construct all 

models (55, 50 and 45 soil samples from subsided land 

of Cangzhou, Renqiu and Fengfeng, respectively), In 

addition, in order to fully validate the prediction 

abilities of all model, 130 soil samples were used in 

verification (45, 45 and 40 soil samples from subsided 

land of Cangzhou, Renqiu and Fengfeng, respectively).  

 

2.2  Theories Section 

2.2.1  Local Correlation Maximization De-noising 

Method (LCM)  

The soil spectral reflectance curves always have obvious 

burrs, which show that a large number of noisy data exist 

within the spectrum; this noise is also present in the 

transformed spectrum. How can noise be reduced while 

retaining as much useful information as possible? Based 

on the concept of local optimization, this study employed 

the LCM de-noising method to solve this difficult 

problem. The main steps of LCM are as follows: 

(1) Decomposing the original and transformed 

spectrum into five layers using a wavelet denoising 

method that was based on the Sym8 matrix function.  

(2) Calculating the correlation coefficients for the 

measured TN content compared with both initial 

(including original and transformed spectrum, the same 

below) and decomposed spectral reflectance (1–5 levels), 

in the range of 350–2500 nm. 

(3) Finding the optimal decomposition level of each 

band, which has the maximum correlation coefficient 

among initial and decomposed spectra (1–5 levels) at 

each wavelength; then, the corresponding correlation 

coefficient and decomposed band are taken as the local 

optimal correlation coefficient (LOCC) and optimal 

band (OB). After all the LOCCs and OBs are acquired, 

the overall LOCC and OB determined the optimal 

correlative curve (OCC) and the optimal spectra (OSP), 

respectively. Lastly, the OSP and OCC of original and 

transformed spectra were obtained. 

2.2.2  Partial Least Square Regression Analysis 

(PLS) 

The PLS method proposed by Gerlach, et al. (Gerlach et 

al., 1979) is a mainstream, linear multiple regression 

method that compresses spectral data by reducing the 

measured collinear spectral variables to a few 

non-correlated latent variables or factors (Geladi and 

Kowalski, 1986; Feret et al., 2011; Singh et al., 2013). 

The basic aim of PLS is to build a linear model about X 

(response variables matrix) and Y (predictor variables 

matrix). The main principle is as follows (Lin et al., 

2014): 

First, X and Y are decomposed into feature vectors in the 

forms of Equations (1) and (2): 

Y UQ F 
 (1)  

X TP E   (2)  

where U and T are the score matrices, Q and P are the 

loading matrices, and F and E are the error matrices 
(Cho et al., 2007). 

According to the correlation between feature vectors, a 

regression model is established by decomposing X and Y: 

U TB Ed   (3)  

where Ed is the random error matrix, and B is the 

regression coefficient matrix. 
Thus, if spectral vector x is known, the predicted TN 

content y can be obtained 

( )y x UY BQ
.  (4)  

2.2.3  Adaptive Neuro-fuzzy Inference System 

(ANFIS) 

ANFIS is an adaptive neuro-fuzzy inference machine 

combination of fuzzy theory with neural nets (Gpyal et 

al., 2014). As one of the popular learning methods in 

neuro-fuzzy systems, a fuzzy inference system uses 

hybrid learning algorithms to identify the fuzzy system 

parameters and to teach the model (Rehman and 

Mohandes, 2008). Figure 2 shows the ANFIS 

architecture with two inputs and one output, which has 

five layers and two rules. 
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Figure 2. Adaptive neuro-fuzzy inference system 

(ANFIS) architecture. 
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Two fuzzy if-then rules (Jang, 1992) are given as 

follows: 

Rule 1: If, (x is A1) and y is B2), then 

( 1 1 1 1f p x q y r   ) (5)  

Rule 2: If, (x is A2) and (y is B2), then 

( 2 2 2 2f p x q y r   ) (6)  

Layer 1  Every adaptive node in this layer is a square 

node with the node functions: 

 1, , 1,2
ii AO x i   (7)  

 
21, , 3,4

ii BO y i


   (8)  

where O1,1 and O1,2 are used to grade the 

memberships of fuzzy sets A and B. Usually, a bell 

function is used as follows: 

 
2

1
, 1, 2

1

i i
A b

i

i

x i

x c

a

  
  
   
   

 

(9)  

where ai, bi, and ci are the premise parameters. 

