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ABSTRACT: 

 

In most Mobile Laser Scanning (MLS) applications, filtering is a necessary step. In this paper, a segmentation-based filtering method 

is proposed for MLS point cloud, where a segment rather than an individual point is the basic processing unit. Particularly, the MLS 

point cloud in some blocks are clustered into segments by a surface growing algorithm, then the object segments are detected and 

removed. A segment-based filtering method is employed to detect the ground segments. Two MLS point cloud datasets are used to 

evaluate the proposed method. Experiments indicate that, compared with the classic progressive TIN (Triangulated Irregular 

Network)  densification algorithm, the proposed method is capable of reducing the omission error, the commission error and total 

error by 3.62%, 7.87% and 5.54% on average, respectively. 
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1. INTRODUCTION

In the last decade, mobile laser scanning (MLS) is a quite new 

technology in which environment are mapped by laser distance 

measurements from moving vehicles, and transformed into a 

georeferenced 3D point cloud using GPS/IMU data. As a state-

of-the-art technology for mapping and remote sensing, MLS can 

serve as an effective solution for surveying complex 

environment, such as urban environment and road corridors 

(Lin et al., 2013). Many mature MLS systems can be found 

from the market (Kaartinen et al., 2012), and widely used for 

various purposes such as road inventory (Pu et al., 2011), map 

update (Hwang et al., 2013), façade extraction (Yang et al., 

2013; Jochem et al., 2011), building reconstruction (Frueh et 

al., 2005; Becker et al., 2009), road marking extraction (Yang et 

al., 2012), window extraction (Wang et al., 2012), tree 

extraction (Wu et al., 2013), object extraction and recognition 

(Yang et al., 2012; Yu et al., 2013; Golovinskiy et al., 2009, 

etc). 

 

In fact, among various applications, detection of ground points 

is a necessary step. Because the ground points probably make 

up the largest percentage of entire points and the objects of 

interest are usually located on the ground surface (Pu et al., 

2011; Golovinskiy et al., 2009; Elhinney et al., 2010). However, 

the existing ground detection methods for airborne LiDAR 

point cloud are also employed for MLS point cloud, and they 

are faced with the following problems: 

 

The huge amount of points (Pu et al., 2011; Yang et al., 2013) 

causes heavy computational burden. Thus, object points should 

be partially removed before filtering. 

 

Existence of outliers, especially low outliers, may lead to many 

errors (Elhinney et al., 2010). Thus, the outliers should be 

eliminated at first for most filtering methods. 

 

There are variable point densities (Yang et al., 2013) and data 

gap, which may make the ground surface not well sampled. 

 

A point cloud is normally composed of various types of 

complex and incomplete scene structures (Yang et al., 2013), 

and the lower parts of off-terrain objects (such as vehicle, 

façade, tree trunk, etc.) are attached on the ground surface, thus 

the points belonging to the lower parts are likely to being 

classified as ground measurements. 

 

Urban ground surface itself is not smooth and continuous 

enough, because there are lots of break lines such as road edges 

and curbstones (Zhou et al., 2012). However, the points around 

the break lines may be misclassified. 

 

Practices suggest filtering of LiDAR data can be strengthened 

by analyzing segments rather than individual points (Filin et al., 

2006). Moreover, once a point cloud has been segmented, 

segment attributes can be collected to classify the segments 

(Vosselman et al., 2010). As a result, similar to object-based 

image analysis (Blaschke et al., 2010), a segment-based 

classification is more reliable than a point-based classification 

(Vosselman et al., 2010; Zhang et al., 2013; Rutzinger et al., 

2008) for point cloud. Thus, a segment-based method for 

ground measurement detection from MLS point cloud is 

proposed herein. The main contribution of our method consists 

of two parts. The first one is a knowledge-based method (Pu et 

al., 2011) is employed to detect the off-terrain objects. The 

second one is a segment-based method for point cloud filtering 

is proposed to remove the lower parts of objects and retain the 

points around break lines. 
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2. METHOD 

Our proposed method is composed of four core steps, namely 

data partition, point cloud segmentation, object segments 

detection, and segment-based progressive TIN densification 

(PTD). Moreover, the classic point-based PTD method 

(Axelsson, 2000) is widely employed in filtering of point cloud, 

and it is improved by our segment-based method.  