Layer 2  Every adaptive node in this layer multiplies the 

incoming signal and sends the product out; the output is 

determined by: 

   2, , 1, 2
i ii i A BO w x y i     (10)  

Layer 3  Ratio of the rules for firing strength to the sum 

of all rule’s firing strengths is given as: 

3,

1 2

, 1, 2i
i i

w
O w i

w w
  


     

(11)  

Layer 4  In this layer, every adaptive node is a square 

node with the function: 

 4, , 1, 2i i i i i i iO w f w p x q y r i      (12)  

where 
ip , 

iq , 
ir  are the design parameters. 

Layer 5  Fixed node computes the overall output as the 

summation of all coming signals; the output is as 

follows: 

5, , 1, 2
i i i

i i i

i i i

w f
O w f i

w
  





 (13)  

2.2.4  Local Correlation 

Maximization-Complementary Superiority 

(LCMCS)  

To develop an ideal prediction model, this paper tried to 

solve several issues such as whether the existing TN 

estimation models were suitable for use with land that 

had subsided as a result of the excessive extraction of 

various resources such as groundwater, oil and coal, how 

to reduce noise while retaining as much useful 

information as possible, and how to realize the 

complementary superiority between PLS and ANFIS to 

further improve the estimation accuracy of models. In 

facing the above issues, the LCMCS method was 

proposed; the main steps are as follows: 

 (1) Spectral transforms. Spectral transforms help to 

reduce the influence of noise; therefore, each REF was 

mathematically manipulated into FDR, log(1/R) and 

(log[1/R])'. 

 (2) LCM analysis. To maximize the use of TN 

response information and eliminate the interference of 

noisy data, OSP and OCC of the original and 

transformed spectrum were obtained by LCM de-noising 

method, which had significant correlativity with TN 

content.  

 (3) Complementary superiority. OSP and 

measured TN values were used in PLS analysis, and 

several principal components were acquired. Then these 

principal components and the measured TN contents 

were used in ANFIS analysis, and the LCMCS models 

were established. 

 (4) Model-verifying. In this study, from the 280 

samples in each treatment, 150 samples were used for 

model calibration and the remaining 130 samples were 

used for model verification. Then, the best model was 

selected as the final model using the LCMCS method. 

By carefully applying spectral transforms to wavelet, 

correlation, PLS, and ANFIS analysis methods, the 

LCMCS method can effectively remove noise while 

preserving the detail information, taking full advantage 

of useful spectral information and eliminating the 

interference of noisy data, and the complementary 

superiority between PLS and ANFIS are realized. 

2.2.5  Model Evaluation Standard 

The stabilities and accuracies of all the models were 

determined by coefficient of determination (R2), root 

mean square error of calibration (RMSEC) and mean 

relative error of calibration (MREC). The estimating 

effects were evaluated by root mean square error of 

validation (RMSEV) and mean relative error of 

validation (MREV). A good model will have a high R2, 

low root mean square errors (RMSEC and RMSEV), and 

small mean relative errors (MREC and MREV). 

 

3.  RESULTS AND DISCUSSION 

3.1  Interpretation of Soil Spectral Reflectance 

Figure 3 shows the differences of spectral reflectance 

between spectra and samples with different TN content 

(12.63, 7.89, 9.91, 13.36, 15.07 and 18.70 mg kg-1). The 

samples of the Fengfeng site had much more TN than 

samples of Cangzhou and Renqiu; Figure 3 indicated 

that soil reflectance generally decreases with increasing 

TN content. A TN of 18.70 mg kg-1 showed lower 

reflectance values than the others, probably because of 

its greater TN content. In the entire visible-near-infrared 

spectrum, three remarkable water absorption peaks were 

observed at 1,400, 1,905 and 2,200 nm. Although the 

differences of spectral characteristics caused by TN are 

apparent, it was still extremely difficult to reveal the 

relationships between spectra and TN content directly, 

especially when a greater number samples were 

considered. Instead, many processing algorithms were 

employed for the data mining and analysis in this study.  
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Figure 3. Original reflectance curve of soil samples with different TN contents. 

3.2  OSP Acquirement  

Each REF was mathematically manipulated into FDR, 

log(1/R) and (log[1/R])'. To remove the noise in the 

spectrum effectively, REF and the transformed spectrum 

were decomposed into multi-level scales using a wavelet 

denoising method that was based on the Sym8 matrix 

function. Then, correlation coefficients for the measured 

TN content that were compared with both the initial and 

the decomposed spectra (1–5 levels) were calculated. 

Figure 4a shows the correlation coefficients between the 

measured TN content and the initial FDR (data of REF, 

log[1/R] and [log{1/R}]' are not shown, the same as 

below), and the correlation coefficients of the measured 

TN content with decomposed FDR (1–5 levels; Figure 

4b–f). Moreover, Table 1 gives maximum values of all 

the correlation coefficients of initial FDR and 

decomposed FDR. Figure 4a–f and Table 1 demonstrate 

that there was a stronger correlation when the level of 

wavelet decomposition was 5, whose correlation 

coefficient reached to 0.725 (at 2316 nm). This implied 

that the wavelet analysis amplified some useful TN 

information that was previously obscured by noise.  

 

Figure 4. Wavelength dependence of coefficients of correlation between total soil nitrogen (TN) and first derivative 

differential of the soil spectra: initial (a); decomposed (1–5 levels) (b–f); optimal correlative curve (OCC) (g), and (h) first 

derivative differential reflectance curve of soil sample (Initial, decomposed [5 level] and the optimal spectra [OSP]). 
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TSP   MPCB (nm) CC     MNCB (nm) CC 

FDR 1397 0.669 766 -0.672 

FDR(DL=1) 1397 0.689 1419 -0.692 

FDR(DL=2) 1395 0.697 1421 -0.721 

FDR(DL=3) 1394 0.695 1422 -0.704 

FDR(DL=4) 2205 0.714 1214 -0.715 

FDR(DL=5) 2316 0.725 1223 -0.706 

TSP, Types of spectral parameters; DL, Decomposition level; MPCB, Maximum positive correlation band; CC, Correlation 

coefficient; MNCB, Minimum negative correlation wave. 

Table 1. Correlation analysis between total soil nitrogen (TN) and the first derivative differential FDR (initial and 

decomposed).

Then, to preserve more detail during spectra denoising, 

the optimal decomposition level of each band was found, 

which has the maximum correlation coefficient among 

the initial and decomposed spectra (1–5 levels) at each 

wavelength; the corresponding correlation coefficient 

and decomposed band are taken as LOCC and OB. The 

red points in Figure 4a–f show the LOCC and the overall 

LOCC determine the OCC (Figure 4g). Figure 4h shows 

the initial FDR curve, decomposed FDR curve (5 level) 

and OSP, compared with initial FDR curve and 

decomposed curve (5 level); OSP can effectively remove 

noise while preserving the detail information 

simultaneously. Figure 5 shows all OCC of REF, FDR, 

log(1/R) and (log[1/R])'.  

 

Figure 5. Optimal correlative curve of the original reflectance and its different transformation forms. 

Based on Figure 5, the OCC of (log[1/R])' performed better, and the correlation coefficient was 0.797. In addition, the OCC 

of FDR had more bands with high correlation than OCC of (log[1/R])'; meanwhile, its maximum correlation coefficient was 

much higher than the OCC of REF and log(1/R). Table 2 gives their maximum correlation coefficients and number of bands 

at different levels of correlation. Therefore, OSP of FDR (Figure 6a) and (log[1/R])' (Figure 6b) were used to build the 

LCMCS model.  

 

TSP CL NB MPCB(nm) CC MNCB(nm) CC 

FDR ** 2023 2316 0.725 1421 -0.721 

>0.40 1759 2316 0.725 1421 -0.721 

>0.45 1654 2316 0.725 1421 -0.721 

>0.50 1510 2316 0.725 1421 -0.721 

>0.55 1291 2316 0.725 1421 -0.721 

>0.60 949 2316 0.725 1421 -0.721 

(log[1/R])' ** 1655 1422 0.797 2205 -0.739 

>0.40 566 1422 0.797 2205 -0.739 

>0.45 392 1422 0.797 2205 -0.739 

>0.50 210 1422 0.797 2205 -0.739 

>0.55 134 1422 0.797 2205 -0.739 

>0.60 92 1422 0.797 2205 -0.739 
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TSP, Types of spectral parameters; CL, Correlative levels; **, at the 0.01 significance level; NB, Number of bands; MPCB, 

Maximum positive correlation band; CC, Correlation coefficient; MNCB, Minimum negative correlation band. 