 

2.1 Data partition 

Processing MLS point cloud is a challenging task due to the 

huge point data volumes. Instead of processing the whole point 

cloud directly, the raw MLS point cloud are partitioned into 

multiple blocks, and then information of interest is extracted 

from the points in each block,. The geometrical shape of each 

block is manually specified, and the overlapping zones between 

neighbouring blocks can be permitted. After data partition, each 

dataset in a block is taken as an independent point cloud taking 

part in the following processing. 

 

2.2 Point cloud segmentation 

Point cloud segmentation is the process to partition a point 

cloud into coherent and connected point clusters. Specifically, 

points on a certain geometric feature are coherent points, such 

as co-plane, co-surface, and co-line points; whilst connected 

points are a group of points in which every point has at least 

one neighbouring point within a certain distance. 

 

The surface growing algorithm proposed by Vosselman and 

Klein (2010) is used herein. After data partition, the laser point 

cloud in each block is segmented into planar segments with a 

surface growing algorithm. After segmentation, the ground 

surface is clustered into several large segments, each building 

façade may be clustered into one segment, and the vegetation 

has many small segments. Moreover, the surface growing 

method supposes that some points are outliers, thus they are not 

labeled in segmentation. These outliers are eliminated from the 

point cloud, and only the planar segments are used for the 

following operations. 

 

2.3 Object segments detection 

Geometric features of a segment and topological relations 

between segments have been widely employed in information 

extraction from point cloud (Pu et al., 2011). Generally, most 

building façade segments are very large and aligned vertically 

(Yang et al., 2013; Jochem et al., 2011), and most vegetation 

segments are small (Zhang et al., 2013; Rutzinger et al., 2008) 

and scattered in 3D space (Yang et al., 2013; Zhang et al., 

2013).Two features about orientation and scatterness are 

selected to detect object segment herein. A method to calculate 

the orientation and the scatterness of a planar segment was 

proposed in (Zhang et al., 2013), where the scatterness is 

calculated based on the principal components analysis (Yang et 

al., 2013). Based on visual evaluation of the histograms of 

orientation and scatterness, two thresholds about orientation  

O  and scatterness S for distinguishing the façade and non-

faced, vegetation and non-vegetation can be determined in a try-

and-error way. In our proposed approach, the potential building 

façade segments and vegetation segments are first detected and 

labeled as “object”; and they are eliminated from the following 

processing, which will reduce the volume of points for the 

subsequent step. 

 

2.4 Segment-based PTD 

This step is similar to the PTD filter, but the basic processing 

unit is a segment rather than a single point. It is composed of 

five core steps, and details of five steps refer to Section 3.4 in 

(Lin et al., 2014). 

 

3. EXPERIMENTS AND PERFORMANCE 

EVALUATION 

3.1 Test data and the relevant parameters 

Two test datasets were acquired using the SSW mobile mapping 

system. The SSW mobile laser scanning system is developed 

and made by Beijing 4D Vision Information Technology Co. 

Ltd, China. The hardware of the SSW consists of a laser 

scanner, a CCD camera system, a portable control unit box, a 

GNSS/INS unit etc. The laser scanner collects data at a rate of 

200,000 measurements per second with a field of view (FOV) 

of 360°. The first data has 2,000,173 points, with an average 

point density of 110 points/m2; while the second data has 

2,000,055 points, with an average point density of 160 

points/m2. The first data covers an area in Beijing City, China, 

with approximate 350m length and 500m width. The second 

data covers an area in Sanxia City, China, with approximate 

330m length and 220m width. Moreover, both datasets have 

various types of artificial objects and the ground surfaces are 

not smooth enough. 

 

The shared five parameters m , t ,  , d , l  are set to the same 

values for both filters applied on the two datasets, as shown in 

Table 1. Moreover, our proposed method needs more 

parameters. Specifically, in the surface growing segmentation, 

the orientation threshold, o , and scatterness threshold,  s  are 

set to 45° and 0.2 respectively for both two data. 

 

3.2 Results and Performance Evaluation 

With the specified parameters in Table 1, we perform the 

filtering on the two datasets using the two methods. 