Table 2. Comparisons of the optimal correlative curve (OCC) of the first derivative differential (FDR) and the first 

derivative differential of reciprocal logarithm (log[1/R])'. 

 

Spectral curves in Figure 6 shows that LCM method has 

strong capabilities of removing noises and preserving 

detail information, which indicate that the second issue 

considered in this study was solved perfectly.  

 

Figure 6. Optimal spectrum (OSP) of the first derivative differential (FDR) (a) and the first derivative differential of 

reciprocal logarithm (log[1/R])' (b). 

3.3  Applicability of LCMCS Model 

OSP and measured TN values were used in PLS analysis, 

and five principal components were acquired. Then these 

five principal components and the measured TN contents 

were used in ANFIS analysis, and the LCMCS models 

were established. Table 3 shows a comparative analysis 

of the performance of various models established by 

LCMCS method at different correlative levels of FDR 

(OSP) and (log[1/R])' (OSP). Based on the 1655 selected 

effective bands of (log[1/R])' (OSP), whose correlation 

coefficients were significant (P < 0.01), the optimal 

model of the LCMCS method was obtained and 

determined to be the final model of LCMCS method, 

which produced more ideal results for both the 

calibration (R2 = 0.991, RMSEC = 0.269 and MREC = 

1.446) and validation (RMSEV = 0.898 and MREV = 

5.921) analyses compared with other models. 

 

TSP CL LVs Calibration (n=150)  Validation (n=130) 

R2 RMSEC MREC  RMSEV MREV 

FDR ** 5 0.951 0.629 3.311  1.169 7.901 

>0.40 5 0.946 0.667 3.818  1.095 7.901 

>0.45 5 0.923 0.793 4.909  1.076 6.969 

>0.50 5 0.920 0.808 5.231  1.105 6.890 

>0.55 5 0.927 0.767 4.781  1.080 7.051 

>0.60 5 0.917 0.821 5.168  1.184 8.068 

(log[1/R])' ** 5 0.991 0.269 1.446  0.898 5.921 

>0.40 5 0.939 0.704 4.220  1.529 9.613 

>0.45 5 0.910 0.854 5.009  1.123 7.602 

>0.50 5 0.953 0.616 3.615  1.240 8.178 

>0.55 5 0.954 0.608 3.037  1.234 7.626 

>0.60 5 0.957 0.588 2.968  1.255 7.815 
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TSP, Types of spectral parameters; CL, Correlative levels; **, at the 0.01 significance level; LVs, Number of latent 

variables. 

Table 3. Comparisons of the performance of models established by the local correlation maximization-complementary 

superiority method at different correlative levels of the first derivative differential (FDR (optimal spectrum [OSP]) and the 

first derivative differential of reciprocal logarithm (log[1/R])' (OSP). 

 

For the purpose of comparison, three issues were 

separately considered, and the corresponding solutions 

are as follows: 

 (1) PLS method. In PLS models, decomposed FDR 

(5 level) and (log[1/R])' (4 level), whose correlation 

coefficients reached to 0.725 and 0.797, respectively, 

were used in PLS analysis. Based on the 1293 selected 

effective bands of (log[1/R])' (5 level), whose correlation 

coefficients were significant (P < 0.01), the optimal 

model of PLS method was obtained, which was selected 

as the final model of the PLS method. 

 (2) Local correlation maximization method 

(LCM). Facing the second issue of how to reduce noise 

while retaining as much useful information as possible, 

OSP of FDR and (log[1/R])' were used in PLS analysis. 

Based on the 1655 selected effective bands of (log[1/R])' 

(OSP), whose correlation coefficients significant (P < 

0.01), the optimal model of the LCM method was 

obtained and selected as the final model of LCM method. 

 (3) Complementary superiority method (CS). The 

CS model, which had the advantages of PLS and ANFIS, 

was aimed at addressing the third issue. The same PLS 

models, decomposed FDR (5 level) and (log[1/R])' (4 

level) were used. Based on the 382 selected effective 

bands of (log[1/R])' (4 level), whose correlation 

coefficients were greater than 0.40, the optimal model of 

CS method was created and the final model of LCM 

method was determined. 

 Table 4 shows results of the best model found 

using each method.  

 

Model TSP LVs Calibration (n=150)  Validation (n=130/45 C/45 R/ 40 F) 

R2 RMSEC %MREC  RMSEV %MREV 

LCMCS (log[1/R])' 5 0.991 

 

0.269  1.446  0.898 0.861 C 5.921 6.463 C 

 0.713 R 5.412 R 

 1.103 F 5.883 F   

LCM (log[1/R])' 8 0.916 0.804 5.498  1.191 1.130 C 7.972 8.899 C 

 0.863 R 6.839 R 

 1.529 F 8.205 F 

CS (log[1/R])' 5 0.953 0.620 3.473  1.147 1.131 C 7.572 8.394 C 

 0.945 R 6.958 R 

 1.353 F 7.337 F 

PLS (log[1/R])' 8 0.830 1.141 7.756  1.373 1.354 C 9.525 10.38 C 

 1.148 R 9.415 R 

 1.608 F 8.683 F 

TSP, Types of spectral parameters; LVs, Number of latent variables; C, Cangzhou City; R, Renqiu City; F, Fengfeng District 

Table 4. Test result of the local correlation maximization-complementary superiority method (LCMCS), complementary 

superiority (CS), local correlation maximization (LCM) and partial least squares regression (PLS) models for total soil 

nitrogen (TN) content.  

The PLS model provide good results in predicting TN 

contents (RMSEV = 1.373, MREV = 9.525%; Table 4); 

this indicated that the PLS method based on spectral 

transforms and wavelet analysis is suitable for use with 

land that had subsided based on excessive extraction of 

different resources as discussed above. When the second 

issue was considered, the LCM model did perform better 

than the PLS model with the RMSEV of 1.191 and the 

MREV of 7.972%; its ability to predict was obviously 

enhanced at all three sites, Changzhou, Renqiu and 

Fengfeng. Moreover, a small improvement occurred in 

the CS model when compared with the LCM model, 

although the precision in Renqiu was reduced from 

6.839% to 6.958%. The results of the LCM and CS 

models indicate that when second and third issues were 

considered, the predictive effects can be improved 

significantly. However, it can be seen from the 

comparison that the LCMCS model (Figure 7a) 

produced lower prediction errors during both the 

calibration (R2 = 0.991, RMSEV = 0.269 and MREV = 

1.446%) and validation (RMSEV = 0.898, MREV = 

5.921%) when compared with models built by other 

three methods (Figure 7b–d). Moreover, at all three sites, 

Cangzhou (RMSEV = 0.861, MREV = 6.463%), Renqiu 

(RMSEV = 0.713, MREV = 5.412%) and Fengfeng 

(RMSEV = 1.103, MREV = 5.883%), the estimating 

effect of the LCMCS model was also the closest to the 

ideal. In addition overall models indicted that the 

estimating effect in Cangzhou were the poorest, 

followed by Fengfeng (except PLS model), the cause of 

this results would be left behind to further research.  
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Figure 7. Comparisons of measured and predicted values by the local correlation maximization-complementary superiority 

method (LCMCS) (a), complementary superiority (CS) (b), local correlation maximization (LCM) (c) and partial least 

squares regression (PLS) (d) methods. 

4.  CONCLUSIONS/OUTLOOK 

By carefully applying spectral transforms as well as 

wavelet, correlation, PLS, and ANFIS analyses, the 

potential of the LCMCS method for the rapid 

quantification of TN was investigated. Based on the 

1655 selected effective bands of (log[1/R])' (OSP), 

whose correlation coefficients were significant (P < 

0.01), the optimal model of the LCMCS method was 

obtained and determined as the final model of LCMCS 

method. For the purpose of comparison, three issues in 

this study were separately considered during model 

establishment. The results show that all three 

comparative methods could quantify TN efficiently, the 

estimating effect of the LCM and CS models were 

improved more significantly than the PLS model, which 

respectively became the second and third issues to be 

taken into account, and a small amount of improvement 

occurred in the CS model when compared to the LCM 

model. However, the calculative precision of the 

LCMCS model improved with the consideration of the 

three issues; in addition, the location (Cangzhou, Renqiu 

or Fengfeng) did not matter and the model’s ability to 

estimate TN was also the most ideal. In summary, the 

LCMCS method has great potential for use in monitoring 

TN in land that had subsided because of the excessive 

extraction of natural resources such as groundwater, oil 

and coal. 
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