 

Visual inspection suggests that the surface growing method 

yields good results, and there is less under-segmentation and 

over-segmentation. Some statistics about the filtering results 

refer to Table 2. For the PTD method, there are 57 outliers and 

718 outliers in the two test datasets, respectively. 64 points and 

60 points are selected as seed points in the two test datasets; 

there are 1,035,516 ground points and 1,155,869 ground points 

in the final filtered results. For our proposed method, there are 

974,043 object points and 1,205,793 object points detected by 

the step in the Section 3.3 in the two test datasets; there are 

535,226 points and 900,949 points selected as seed points in the 

two test datasets; there are 994,760 ground points and 

1,135,437 ground points in the final filtered results. The 

statistics in Table 2 suggest that our method does not need 

outlier removal step, it is capable of detecting most of the object 

measurements, and it is capable of selecting many more seed 

ground points. 

 

Quantitative assessment follows the method proposed in ISPRS 

filter test (Sithole et al., 2004). Three kinds of errors are 

calculated, namely, type I errors (i.e., omission errors), type II 

errors (i.e., commission errors), and total errors. Moreover, the 

reference results of the two datasets are produced in a way of 

combination of automatic filtering and manual editing. The 

three types of errors of the two filters for the two datasets are 
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listed in Table 3. For our proposed method, the three types of 

errors are 0.07%, 0.39% and 0.23%for the first test dataset; the 

three types of errors are 4.74%, 0.09% and 2.86% for the 

second test dataset. For the PTD method, the three types of 

errors are 3.23%, 7.55% and 5.40% for the first test dataset; the 

three types of errors are 8.85%, 8.66% and 8.77% for the 

second test dataset. The statistics in Table 3 suggest that our 

proposed approach achieve better results than the classic PTD 

method. On average, compared with the PTD algorithm, the 

type I error, the type II error and total error of our method are 

reduced by 3. 62%, 7.87% and 5.54%. Moreover, in both cases, 

the three types of errors of our method are quite low, which 

shows that our filtered results are very close to the ground truth 

data. 

 

Parameters m (m) t (°)  (°) d (m) l (m) 

Threshold 

value 

60 88 6 0.5 1.0 

Table 1. Input five shared parameters of the two filters in the 

two datasets 

 

Indices 

 

 

Scene 

Total 

number 

of points 

(points) 

Classic PTD method Our method 

Number 

of 

outliers 

(points) 

Number 

of seed 

points 

(points) 

Number 

of ground 

points 

(points) 

Number 

of object 

points 

(points) 

Number 

of seed 

points 

(points) 

Number 

of ground 

points 

(points) 

Data 

set 1 

2,000,173 57 64 1,035,516 974,043 535,226 994,760 

Data 

set 2 

2,000,055 718 60 1,155,869 1,205,793 900,949 1,135,437 

Table 2. Statistics about the filtered results of the two filters 

 

The experiments indicate that our proposed method has quite 

better performances than the classic PTD method. Our method’s 

advantages come from the embedding of point cloud 

segmentation, which makes the judging in a segment-wise 

manner. In the segment-based judging, the lower parts of the 

off-terrain objects are less possible being detected as ground, 

while the points around the road edges are more possible being 

detected as ground. 

 

Dataset NO. Type of error PTD(%) Our method(%) 

Data set 1 

I 3.23 0.07 

II 7.55 0.39 

T 5.40 0.23 

Data set 2 

I 8.85 4.74 

II 8.66 0.09 

T 8.77 2.86 

Table 3. Three types of errors of the two filters in the two test datasets 

 

4. CONCLUSIONS AND DISCUSSION 

Filtering is one of the core post-processing steps for MLS point 

cloud. However, the classic PTD filter fails to remove the lower 

parts of the objects and preserve the ground measurements in 

steep terrain areas. Thus, a segment-based filtering method is 

proposed by integrating the PTD framework and surface 

growing segmentation method. The experiments are performed 

on two datasets to verify our proposed method; moreover, two 

ground truth datasets are produced to calculate the accuracies. 

The results suggest that, our proposed approach is better than 

the classic PTD method in removing vehicle measurements and 

preserving ground measurements. Moreover, our approach 

solves the five problems of the PTD method listed in Section 1. 

Particularly, it has significantly lower type I errors, type II 

errors and total errors than the PTD algorithm. The future work 

will focus on the improvement of the proposed filter to reduce 

the type II error, and parallel computing is going to be 

implemented to promote the efficiency. 
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